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1. Introduction and Preliminaries
The q-shifted factorial is defined by [23, p.139]

(a; q)n =

{
1, n = 0

(1− a)(1− aq) (1− aq2) . . . (1− aqn−1) , n = 1, 2, 3, . . .
(1)

Then by (1), there exists following result

(qα; q)n
(1− q)n

= [α]q[α+1]q[α+2]q . . . [α+n−1]q∀n = 1, 2, 3, . . . , where [α]q :=
1− qα

1− q
.

(2)
In view of (1), (2), and an infinite product (a; q)∞ =

∏∞
k=0

(
1− aqk

)
, we have a

relation with the q shifted factorial as (a; q)n = (a;q)∞
(aqn;q)∞

, and then the q-binomial

series is given by [28]

(az; q)∞
(z; q)∞

=
∞∑
n=0

(a; q)n
(q; q)n

zn. (3)

Also, the q-exponential function is presented in the form [23, p. 145]

1ϕ0(0; ; q, z) =
∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1. (4)

Recently, Kim et al. [13] investigated some properties and identities for the (expo-
nential) incomplete Bell polynomials or partial Bell polynomialsBn,k (x1, . . . , xn−k+1)
through a generating function

exp

[
∞∑
i=1

xi
ti

i!

]
=

∞∑
n=k

Bn,k (x1, . . . , xn−k+1)
tn

n!
, k ≥ 0. (5)

Here, in this paper we discuss q-analysis of partial Bell Polynomials [27] defined by
(5) and evaluate some of its partition functions.

In our recent work (see references of (1)-(4)) by making an appeal to certain
allied topics of q analysis and q-calculus ([1], [12]), we exhibit a connection between
(q; q)n and the exponential Bell polynomials, which is motivated by the recent
formulae of Malenfant [22] and Jha [11] for the partition function p(n) studied in
[21], given in the Section 2. The Section 3 contains proofs of certain q-series via the
Petkovsek-Wilf-Zeilberger’s method [24] adapted to q-analysis. Finally, the Section
4 shows that it is possible to write the partition function in terms of Qm(r), that
is, the number of partitions of m employing (possibly repeated) parts that do not
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exceed r.

2. q-shifted factorial, and the incomplete exponential Bell polynomials

In this section on application of q-shifted factorial (q; q)n, found due to (1),
we derive incomplete exponential Bell polynomials studied in [27] and Hessenberg
determinant found in [26].

Theorem 2.1. For |q| < 1, and ∀n ≥ 1, there exists following relations among
q-shifted factorial, (q; q)n, incomplete exponential Bell polynomials

1

(q; q)n
=

1

n!

n∑
k=1

(−1)kk!

×Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1(n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
.

(6)

Also, the relation in terms of the Hessenberg determinant is given by

q(
n
2)

(q : q)n
=

∣∣∣∣∣∣∣∣∣∣∣∣

1
(q;q)1· 1 0 0 . . . 0

1
(q;q)2·

1
(q;q)1

1 0 . . . 0
1

(q;q)3
1

(q;q)2·
1

(q;q)1
1 . . . 0

...
...

...
. . . . . .

...
1

(q;q)n
1

(q;q)n−1

1
(q;q)n−2

. . . . . . 1
(q;q)1

∣∣∣∣∣∣∣∣∣∣∣∣
. (7)

Proof. We know the results [12] as

(x; q)n =
n∑

k=0

(−1)k
[
n
k

]
q

q(
k
2)xk,

1

(x; q)n+1

=
∞∑
k=0

[
n+ k
k

]
q

xk (8)

Then due to (8), it is immediate that expression

∞∑
k=0

1

(q; q)k
xk =

1∑∞
k=0

(−1)kq(
k
2)

(q;q)k
xk

, (q; q)0 = 1. (9)

Therefore make an appeal to the Eqns. (8) and (9), and the results of ([3], [4], [6],
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25]) , to obtain Eqn. (6) as

1

(q; q)n
=

1

n!

n∑
k=1

(−1)kk!

×Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1(n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
,

involving the partial Bell polynomials ([6], [16], [18]-[21], [27]), with the recurrence
relation

n∑
k=0

(−1)k q(
k
2)

(q ; q)k (q ; q)n−k

= 0, n ≥ 1. (10)

We can apply to (10) in the Birmajer-Gil-Weiner’s inversion process ([3], [4]) to
derive

(−1)nq(
n
2)

(q; q)n
=

1

n!

n∑
k=1

(−1)kk!Bn,k

(
1!

(q; q)1
,

2!

(q; q)2
,

3!

(q; q)3
,

4!

(q; q)4
, . . . ,

(n− k + 1)!

(q; q)n−k+1

)
.

(11)
On the other hand, from ([8], [26]) we find that relations of type (9) are equivalent
to the following Hessenberg determinant

(−1)nq(
n
2)

(q; q)n
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(q;q)1

1 0 0 · · · 0
1

(q;q)2
1

(q;q)1
1 0 · · · 0

1
(q;q)3

1
(q;q)2

1
(q;q)1

1 · · · 0
...

...
...

. . . . . .
...

...
...

...
. . . 1

1
(q;q)n

1
(q;q)n−1

1
(q;q)n−2

· · · · · · 1
(q;q)1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

The Eqn. (12) immediately gives the result (7).

The expressions (10), (11) and (12) were inspired by the formulae of Malenfant
[22] and Jha [11] for the partition function ([16], [18]-[21]).
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Theorem 2.2. For all k ≥ 1, there exists an inequality∣∣∣∣(−1)k(a; q)k
(q; q)k

∣∣∣∣ ≤ |(q; q)k|
∞∑
n=k

∣∣∣∣∣ (a; q)n−k

(
aqn−k; q

)
k

(q; q)n−k (qn−k+1; q)k

∣∣∣∣∣
×

∣∣∣∣∣Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1(n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)∣∣∣∣∣ .
(13)

Proof. Consider (10) and find that

1

(q; q)n
=

n∑
k=1

(−1)k(1− q)n−k (q; q)k
(q; q)n

×Bn,k

(
− 1!q(

1
2)

(q ; q)1
,

2!q(
2
2)

(q ; q)2
, − 3!q(

3
2)

(q ; q)3
,

4!q(
1
2)

(q; q)4
, . . . ,

(−1)n−k+1 (n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
.

(14)

Again then for all a, z, q ∈ C, |q| < 1, |z| < 1, consider q-binomial series in the
following form [23, p. 142] and use the result (14), we get(

a z
(1−q)

; q
)
∞
−
(

z
(1−q)

; q
)
∞(

z
(1−q)

; q
)
∞

=
∞∑
n=1

(a; q)n
(q; q)n

(
z

(1− q)

)n

.

⇒
∞∑
n=1

(a; q)n
(q; q)n

(
z

(1− q)

)n

=
∞∑
n=1

n∑
k=1

(−1)k
(q; q)k
(q; q)n

(a; q)nz
n

(1− q)k

×Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1(n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
.

=
∞∑
n=1

(
− z

(1− q)

)k

(q; q)k

∞∑
k=1

(a; q)n+k

(q; q)n+k

zn

×Bn+k,k

(
− 1! q(

1
2)

(q ; q)1
,
2! q(

2
2)

(q ; q)2
, − 3! q(

3
2)

(q ; q)3
,
4! q(

4
2)

(q ; q)4
, . . . ,

(−1)n+1 (n+ 1)! q(
n+1
2 )

(q ; q)n+1

)
.

(15)



6 J. of Ramanujan Society of Mathematics and Mathematical Sciences

Then on changing the order of the summation in (15) to get

∞∑
k=1

(a; q)k
(q; q)k

(
z

1− q

)k

=
∞∑
k=1

(q; q)k

(
− z

(1− q)

)k ∞∑
n=1

(a; q)n (aq
n; q)k

(q; q)n (qn+1; q)k
zn

×Bn+k,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n+1(n+ 1)!q(
n+1
2 )

(q; q)n+1

)
.

⇒
∞∑
k=1

(a; q)k
(q; q)k

(
z

1− q

)k

=
∞∑
k=1

(q; q)k

(
− z

(1− q)

)k ∞∑
n=k

(a; q)n−k

(
aqn−k; q

)
k

(q; q)n−k (qn−k+1; q)k
zn−k.

×Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2! q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1 (n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
(16)

Finally, on equating the coefficients of
(
− z

(1−q)

)k
, in both of the sides of the result

(16), we obtain the equality given by

(−1)k(a; q)k
(q; q)k

= (q; q)k

∞∑
n=k

(a; q)n−k

(
aqn−k; q

)
k

(q; q)n−k (qn−k+1; q)k
zn−k

×Bn,k

(
− 1!q(

1
2)

(q; q)1
,
2!q(

2
2)

(q; q)2
,− 3!q(

3
2)

(q; q)3
,
4!q(

4
2)

(q; q)4
, . . . ,

(−1)n−k+1 (n− k + 1)!q(
n−k+1

2 )

(q; q)n−k+1

)
.

(17)

By the Eqn. (17), we obtain the inequality (13).

3.q-Hypergeometric series

In this section, we derive various results pertaining to the q-hypergeometric series
([11], [28]). In [11], the following q-series are studied

A ≡
n∑

k=0

[
n
k

]
q

(−t)kq(
k
2) (b; q)k
(bt; q)k

=
(t; q)n
(bt; q)n

, (18)

B ≡
∞∑
n=0

(a; q)n
(e; q)n(q; q)n

(
−e

a

)n
q(

n
2) =

(
e
a
; q
)
∞

(e; q)∞
, (19)

C ≡
∞∑
j=0

(
b− qk

) (
b− qk+1

)
· · ·
(
b− qk+j−1)

)
(q; q)j

tj =

(
tqk; q

)
∞

(bt; q)∞
, (20)



Connection between Partial Bell Polynomials and (q; q)k;... 7

D ≡
∞∑
k=0

q(
k
2)

(q; q)k(bx; q)k
(b− a)(bq − a) · · ·

(
bqk−1 − a

)
=

(ax; q)∞
(bx; q)∞

, (21)

here we show these identities by using the Petkovsek-Wilf-Zeilberger’s method ([2],
[9], [10], [14], [15], [17], [18]-[21], [24]) adapted to q-analysis ([3], [4], [11], [12], [25]).

In fact we have

A =
∞∑
k=0

rk,
rk+1

rk
=

(
1− q−nqk

) (
1− bqk

)
(1− btqk) (1− qk+1)

tqn.

That is
A = 2F1

(
q−n, b; bt; q, tqn

)
, (22)

but we have the Heine’s q-Gauss summation formula [12] for this q-hypergeometric
function ([7], [28])

2F1

(
a, b; c; q,

c

ab

)
=

(
c
a
; q
)
∞

(
c
b
; q
)
∞

(c; q)∞
(

c
ab
; q
)
∞
, (23)

also obtained by Jacobi and Ramanujan; then from (22) and (23)

A =
(btqn; q)∞ (t; q)∞
(tqn; q)∞ (bt; q)∞

=
(t; q)n
(bt; q)n

, q.e.d.

Similarly, we get

B =
∞∑
n=0

sn,
sn+1

sn
=

(1− aqn)
(
1− 1

Q
qn
)

(1− eqn) (1− qn+1)

Qe

a
.

That is

B = 2F1

(
a,

1

Q
; e; q,

Qe

a

)
, (24)

and in the final step we will apply limQ→0; with (23) and (24):

B =

(
e
a
; q
)
∞ (Qe; q)∞

(e; q)∞
(
Qe
a
; q
)
∞

→
Q→0

(
e
a
; q
)
∞

(e; q)∞
, q · e.d

From (20), we obtain

C =
∞∑
j=0

uj,
uj+1

uj

=

(
1− qk

b
qj
)

(1− qj+1)
bt.
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Therefore

C = 1F0

(
qk

b
; q, bt

)
, (25)

but we know the following result due to [12] given by

1F0(a; q, z) =
(az; q)∞
(z; q)∞

, (26)

hence (25) and (26) imply (20), q.e.d.
From (21), we find

D =
∞∑
k=0

vk,
vk+1

vk
=

(
1− 1

Q
qk
) (

1− b
a
qk
)

(1− bxqk)
Qax.

Therefore

D = 2F1

(
1

Q
,
b

a
; bx; q,Qax

)
where we can apply (23) to obtain

D =
(Qbx; q)∞(ax; q)∞
(Qax; q)∞(bx; q)∞

−→
Q→0

(ax; q)∞
(bx; q)∞

, q.e.d.

The identity (21) was deduced by Cauchy and Ramanujan. The property (19) is a
particular case of the Andrews formula ([1], [12])

∞∑
n=0

(a; q)n(b; q)n
(e; q)n(ax; q)n(q; q)n

(
−ex

b

)n
q(

n
2) =

(x; q)∞
(ax; q)∞

2F1

(
a,

e

b
; e; q, x

)
, (27)

for x = b
a
.

4. Partition function p(n) in terms of Qm(k)

In this section, we derive various results of partition function p(n) and the Qm(n),
where Qm(n) is the number of partitions of m employing (possibly repeated) parts
that do not exceed n.

If p(n) is the partition function and Qm(n) is the number of partitions of m
employing (possibly repeated) parts that do not exceed n, then there exists the
following relations due to [12]

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

∞∑
n=0

qn

(q; q)n
(28)
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1

(q; q)n
=

1

(1− q) (1− q2) · · · (1− qn)
=

∞∑
m=0

Qm(n)q
m. (29)

Now in (28) and (29), we verify some interesting properties given by
Qr(0) = 0, Q0(n) = Qr(1) = Q1(n) = 1; Qm(m) = 1+Qm(m−1) = 2+Qm(m−2),
m ≥ 2

Qm(n) = p(m), n ≥ m, Q2r(r) = Q2r(r − 1) + p(r), r ≥ 1. (30)

The application of (29) into (28) implies the expressions

p(n) =
n∑

k=0

Qn−k(k), n ≥ 1

= 3 +
n−2∑
k=2

Qn−k(k), n ≥ 3 (31)

which allow us to consider the case n = 2λ as

p(n) = 3 + λ+
λ−1∑
k=3

Q2λ−k(k) +
λ∑

r=2

p(r), λ ≥ 3,

= 1 + λ+
λ−2∑
k=3

Q2λ−k(k) +
λ+1∑
r=2

p(r), λ ≥ 4 (32)

and the case n = 2β + 1 :

p(n) = 2 + β +

β−1∑
k=3

Q2β+1−k(k) +

β+1∑
r=2

p(r), β ≥ 3. (33)

5. Concluding Remarks
In this article we focused on the incomplete exponential Bell polynomials, q-

hypergeometric series using the q version of Petkovsek-Wilf-Zeilberger’s algorithm
[24] and the partition function p(n) in terms of Qm(k), the number of partitions of
m using (possibly repeated) parts that do not exceed k. The recent literature in-
cludes works which have taken into consideration central complete and incomplete
Bell polynomials [13] and the partial r-Bell polynomials [25].Note that r-partial
partial r-Bell polynomials generalize the classical partial Bell polynomials by coin-
ciding with them when r = 0, by assigning a different set of weights to the blocks
containing the r smallest elements of a partition no two of which are allowed to
belong to the same block.
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In our next paper, we propose to study the partial r-Bell polynomials from a
combinatorial standpoint and derive several new formulas. The explicit closed-form
formula forBn,k given by (5) is particularly useful to obtain the connections with the
well-known and widely studied Davey-Stewartson system of equations. In several
cases, these extend previous formulas for the partial Bell polynomials which follow
by taking r = 0.For appropriate choices of the indeterminates, the partial r-Bell
polynomials reduce to some special combinatorial sequences (see [25]) including
unsigned r-Stirling number of the first kind, r-Stirling number of the second kind,
r-Whitney number of the second kind and r-Lah number.

Our arguments as suggested by M. Shattuck [25] largely combinatorial, may
be provided alternatively, by using proofs of these formulas by algebraic methods.
In this way some general identities valid for arbitrary values of the parameters as
well as formulas for some specific evaluations may be established..Thee results may
extend known formulas for the partial Bell polynomials given in this paper.
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[19] López-Bonilla, J. and Miranda-Sánchez, I., Hypergeometric version of a com-
binatorial identity, Comput. Appl. Math. Sci., 5 (1) (2020), 6-7.
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