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Abstract: Let Gn = (V,E) be an undirected simple graph, whose vertex set com-
prises of the natural numbers which are less than n but not relatively prime to
n and two distinct vertices u, v ∈ V are adjacent if and only if gcd(u, v) > 1.
Connectedness, completeness, minimum degree, maximum degree, independence
number, domination number and Eulerian property of the graph Gn are studied in
this paper.
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1. Introduction and Preliminaries
Let G = (V,E) be a simple graph where V is the set of vertices and E is

the set of edges. For any vertex u ∈ V , the degree of a vertex u denoted by
deg(u) is the number of edges incident on u. The maximum (minimum) degree
of G is denoted by ∆(G) (δ(G)). For graph theory terminology and notation in
general we follow [8]. Let n ∈ N be a composite number. It would be interesting
to know the structural properties of the subset of the natural numbers which are
less than n but not relatively prime to n. Thus proceeding in that direction,
in this paper we define an undirected simple graph Gn = (V,E), whose vertex
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set V ⊆ N defined as V = {i ∈ N| gcd(i, n) 6= 1, i < n} and the two vertices
i, j ∈ V are adjacent if and only if gcd(i, j) > 1, where n ∈ N and n is not a prime
number. When studying any collection of newly formulated graphs, properties such
as connectedness, completeness, minimum degree, maximum degree, domination
number, independence number, Eulerian property etc. are of immediate concern.
Hence we study those properties of Gn. Throughout the paper we consider m ∈
N, m > 1, and for a vertex v ∈ V by v = a we mean that the vertex v is labeled
as a and by a = bc, we mean a is the product of b and c.

2. Main Results

2.1. Connectedness and Completeness of Gn

A graph is said to be connected if there is a path between every pair of distinct
vertices. A graph is said to be complete if there is an edge between every pair of
distinct vertices. The complete graph of order n is denoted by Kn. A clique of a
graph G is a maximal complete subgraph.

Theorem 2.1. The graph Gn = (V,E) is disconnected if and only if n = 2p, where
p is an odd prime. Moreover, the components of G2p are Kp−1 and K1.
Proof. Let n = 2p, where p is an odd prime. Then the vertex set V = {2, 2 · 2, 3 ·
2, . . . , (p−1) ·2, p}. Clearly, the vertex v = p is not adjacent to any vertex u = i ·2,
for i = 1, 2, . . . , p− 1 as gcd(p, i · 2) = 1. Thus G2p is disconnected.

Conversely, let Gn be disconnected. If possible, assume that n = p1p2 . . . pl,
where pi’s are primes (may not be all distinct) for i = 1, 2, . . . , l, l > 1. Let l ≥ 3
and consider two distinct vertices a, b ∈ V where a = p1, b = j. We may get two
cases.
Case 1. If p1 is a factor of j, then the vertices a, b are adjacent.
Case 2. If p1 is not a factor of j, then for any prime factor q of j, gcd(p1, q) = 1.
Since l ≥ 3, p1q < n. This implies that there exists a vertex in V labeled as p1q.
Let c = p1q ∈ V . But c is adjacent to both a = p1 and b = j, implying the
vertices a and b are connected via the vertex c. Thus for l ≥ 3, Gn is connected.
Now suppose l = 2. Then n = p1p2. Then we may have the two sub-cases, either
p1 = p2 or p1 6= p2.
Case i. Let p1 = p2. Then n = p2

1 and V = {p1, 2 · p1, . . . , (p1 − 1) · p1}. Easily, it
can be proved that any two vertices are adjacent.
Case ii. Let p1 6= p2 and p1 < p2. Again, we may have two cases such that either
p1, p2 > 2 or p1 = 2, p2 > 2. First, let us consider p1, p2 > 2. Then the vertex set
of Gn is V = {p1, 2 · p1, 3 · p1, . . . , (p2− 1) · p1, p2, 2 · p2, 3 · p2, · · · , (p1− 1) · p2}. Let
vi, vj ∈ V such that vi = i and vj = j. Clearly, if gcd(i, j) > 1, then vi and vj are
adjacent.
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Now let gcd(i, j) = 1, then i, j must contain distinct prime factors. So, let p1,
p2 be prime factors of i, j, respectively. But both p1, p2 are odd primes. Hence,
2 · p1, 2 · p2 ∈ V , which implies that the vertex vi is adjacent to the vertex labeled
as 2 · p1 and the vertex vj is adjacent to the vertex labeled as 2 · p2. Therefore, the
vertices vi and vj are connected via 2 · p1 and 2 · p2.

Finally, we are left with the case when p1 = 2 and p2 > 2. In this case, the
vertex set V = {p1, 2 · p1, . . . , (p2 − 1) · p1, p2} and the vertex a = p2 is isolated as
for any b ∈ V \ {p2}, the gcd(a, b) = 1. Thus Gn is disconnected for n = 2p.

Moreover, the vertex set V = V1

⋃
V2, where V1 = {2, 2 · 2, 3 · 2, . . . , (p− 1) · 2},

V2 = {p} and V1

⋂
V2 = φ. The total number of vertices in V1 is p−1 and the p−1

vertices in V1 form a clique Kp−1. Hence, the components of G2p are Kp−1 and K1.

Theorem 2.2. The graph Gn is complete if and only if n = pm, where p is a
prime.
Proof. Let n = pm, where p is a prime. The vertex set of Gn is
V = {p, 2 · p, 3 · p, . . . , (pm−1 − 1) · p} and the cardinality of V is |V | = n −
φ(n) − 1 = pm−1 − 1. Let a, b ∈ V such that a = c1 · p, b = c2 · p, where
c1, c2 ∈ {1, 2, . . . , pm−1 − 1}, c1 6= c2. Clearly, gcd(a, b) ≥ p > 1. Thus the vertices
a and b are adjacent. Hence, Gn is complete.

Conversely, let Gn be complete. If possible, let n = pm1
1 pm2

2 . . . pmk
k , where pi’s

are distinct primes, mi ∈ N for i = 1, 2, . . . , k, k ≥ 2. Consider the vertices a, b ∈ V
where a = p1, b = p2. Then gcd(a, b) = 1. So the vertices a and b are non-adjacent.
Hence the graph Gn is not complete. Thus we arrive at a contradiction. Thus
n = pm.

2.2. Minimum degree, Maximum degree of Gn

Lemma 2.1. Let n = pr11 p
r2
2 · · · p

rk−1

k−1 p
rk
k . Then for a, b ∈ V in Gn, deg(a) = deg(b)

if the labels of a, b contain same prime factors.
Proof. Let a, b ∈ V , where a = ps11 p

s2
2 · · · p

sj
j , b = pt11 p

t2
2 · · · p

tj
j , pi’s are distinct

primes, si, ti ∈ N for i = 1, 2, . . . , j. If possible, let deg(a) 6= deg(b). Then either
deg(a) > deg(b) or deg(b) > deg(a). Let deg(a) > deg(b). Then there exists
a vertex c ∈ V such that c is adjacent to a but it is not adjacent to b. Then
gcd(c, a) > 1 and gcd(c, b) = 1, which is a contradiction as the prime factors of a
and b are same. So our assumption is wrong. Hence deg(a) = deg(b).

Theorem 2.3. Let n = pr11 p
r2
2 · · · p

rk−1

k−1 p
rk
k , where pi < pi+1 and pi’s are distinct

primes for i ∈ {1, 2, . . . , k}, then the vertices of the form ptk, t ∈ N attain the
minimum degree of Gn and δ(Gn) = n

pk
− 2.

Proof. In the prime factorization of n, the highest prime is pk. The vertex u = pk
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is adjacent to all the multiples of pk in V and the number of multiples of pk up

to n is
⌊

n
pk

⌋
. Thus the degree of u = pk is

⌊
n
pk

⌋
− 2 (as n /∈ V and u is not

adjacent to itself). We claim that the degree of the vertex u = pk is minimum.

Clearly,
⌊

n
pi

⌋
≥
⌊

n
pk

⌋
for i = 1, 2, . . . , k− 1. Thus the degree of the vertices labeled

as pi for i = 1, 2, . . . , k − 1 is greater than or equal to the degree of the vertex
u = pk. Now, we consider a vertex which is a multiple of more than one prime.

Let us assume a = plpj ∈ V . Then the degree of the vertex a is deg(a) =
⌊

n
pl

⌋
+⌊

n
pj

⌋
−
⌊

n
plpj

⌋
= pr11 p

r2
2 · · · p

rl−1
l p

rl+1

l+1 · · · p
rj
j · · · p

rk
k +pr11 p

r2
2 · · · p

rl
l p

rl+1

l+1 · · · p
rj−1
j · · · prkk −

pr11 p
r2
2 · · · p

rl−1
l p

rl+1

l+1 · · · p
rj−1
j · · · prkk =

pr11 p
r2
2 · · · p

rl−1
l p

rl+1

l+1 · · · p
rj−1
j p

rj+1
j+1 · · · p

rk
k (pj + pl − 1).

We claim that pr11 p
r2
2 · · · p

rl−1
l p

rl+1

l+1 · · · p
rj−1
j p

rj+1
j+1 · · · p

rk
k (pj + pl − 1) > n

pk
as

pr11 · · · p
rl−1
l p

rl+1

l+1 · · · p
rj−1
j p

rj+1

j+1 · · · p
rk−1
k (pjpk + plpk − pk − plpj)

= pr11 · · · p
rl−1
l p

rl+1

l+1 · · · p
rj−1
j p

rj+1

j+1 · · · p
rk−1
k (pj(pk − pl) + pk(pl − 1)) > 0.

Let w ∈ V be any vertex where the label of w is multiple of i− 1 primes. That
is, w = p1p2 · · · pi−1, pi’s are primes, i ∈ N, i < k such that deg(w) > deg(u = pk).

Now, consider any vertex b where b is a multiple of i primes. So, let b =
p1p2 . . . pi−1pi. Then deg(b) ≥ deg(w) + 1 =⇒ deg(b) > deg(u = pk). Hence, the
vertex u = pk is of minimum degree. Moreover, by Lemma 2.1 all the vertices of
the label of the form ptk, t ∈ N are of same degree n

pk
− 2.

Theorem 2.4. Let n = pq, p < q, where p, q are distinct odd primes. Then

(i) ∆(Gpq) = q − 1, if p = 3;

(ii) ∆(Gpq) = 2q+p−5
2

+
⌊
p−1

3

⌋
−
⌊
p−1

6

⌋
, if p > 3.

Proof. Let p, q be any two odd primes, where p < q. Then the vertex set V of Gpq

is V = Vp
⋃
Vq, where Vp = {p, 2 ·p, . . . , (q−1) ·p}, Vq = {q, 2 ·q, . . . , (p−1) ·q} and

Vp
⋂
Vq = φ. The vertices in Vp, Vq form cliques of size q − 1, p − 1, respectively.

Let us consider the following two cases:
Case i. Let p = 3, q > 3. Then, V = V3

⋃
Vq, where V3 = {3, 2·3, 3·3, . . . , (q−1)·3},

Vq = {q, 2 · q}, V3

⋂
Vq = φ. Thus deg(v) ≥ q − 2, for all v ∈ V3. Again any vertex

v ∈ V3 of the form v = m · 3, where m is an even integer, is adjacent to the vertex
w = 2 · q ∈ Vq as the gcd(v, w) = 2. So the vertices of the form v = m · 3 ∈ V3

are of degree q − 2 + 1 = q − 1. We claim that q − 1 is the maximum possible
degree of a vertex in V3. So, if possible let there exist some vertex u ∈ V3 such
that deg(u) = q. Then the vertex u must be a neighbour of all the vertices in V3
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as well as all the vertices in Vq as the total number of the vertices in the graph G3q

is |V | = |V3| + |Vq| = q − 1 + 2 = q + 1. But the vertex u cannot be adjacent to
the vertex q ∈ Vq as gcd(u, q) = 1 and the vertex u is not adjacent to itself. Thus
our assumption is wrong. So there is no vertex u ∈ V3 such that the degree of u is
greater than q− 1. Again the degree of the vertex w = 2 · q ∈ Vq is 1 + q−1

2
< q− 1

and the degree of the vertex q ∈ Vq is 1. Hence ∆(G3q) = q − 1.
Case ii. Let p, q > 3. Then Vq contains vertices of the form vq = m1 · q where
m1 = 1, 2, 3, 4, . . . , (p − 1). Consider vp ∈ Vp such that vp = m2 · p, where m2

is a multiple of 6. Then the vertex vp is adjacent to all the vertices in Vq which
are labeled as multiples of 2, 3. Thus deg(m2 · p) = (q − 2) +

⌊
p−1

2

⌋
+
⌊
p−1

3

⌋
−⌊

p−1
6

⌋
= 2q+p−5

2
+
⌊
p−1

3

⌋
−
⌊
p−1

6

⌋
. Clearly, deg(m2 · p) is maximum as

⌊
p−1

2

⌋
>⌊

p−1
3

⌋
>
⌊
p−1

5

⌋
> · · · >

⌊
p−1
pr

⌋
, where pr is the prime such that pr < p. Hence,

∆(Gpq) = 2q+p−5
2

+
⌊
p−1

3

⌋
−
⌊
p−1

6

⌋
.

Theorem 2.5. For n = pr11 p
r2
2 · · · p

rk−1

k−1 p
rk
k , the maximum degree of Gn is |V | − 1,

if at least one ri > 1 and ri ∈ N, where pi < pi+1, pi’s are distinct primes for
i ∈ {1, 2, . . . , k}.
Proof. Let n = pr11 p

r2
2 · · · p

rk−1

k−1 p
rk
k , where pi < pi+1 and pi’s are distinct primes for

i ∈ {1, 2, . . . , k}. We consider the following cases:
Case i. For i = 1, n = pr11 and by Theorem 2.2, Gn is complete. So ∆(Gn) =
|V | − 1.
Case ii. Let i ≥ 2 and i ∈ {1, 2, . . . , k}. Then p1p2 · · · pi is a label of a vertex in Gn

as at least one ri ≥ 1. Let u = p1p2 · · · pi. Then u is adjacent to all other vertices
in V as the prime factorization of u contains all the prime factors pi, i = 1, 2, · · · , k
of n. Hence, deg(u) = |V | − 1 which is maximum.

Now we find the maximum degree of Gn where n = p1p2 · · · pk, k > 2. We
know the prime-counting function is denoted by π(x). It is the number of primes
p satisfying 2 ≤ p ≤ x. In the following results of this section, we see relations
between prime-counting function and the maximum degree of Gn.

Theorem 2.6. Let n = p1p2 · · · pk, where pi’s are distinct primes, i = 1, 2, . . . , k.

(a) If p1p2 · · · pk−1 > pk, then ∆(Gn) ≤ |V |−Lp−3, where Lp = π(p1p2 · · · pk−1)−
π(pk);

(b) If p1p2 · · · pk−1 < pk, then ∆(Gn) ≤ |V | − Kp − 2, where Kp = π(pk) −
π(p1p2 · · · pk−1).

Proof. For any primes pi, pj where pi < pj,
⌊

n
pi

⌋
≥
⌊

n
pj

⌋
. A vertex u ∈ V attains

the maximum degree if the label of u is product of the maximum number of distinct
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prime factors q where q ∈ {p1, p2, . . . , pk}. n is a product of k distinct primes and
n /∈ V . So, any vertex v ∈ V can be multiple of at most k − 1 distinct primes.
There are C(k, k − 1) = k vertices whose labels are multiples of k − 1 distinct
primes.

Among the k multiples ({p1p2 · · · pk−1, p1p2 · · · pk−2pk, . . . , p2p3 · · · pk}) of k − 1
distinct primes, clearly, the product p1p2 · · · pk−1 have the maximum number of
multiples less than or equal to n in V . Again the number of vertices whose labels are
coprime to p1p2 · · · pk−1 is the least among other k−1 multiples of k distinct primes.
Assume that u ∈ V such that the degree of u is maximum. Then u = m·p1p2 · · · pk−1

where m = q1q2 · · · qt, qj’s are distinct primes and qj’s are distinct from pi’s too for
j = 1, 2, . . . , t, i = 1, 2, . . . , k.

Consider p1p2 · · · pk−1 > pk. Now, to find the degree of the vertex u, we find
the number of vertices non-adjacent to u. We claim, p2

k is a label of a vertex
in V. If possible, let p2

k /∈ V . Then p2
k > n =⇒ p2

k − p1p2 · · · pk > 0 =⇒
pk(pk− p1p2 · · · pk−1) > 0, which is absurd as p1p2 · · · pk−1 > pk. Hence, p2

k must be
a label of a vertex in V . The vertices u1 = pk, u2 = p2

k are not adjacent to u as well
as u is not adjacent to itself. As p1p2 · · · pk−1 > pk, the prime multiples s · pk of
pk, where s is a prime and p1p2 · · · pk−1 > s > pk are labels of some vertices in Gn.
The vertices labeled as s · pk, where s is a prime and p1p2 · · · pk−1 > s > pk are not
adjacent to the vertex u as gcd(s · pk, p1p2 · · · pk−1) = 1. Thus the degree of vertex
u cannot exceed |V | − 3− Lp, where Lp = π(p1p2 · · · pk−1)− π(pk). That is, Lp is
the number of primes between pk and p1p2 · · · pk−1. Hence deg(u) ≤ |V | − Lp − 3.

Now, consider p1p2 · · · pk−1 < pk. Clearly, the vertex u is not adjacent to the
vertex labeled as u1 = pk and itself. Again, u is not adjacent to the vertices
labeled as uj = w · pk, w is a prime (not a factor of n, u) and pk−1 < w < pk.
Moreover, u is not adjacent to the vertices labeled as xl = y · pk, where y is a
prime (not a factor of n, u), such that pi < y < pi+1, where i ∈ {1, 2, . . . , k − 2}.
Thus the number of vertices non adjacent to u is 2 + |U | + |Y |, where U = {w ·
pk : w is a prime (but not a factor of n, u and pk−1 < w < pk}. In other words,
|U | = π(pk) − π(pk−1), Y = {y · pk : y is a prime (not a factor of n, u and pi <
y < pi+1 for i = 1, 2, . . . , k− 2}. Hence deg(u) = |V |− (2 + |U |+ |Y |), which gives
∆(Gn) ≤ |V | −Kp − 2, where Kp = |U | = π(pk)− π(pk−1).

Observation 2.1. For n = p1p2 · · · pk, where pi’s are distinct primes and p1p2 · · ·
pk−1 > pk, if ∆(Gn) of Gn is known, then one can find the maximum number of
primes between p1p2 · · · pk−1 and pk using the relation π(p1p2 · · · pk−1) − π(pk) ≤
|V | −∆(Gn)− 3.

Observation 2.2. For n = p1p2 · · · pk, where pi’s are distinct primes and p1p2 · · ·
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pk−1 < pk, if ∆(Gn) of Gn is known, then one can find the maximum number of
primes between pk and p1p2 · · · pk−1 using the relation π(pk) − π(p1p2 · · · pk−1) ≤
|V | −∆(Gn)− 2.

Example 2.1. Consider Gn, where n = p1p2p3p4 = 2 · 5 · 11 · 37 = 4070 and
p1 · p2 · p3 = 2 · 5 · 11 > p4 = 37. Then the number of vertices in Gn is |V | =
n − φ(n) − 1 = 2629. The vertex u = m · 2 · 5 · 11 = 2310, attains the maximum
degree where m = 3 · 7. The number of multiples of 2310 up to 4070 is 1, so there
is only one vertex of maximum degree. The vertex u is not adjacent to the vertices
labeled as 37, 372, 41 · 37, 43 · 37, 47 · 37, 53 · 37, 59 · 37, 61 · 37, 67 · 37, 71 · 37, 73 ·
37, 79 ·37, 83 ·37, 89 ·37, 97 ·37, 101 ·37, 103 ·37, 107 ·37, 109 ·37 and itself. Thus the
degree of u cannot exceed |V |−3−17 = |V |−3− (π(110)−π(37)) = 2629−3−17.
Hence deg(u) ≤ |V | − 3− Lp = 2609, where Lp = π(110)− π(37).

Example 2.2. Consider Gn, where n = 8827 = p1 · p2 · p3 = 7 · 13 · 97 and
p1 · p2 = 7 · 13 < p3 = 97. Then the order of Gn is 1914. The vertex u = 7 · 13 ·m,
where m = 2 · 3 · 5, that is, u = 2730 ∈ V is a vertex attaining the maximum
degree. The vertex u is not adjacent to the vertices 97, p ·97, q ·97 and itself, where
p ∈ Uj, where Uj = {17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89}
and q ∈ Yl = {11}. Thus the degree of u = 2730 is deg(u) = |V |−(2+ |Uj|+ |Yl|) =
1914− (2 + 18 + 1) = 1914− 21 = 1893.

2.3. Counting principle for the graph Gpmqm

In this section, we study the graph Gn, where n = pmqm, p, q are distinct primes
and m ∈ N.

The proper divisors of n = pmqm are of the form pi, qi, pjqk, where i, j, k =
1, 2, . . . ,m, pjqk < n. The vertex set V of Gn is V = VP

⋃
VQ
⋃
VP̄ Q̄, where

VP = Vp
⋃
Vp2
⋃
. . .
⋃
Vpm , VQ = Vq

⋃
Vq2
⋃
. . .
⋃
Vqm ,

VP̄ Q̄ = VPQ

⋃
VPq

⋃
VPq2

⋃
VPq3 . . .

⋃
VPqm−1

⋃
VpQ

⋃
Vp2Q

⋃
. . .
⋃
Vpm−1Q, VPQ =

Vpq
⋃
Vp2q2

⋃
. . .
⋃
Vpm−1qm−1 , VPqi = Vpi+1qi

⋃
Vpi+2qi

⋃
. . .
⋃
Vpmqi , i = 1, 2, . . . ,m−

1, VpiQ = Vpiqi+1

⋃
Vpiqi+2

⋃
. . .
⋃
Vpiqm , i = 1, 2, . . . ,m−1 and Vr represents the set

of vertices which are multiples of r, where r is a proper divisor of n. That is,
Vr = {x ∈ V : gcd(x, n) = r, r is a proper divisor of n}. The total number of ver-
tices in Vpm−i , Vqm−i are p(m−1)−(m−i)(p−1)qm−1(q−1), pm−1(p−1)q(m−1)−(m−i)(q−
1), 1 ≤ i < m, respectively. Again, the total number of vertices in Vpm−iqm−j is
p(i−1)(p − 1)q(j−1)(q − 1), 1 ≤ i, j < m. Further, the total number of vertices in
Vpm−iqm , Vpmqm−i is p(i−1)(p− 1), q(i−1)(q − 1), respectively.

The total number of vertices in VP is |Vp|+ |Vp2|+ · · ·+ |Vpm| = pm−2qm−1(p−
1)(q − 1) + pm−3qm−1(p− 1)(q − 1) + · · ·+ pqm−1(p− 1)(q − 1) + qm−1(p− 1)(q −
1) + qm−1(q − 1) = qm−1(q − 1)[pm−2(p− 1) + pm−3(p− 1) + · · ·+ p(p− 1) + (p−
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1) + 1] = pm−1qm−1(q − 1). Similarly, we find the total number of vertices in VQ is
|Vq|+ |Vq2|+ · · ·+ |Vqm | is pm−1qm−1(p− 1).
Again, VP̄ Q̄ = VPQ

⋃
VPq

⋃
VPq2

⋃
VPq3

⋃
· · ·
⋃
VPqm−1

⋃
VpQ

⋃
Vp2Q

⋃
. . .
⋃
Vpm−1Q.

The total number of vertices in VP̄ Q̄ is |VPQ|+|VPq|+|VPq2|+· · ·+|VPqm−1 |+|VpQ|+
|Vp2Q| + · · · + |Vpm−1Q| =

∑m−2
i=0 piqi(p− 1)(q − 1) + (p− 1)(q − 1)

∑m−3
i=0 piqm−2 +

qm−2(q−1)+
∑m−4

i=0 piqm−3(p− 1)(q − 1)+qm−3(q−1)+
∑m−5

i=0 piqm−4(p− 1)(q − 1)+
qm−4(q−1)+· · ·+

∑1−1
i=0 q(p− 1)(q − 1)+q(q−1)+(q−1)+

∑m−3
i=0 pm−2qi(p− 1)(q − 1)

+pm−1(p− 1) +
∑m−4

i=0 pm−3qi(p− 1)(q − 1) + pm−3(p− 1) + · · ·+ p(p− 1)(q− 1) +
p(p − 1) + (p − 1) = (p − 1)(q − 1)[

∑m−2
i=0 piqi +

∑m−3
i=0 piqm−2 +

∑m−4
i=0 piqm−3 +∑m−5

i=0 piqm−4 + · · ·+ q +
∑m−3

i=0 pm−2qi +
∑m−4

i=0 pm−3qi + · · ·+ p] + (q − 1)[qm−2 +
qm−3 + qm−4 + · · · + q + 1] + (p − 1)[pm−2 + pm−3 + · · · + p + 1]= (pq − p − q +
1)[
∑m−2

i=0 piqi +
∑m−3

i=0 piqm−2 +
∑m−4

i=0 piqm−3 +
∑m−5

i=0 piqm−4 + · · · +
∑1

i=0 p
iq2 +∑0

i=0 p
iq+
∑m−3

i=0 pm−2qi+
∑m−4

i=0 pm−3qi+
∑m−5

i=0 pm−4qi+· · ·+
∑1

i=0 p
2qi+

∑0
i=0 pq

i]+
[qm−1+qm−2+· · ·+q2+q−qm−2−qm−3−· · ·−q−1]+[pm−1+pm−2+· · ·+p2+p−pm−2−
pm−3−· · ·−p−1]= [

∑m−2
i=0 pi+1qi+1 +

∑m−3
i=0 pi+1qm−2+1 +

∑m−4
i=0 pi+1qm−3+1 + . . .+∑1

i=0 p
i+1q3+

∑0
i=0 p

i+1q2+
∑m−3

i=0 pm−2+1qi+1+
∑m−4

i=0 pm−3+1qi+1+
∑m−5

i=0 pm−4+1qi+1

+ · · ·+
∑1

i=0 p
3qi+1+

∑0
i=0 p

2qi+1−
∑m−2

i=0 pi+1qi−
∑m−3

i=0 pi+1qm−2−
∑m−4

i=0 pi+1qm−3−
· · ·−

∑1
i=0 p

i+1q2−
∑0

i=0 p
i+1q−

∑m−3
i=0 pm−2+1qi−

∑
i = 0pm−3+1qi

m−4 −
∑m−5

i=0 pm−4+1qi−
· · · −

∑1
i=0 p

3qi −
∑0

i=0 p
2qi −

∑m−2
i=0 piqi+1 −

∑m−3
i=0 piqm−2+1 −

∑m−4
i=0 piqm−3+1 −

· · · −
∑1

i=0 p
iq2+1 −

∑0
i=0 p

iq1+1 −
∑m−3

i=0 pm−2qi+1 −∑m−4
i=0 pm−3qi+1 −

∑m−5
i=0 pm−4qi+1 − · · · −

∑1
i=0 p

2qi+1 −
∑0

i=0 pq
i+1 +

∑m−2
i=0 piqi +∑m−3

i=0 piqm−2+
∑m−4

i=0 piqm−3+
∑m−5

i=0 piqm−4+· · ·+
∑1

i=0 p
iq2+

∑0
i=0 p

iq+
∑m−3

i=0 pm−2qi

+
∑m−4

i=0 pm−3qi+
∑m−5

i=0 pm−4qi+· · ·+
∑1

i=0 p
2qi+

∑0
i=0 pq

i]+[qm−1−1]+[pm−1−1] =
pm−1qm−1 − pm−1 − qm−1 + 1 + qm−1 − 1 + pm−1 − 1 = pm−1qm−1 − 1.

Example 2.3. Consider the graph Gn = (V,E), where n = 216 = 23 · 33, p =
2, q = 3,m = 3. The vertices of the graph G216 are the natural numbers which are
less than n but not relatively prime to n. Thus the order of the graph G216 is |V | =
216− φ(216)− 1 = 143. The vertices are V = {2,3,4,6,8,9,10,12,14,15,16,18,20,21,
22,24,26,27,28,30,32,33,34, 36,38,39,40,42,44, 45,46,48,50,51,52,54,56,57,58,60, 62,
63,64,66,68,69,70,72,74,75,76,78,80,81,82,84,86, 87,88,90,92,93,94,96,98,99,100,102,
104,105,106,108,110,111,112,114,116, 117,118, 120,122,123,124,126,128, 129,130,132,
134,135,136,138, 140,141,142,144,146,147,148,150,152,153,154,156,158,159, 160,162,
164,165,166,168,170,171,172,174,176,177,178, 180,182,183,184, 186,188,189,190,192,
194,195,196,198, 200,201,202,204,206,207,208, 210, 212,213, 214}.

The proper divisors of 216 are 2, 22, 23, 3, 32, 33, 6 = 2 · 3, 36 = 22 · 32, 12 =
22 · 3, 24 = 23 · 3, 18 = 2 · 32, 54 = 2 · 33, 72 = 23 · 32, 108 = 22 · 33.

The vertex set of G216 can be represented as V = VP
⋃
VQ
⋃
VP̄ Q̄, where VP =
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V2

⋃
V22
⋃
V23 , VQ = V3

⋃
V32
⋃
V33 , VP̄ Q̄ = VPQ

⋃
VPq

⋃
VPq2

⋃
VpQ

⋃
Vp2Q, VPQ =

V2·3
⋃
V22·32 = V6

⋃
V36, VPq = V22·3

⋃
V23·3 = V12

⋃
V24, VPq2 = V23·32 = V72, VpQ =

V2·32
⋃
V2·33 = V18

⋃
V54, Vp2Q = V22·33 = V108. Thus, VP̄ Q̄ = V6

⋃
V36

⋃
V12

⋃
V24

⋃
V72

⋃
V18

⋃
V54

⋃
V108.

By Vx, we mean Vx = {x ∈ V | gcd(x, 216) = x}, where x is a proper divisor of
n = 216.

Thus V2 = {2, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70, 74, 82, 86, 94, 98, 106, 110, 118,
122, 130, 134, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 202, 206, 214},
V4 = {4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 173, 188, 196, 212},
V8 = {8, 16, 32, 40, 56, 64, 80, 88, 104, 112, 128, 136, 152, 160, 176, 184, 200, 208}
V3 = {3, 15, 21, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165,
177, 183, 195, 201, 213, }, V9 = {9, 45, 63, 99, 117, 153, 207, 171},
V27 = {27, 81, 135, 189}
V6 = {6, 30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 210}, V36 = {36, 180}
V12 = {12, 60, 84, 132, 156, 204}, V24 = {24, 48, 96, 120, 168, 192}
V72 = {72, 144}, V18 = {18, 90, 126, 198},
V54 = {54, 162}, V108 = {108}

The cardinalities of V2, V4, V8, V3, V9, V27, V6, V36, V12, V24, V72, V18, V54 and
V108 are 36, 18, 18, 24, 8, 4, 12, 2, 6, 6, 2, 4, 2, 1, respectively.

The total number of vertices in Vpm−i is pi−1qm−1(p−1)(q−1), where 1 ≤ i < m.
Thus to find the cardinality of the set V2, take i = 2, as V23−2 = V2, and |V2| =
p2−1q3−1(p − 1)(q − 1) = 22−133−1(2 − 1)(3 − 1) = 36. Similarly, |V4| = |V22| =
|V23−1| = p1−1q3−1(p − 1)(q − 1) = 18, |V3| = |V33−2| = pm−1qi−1(p − 1)(q − 1) =
22 ·31 ·2 = 24, |V9| = p3−1q1−1(p−1)(q−1) = 8, the cardinality of the set V27 = V33

is pm−1(p− 1) = 4 and cardinality of V8 is |V8| = qm−1(q − 1) = 18.

The cardinality of a set of the form Vpm−iqm−j is pi−1qj−1(p−1)(q−1), where 1 ≤
i, j < m. We find, the cardinality of V6 = V2·3 = V2m−23m−2 = 22−132−1(2 − 1)(3 −
1) = 2 ·3 ·1 ·2 = 12 and the cardinality of V36 = V2232 = 21−131−1(2−1)(3−1) = 2.
Similarly, we find that the number of vertices in V12 is 6 by taking i = 1, j = 2,
and the cardinality of V18 is 4, by taking i = 2, j = 1, the cardinality of the set
V54 = V2·33 which is of the form Vpm−iqm = Vpm−2qm is pi−1(p − 1) = 2, as i = 2,
|V24| = |V2333−2| = 32−1(3 − 1) = 6, |V72| = |V2332| = |V2333−1 | = 31−1(3 − 1) = 2,
|V108| = |V22·33 | = |V23−1·33| = 21−1(2− 1) = 1.

The total number of vertices in VP is |V2|+ |V4|+ |V8| = 72 = 23−133−1(3− 1).
Similarly, |VQ| = |V3|+ |V9|+ |V27| = 36 = 23−133−1(2−1) and |VPQ| = |V6|+ |V36|+
|V12|+ |V24|+ |V72|+ |V18|+ |V54|+ |V108| = 35 = 23−133−1 − 1.

The study of cliques in the theory of graphs is significant. The concept of
clique has been applied on the probabilistic method, sociometry, computer vision,



442 South East Asian J. of Mathematics and Mathematical Sciences

economics, signal transmission theory, coding theory etc. [1]

Theorem 2.7. Let n = pmqm, where p, q are distinct primes. Then the graph
Gpmqm contains two maximal cliques and the clique number of Gpmqm is pm−1qm−1.
Proof. ForGpmqm , where p, q are distinct primes, following the above discussion the
vertex set V of Gpmqm can be represented as V = VP

⋃
VQ
⋃
VP̄ Q̄. Let u1, u2 ∈ VP ,

then the vertices u1, u2 are adjacent as gcd(u1, u2) ≥ p and the vertices in VP
form the complete subgraph g1 = Kpm−1qm−1(q−1) as the total number of vertices in
VP is pm−1qm−1(q − 1). Similarly, the vertices in VQ form the complete subgraph
g3 = Kpm−1qm−1(p−1) and the vertices in VP̄ Q̄ form the complete subgraph g2 =
Kpm−1qm−1−1.

The vertices in VP are adjacent to all the vertices in VP̄ Q̄ as u1 ∈ VP , u2 ∈ VP̄ Q̄,
gcd(u1, u2) ≥ p and the vertices in VQ are adjacent to the vertices in VP̄ Q̄ as the
gcd(u3, u4) ≥ q, u3 ∈ VP̄ Q̄, u4 ∈ VQ but there exists at least one pair of vertices
u1 = p ∈ VP and u2 = q ∈ VQ such that u1 and u2 are not adjacent. Thus the
set of vertices VC1 = VP

⋃
VP̄ Q̄ form the clique C1. Similarly, the set of vertices

VC2 = VQ
⋃
VP̄ Q̄ form the clique C2.

Let ui ∈ V such that ui ∈ V \ VC1 . Then ui ∈ VQ, the vertex ui cannot be
adjacent to the vertex p ∈ VC1 as gcd(ui, p) = 1. Thus both the cliques C1 and C2

are maximal.

Again the number of vertices in VC1 is pm−1qm−1(q − 1) + pm−1qm−1 − 1 =
pm−1qm−1 and the total number of vertices in VC2 is pm−1qm−1(p−1)+pm−1qm−1−
1 = pmqm−1−1. Hence the clique number of Gpmqm is pm−1qm−1 since pm−1qm−1 >
pmqm−1 − 1.

2.4. Independence number and Domination number of Gn

A set of vertices in G is independent if no two of them are adjacent. The largest
number of vertices in such a set is called the independence number of G.

A setD of vertices inG = (V,E) is called a dominating set ofG = (V,E) if every
vertex in V \D is adjacent to some vertex in D. The minimum cardinality among
the dominating sets of G is called the domination number of G. The domination
number of G is denoted by γ(G). The concept of clique domination was first studied
by Cozzens and Kelleher in [3]. A clique dominating set is a dominating set that
induces a complete graph [3]. A clique dominating graph is a graph that contains
a dominating clique. The clique domination number of G is denoted by γcl(G). An
independent dominating set of G is a set that is both dominating and independent
in G [5]. The independent domination number of G is the minimum size of an
independent dominating set. The independent domination number of G is denoted
by γi(G).
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Independent set has wide range of applications in optimization theory, signal
transmission analysis, classification theory, economics, scheduling and biomedical
engineering etc. The concept of dominating sets have been used extensively in the
applications of communication theory, social networks, game theory etc. Clique
domination of various graphs was studied in [4,6]. In [7], the authors determined
the independent domination number of the graph Gm,n.

In this section, we study the independence number α(Gn), domination number
γ(Gn), clique domination number γcl(Gn), independent domination number γi(Gn)
of Gn.

Theorem 2.8. Let n = pr11 p
r2
2 · · · p

rk−1

k−1 p
rk
k , where pi’s are distinct primes for

i ∈ {1, 2, . . . , k}, then α(Gn) is k. Further, the set of distinct prime factors
{p1, p2, . . . , pk} form a maximal independent set in Gn.
Proof. Consider the set Is = {vi = pi : vi ∈ V, i = 1, 2, . . . , k}, where pi’s are
distinct primes. Is form the independent set of Gn as gcd(pi, pj) = 1. If possi-
ble, let w ∈ V such that w is a composite number, then w = pt1pt2 · · · ptr , where
pti ∈ {p1, p2, . . . , pk}. Then the vertex w is adjacent to at least one vertex labeled
as pi, i = 1, 2, . . . , k. Thus w /∈ Is. Hence the independence number of Gn is
α(Gn) = k and {p1, p2, . . . , pk} is a maximal independent set.

Theorem 2.9. Let n = pr11 p
r2
2 · · · p

rk−1

k−1 p
rk
k , where pi’s are distinct primes, ki ∈ N,

i = 1, 2, . . . , k, then γ(Gn) = γcl(Gn) = 1, if at least one ri > 1.
Proof. Let n = pr11 p

r2
2 · · · p

rk−1

k−1 p
rk
k , where at least one ri > 1, i ∈ {1, 2, . . . , k}.

Then the domination number γ(Gn) = 1 as the vertex v = p1p2 · · · pk ∈ V is ad-
jacent to all other the vertices in Gn. It is easy to see that the clique domination
number γcl(Gn) = 1.

Theorem 2.10. Let n = p1p2 · · · pk−1pk where pi’s are distinct primes and i ∈
{1, 2, . . . , k}, then γ(Gn) = γcl(Gn) = γi(Gn) = 2.
Proof. The integer n = p1p2 · · · pk−1pk may be a product of two distinct primes or
more than two distinct primes. Thus we consider the following two cases:
Case i. For k = 2, n = p1p2. Then the vertex set V is disjoint union of Vp1 ,
Vp2 , where Vp1 = {x ∈ V : gcd(x, n) = p1} and Vp2 = {y ∈ V : gcd(y, n) = p2}.
Let vp ∈ Vp1 and vq ∈ Vp2 . Then {vp, vq} form a dominating set. It is clear that
{vp, vq} is an independent dominating set if gcd(vp, vq) = 1 and {vp, vq} is a clique
dominating set if gcd(vp, vq) 6= 1. Thus γ(Gn) = γi(Gn) = γcl(Gn) = 2.
Case ii. Let n = p1p2 · · · pk. Then the vertex v = p1p2 · · · pk−1 is adjacent to all the
vertices ui, where the label of ui is multiple of the primes pi, i ∈ {1, 2, . . . , k − 1}.
Now, consider the vertex w = m · pk, m ∈ N. Then w is adjacent to all the vertices
labeled as multiples of pk. Thus the set of vertices {v, w} ⊆ V form a dominating
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set and the domination number γ(Gn) = 2.

As w = m · pk, where m ∈ N and the following subcases may arise.
Case A. Let m be a multiple of primes qj, where qj ∈ {p1, p2, . . . , pk−1}. Then the
vertices v and w are adjacent as gcd(v, w) > 1 and v, w induce a complete subgraph,
which implies {v, w} is a clique dominating set of size two. Thus γcl(Gn) = 2.
Case B. Let m ∈ {1, s1, s2, . . . , st}, where sl is a prime distinct from p1, p2, . . . , pk
for l = 1, 2, . . . , t. More precisely, ql < pk, if p1p2 · · · pk−1 < pk and pk < ql <
p1p2 · · · pk−1, if pk < p1p2 · · · pk−1. In these cases, the vertices v, w are non-adjacent
as gcd(v, w) = 1. Thus the dominating set {v, w} form an independent dominating
set. Hence γi(Gn) = 2.

Proposition 2.1. [2] D is an independent dominating set in graph G if and only
if D is a maximal independent set in G.

Proposition 2.2. For n = pr11 p
r2
2 · · · p

rk
k , where at least one ri > 1, then the inde-

pendent dominating set of Gn is {p1, p2, . . . , pk} and the independent domination
number of Gn is the number of distinct primes present in the prime factorization
of n.
Proof. As {p1, p2, . . . , pk} is a maximal independent set in Gn, it is an independent
dominating set in Gn of cardinality k by Proposition 2.1, where k is the number of
distinct prime factors of n.

2.5. Eulerian property of Gn

In this section we characterize the values of n for which the graphs Gn are
Eulerian. It is well known [8] that a simple connected graph G is Eulerian if and
only if every vertex of G is of even degree.

Lemma 2.2. The graph Gn is Eulerian if n = 2m, where m ∈ N.
Proof. Let n = 2m, where m ∈ N. For m = 1, Gn is a null graph. Hence Gn is
Eulerian.
For m = 2, G4 is a graph with isolated vertex, which implies Gn is Eulerian.
For m > 2, n = 2m and by Theorem 2.2, Gn is complete, where the order of Gn is
2m−1 − 1 and each vertex is of degree 2m−1 − 2, which is even. Thus G2m , m ∈ N,
is Eulerian.

Lemma 2.3. The graph Gn is non-Eulerian if n = pm, where p is an odd prime
and m > 1 ∈ N.
Proof. Let n = pm, where p is an odd prime and m > 1 ∈ N. Then by Theorem
2.2, the order of Gn is pm−1 − 1 and Gn is complete. So the degree of each vertex
is pm−1 − 2, which is always an odd integer as pm−1 is an odd integer. Hence the
result follows.
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Observation 2.3. For n = 12, Gn is Eulerian.
Proof. Easily it can be seen that G12 is Eulerian from Figure 1.

8

10

2

9
6

3

4

Figure 1: G12

Lemma 2.4. For n = 2pr11 p
r2
2 · · · p

rk
k , where pi’s are distinct odd primes, i ∈

{1, 2, . . . , k}, ri ∈ N, Gn is non-Eulerian.
Proof. Let n = 2pr11 p

r2
2 · · · p

rk
k , where pi’s are distinct odd primes. Since n is even,

so u = 2 is a vertex of Gn. The number of multiples of 2 up to n is n
2
, but n /∈ V , so

the number of multiples of 2 up to n−1 is n
2
−1 and the vertex u = 2 is not adjacent

to itself, thus the degree of the vertex u = 2 ∈ V is n
2
− 2 = pr11 p

r2
2 · · · p

rk
k − 2, which

is an odd integer as pr11 p
r2
2 · · · p

rk
k is an odd integer. Hence Gn is non-Eulerian.

Lemma 2.5. The graph Gn is non-Eulerian if n = pr11 p
r2
2 · · · p

rk
k , i = 1, 2, . . . , k,

ri ∈ N, where each pi is a distinct odd prime.
Proof. Let n = pr11 p

r2
2 · · · p

rk
k , where pi’s are distinct odd primes, ri ∈ N, i =

1, 2, . . . , k. Consider the following cases.
Case i. Let n = p1p2 · · · pk. Then by Theorem 2.3, the minimum degree of Gn is
p1p2 · · · pk−1 − 2, which is odd. Thus Gn is non-Eulerian.
Case ii. Let n = pr11 p

r2
2 · · · p

rk
k , where at least one ri > 1. Then the order of Gn is

|V | = n−φ(n)− 1 = n− (φ(n) + 1), where the cardinality of V is even as n is odd,
φ(n) is even and φ(n) + 1 is odd. Again, by Theorem 2.5, the maximum degree of
Gn is |V | − 1, which is an odd integer. Hence Gn is non-Eulerian.

Lemma 2.6. Let n = 2mpr11 p
r2
2 · · · p

rk
k , where pi’s are distinct odd primes and

m > 1, ri ∈ N for i ∈ {1, 2, . . . , k}. Then Gn is non-Eulerian.
Proof. Consider n = 2mpr11 p

r2
2 · · · p

rk
k , where pi’s are distinct odd primes. Let p1

be the smallest odd prime in the prime factorization of n. For an odd integer t, the
total number of vertices of the form u = 2t ∈ V is n

2
− 1. Let p1 be the smallest

odd prime in the prime factorization of n and let p be the highest prime among
the primes less than or equal to n

p1
. It is clear that u1 = 2p ∈ V and the degree of

the vertex u1 = 2p is at least n
2
− 2. That is, deg(u1) ≥ n

2
− 2, as u1 is adjacent to
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all the vertices labeled as u = 2t, where t is an odd integer except itself. Again the
vertex u1 = 2p is adjacent to the vertex u2 = pp1 as the gcd(u1, u2) = p > 1. We
show that the degree of u1 = 2p is deg(u1) = n

2
− 2 + 1 = n

2
− 1, which is odd as

n
2

is even for m > 1. The vertex u1 = 2p cannot be adjacent to any other vertex
labeled as an odd integer less than n as pp1 < n < ppi, where i ∈ {2, 3, . . . , k} and
pi’s are odd primes greater than p1. Thus Gn is non-Eulerian.

Example 2.4. Let n = 700 = 22 ·52 ·7. Then in G700, the total number of vertices
of the form u = 2t, where t is an odd integer is n

2
− 1 = 349, (−1 is coming as

n /∈ V ). In the prime factorization of n, 5 is the smallest odd prime. Thus we find
n
5

= 140 and the highest prime less than 140 is 139. Clearly, 278 = 2 · 139 ∈ V .
Now, we find the degree of u1 = 278 = 2 ∗ 139. The vertex u1 is adjacent to all
the vertices (except itself) labeled as even integer in Gn and u1 is adjacent to the
vertex labeled as u2 = 5∗139 = 695. Thus the degree of u1 is deg(u1) = deg(278) =
deg(2 ∗ 139) = n

2
− 1− 1 + 1 = n

2
− 1 = 349, which is odd. Hence the graph G700 is

non-Eulerian.

Theorem 2.11. Let n = pm, where p is a prime. Then Gn is Eulerian if and only
if p = 2 or n = 12.
Proof. The proof follows immediately from Lemma 2.2, Lemma 2.3, Lemma 2.4,
Lemma 2.5, Lemma 2.6 and Observation 2.3.

3. Conclusion
In this paper we have defined and studied an undirected graph Gn for n ∈ N

and n > 1, whose vertex set comprises of the natural numbers which are less than
n but not relatively prime to n, where n is not a prime number and two distinct
vertices are adjacent if and only if the labels of the vertices are not coprime. We
have studied connectedness, completeness, minimum degree, maximum degree of
Gn. Interestingly we have observed relations between the maximum degree of Gn

and the prime counting function. For n = p1p2 · · · pk, where pi’s are distinct primes,
if we know the maximum degree of Gn, then we can estimate the number of primes
between n = p1p2 · · · pk−1 and pk due to Observation 2.1 and Observation 2.2. We
have studied the independence number, domination number, clique domination
number, independent domination number and Eulerian property of Gn.
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