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Abstract: In this paper, we have presented a new class of accelerating universe
models with variable cosmological term Λ(t) and gravitational constant G(t) in the
framework of general relativity. To get exact solution of Einstein’s field equations
for homogeneous and anisotropic Bianchi type-V space-time, a time varying de-
celeration parameters is considered as q = −1 + nα

(α+t)2
, where n, α are constants.

The present model shows a point type singularity at origin. The results establish
the quintessence like behavior of model initially, and approaches to ΛCDM model
ultimately. Some geometrical and physical properties of the models have been
evidenced, and conferred to derive the validity of models with respect to recent
astrophysical observations. Stability of the model has been discussed through the
means of Om(z) diagnostic and state-finder analysis.

Keywords and Phrases: Bianchi-V universe, ΛCDM Model, Statefinders, Vari-
able DP.
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1. Introduction
Experimental observations like Ia supernovae (SN Ia) observations [41, 46] have

confirmed the accelerated expansion of the universe. The dark energy is assumed



416 South East Asian J. of Mathematics and Mathematical Sciences

as a candidate responsible for the accelerated expansion of universe. Observational
data [1, 6, 40] specifies that the universe is almost spatially containing 95% en-
ergy/matter in the form of dark energy/matter. In the presence of the interaction
with matter or radiation, a solution with a variable Λ is obtained while in the
absence of interaction Λ remains constant. This demands a energy conservation by
the decrease in the energy density of vacuum and an increase in the energy density
of matter or radiation [16, 35, 36, 39, 50, 54, 60].

Among many possible alternatives, the simplest and theoretically interesting
possibility of dark energy is the energy density stored on the vacuum state of all
existing fields in the universe i.e., ρν = Λ

8πG
. The Variable cosmological constant

Λ(t) becomes the main argument in theories of modern cosmology as it solves the
problems of dark energy constant in natural way [24, 30, 31, 35, 36, 51, 54]. The
ΛCDM model is a type of standard big-bang hot model that evolves as the best fit to
experimental observations. According to these models GR assumptions are valid
for large scale cosmological matter and assumes homogeneous distribution. The
major issue in this approach is to determine the appropriate dependence of Λ on a
scale factor. Motivated with the dimensional ground of quantum cosmology, Chen
and Wu [20] consider a variable cosmological constant as Λ ∝ a−2. Several anataz
have been proposed in literature showing Λ as decreasing function of time [24,
54]. Various authors have studied the variable cosmological constant in different
contexts [7, 8, 20, 24, 30, 31, 35, 36, 51, 54].

The dimensionless parameters r, s termed as state-finder diagnostics are pro-
posed to validate the stability of the model [2, 7, 8, 20, 51]. The parameters are
derived by using scale factor and its time derivatives. Previously, various authors
have discussed parameters of state-finders in their work [9, 17, 27, 38, 64]. ΛCDM
has remarkably verify various experimental data. In general relativity, the Bianchi
identities for the Einsteins tensor Gij and the vanishing covariant divergence of
the energy momentum tensor Tij together with imply that the cosmological term
is constant.

The recent experimental observations do not confirms the Equivalence Princi-
ple of general relativity with fundamental constant. Dirac [22, 23] suggests the
variable gravitational constant G, and used in modifications of GR. Various tests
are developed to get a clear picture of cosmologies with variable G as discussed by
Canuto et al. [14, 15, 45]. Few of fundamental work in this direction of cosmolog-
ical models with variable G in literature may be found in [4, 5, 25]. Later Hubble
diagram of Type Ia Supernovae also testify the dynamic gravitational constant [25].
Other models are also developed in the sequences to understand the gravity theory
by considering time dependent G, c, and Λ [33, 35, 42, 53, 59]. Many authors also
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have discussed time varying Λ and G in different frameworks [3, 19, 47, 55, 56, 61].
Recently, many authors have discussed Bianchi type-V universe with variable G
and Λ [12, 62, 63]. Bianchi type-I universe with varying G and Λ-term in GR has
also been discussed by Pradhan et al. [43]. The present work consist, the study of
anisotropic cosmological models with variable Λ and G in Bianchi-V universe.

The manuscript is organized as follow: The present cosmological scenario is
studied discussed in section I. In section 2 we present the Bianchi type-V universe.
In section three we proposed the solution of field equations. In section-4, physical
and geometrical properties are discussed. The stability of model is validate through
statefinders in section-5. Om diagnostics analysis is given in section-6. In scetion-7,
concluding summary of present manuscript has been given.

2. The Basic Field Equations
The spatially homogenous and anisotropic Bianchi type-V space-time is consider

as
ds2 = dt2 − A2dx2 − e2kxB2dy2 − e2kxC2dz2. (1)

Here, k is constant.
Applying time-dependent G and Λ, Einstein equations are defined as

Rij −
1

2
gijR = −8πG(t)Tij + Λ(t)gij. (2)

Here, R = gijRij and Rij are the Ricci scalar and Ricci tensor respectively, while
G and Λ present the Gravitational and Cosmological constants respectively.
The stress-energy-momentum tensor Tij for a perfect fluid given as

Tij = (ρ+ p)uiuj + pgij, (3)

here, ρ denotes the density of matter and p represents the pressure. ui denotes the
four-velocity vector of the fluid which satisfy the relation uiui = 1. In the field eq
(2), Λ stands for vacuum energy with energy density ρν and pressure pν satisfying
the equation of state

Λ = 8πGρν = −8πGpν (4)

The critical density for the case is given by

3H2 = 8πGρc (5)

The density parameters for matter and cosmological constant are defined as

Ωm =
8πG

3
H−2ρ (6)



418 South East Asian J. of Mathematics and Mathematical Sciences

ΩΛ =
1

3
H−2Λ (7)

The above relations indicate that at H = 0, the parameters Ωm and ΩΛ have a
point kind singularity [32, 44].
For co-moving coordinates system, the field equations for the metric (1), in case of
(4) are

Ä

A
+
B̈

B
+
ȦḂ

AB
− k2

A2
= ξ, (8)

Ä

A
+
C̈

C
+
ȦĊ

AC
− k2

A2
= ξ, (9)

B̈

B
+
C̈

C
+
ḂĊ

BC
− k2

A2
= ξ, (10)

ȦḂ

AB
+
ḂĊ

BC
+
ĊȦ

CA
− 3k2

A2
= τ. (11)

2Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (12)

Here, ξ = −8πG(t)p+ Λ(t), τ = 8πGρ+ Λ(t)
The covariant divergence of the (2) affords

ρ̇+ 3Hρ+ 3Hp+
1

G
Ġρ+

1

8πG
Λ̇ = 0. (13)

The standard energy conservation equation T ij;j = 0 leads to

ρ̇+ 3Hρ+ 3Hp = 0. (14)

Now, the Eq. (13) reduces to

ρ
Ġ

G
+

Λ̇

8πG
= 0. (15)

Hubble parameter can be determined by

H =
1

3
(Hx +Hy +Hz), (16)
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where Hx = Ȧ
A
, Hy = Ḃ

B
, Hz = Ċ

C
.

The anisotropy parameter and the shear scalar for the model given by

Am =
1

3H2

[
(Hx −H)2 + (Hy −H)2 + (Hz −H)2] , (17)

σ2 =
1

2
σijσ

ij =
1

2

[
(Hx)

2 + (Hy)
2 + (Hz)

2]− θ2

6
. (18)

3. Solution of Field Equations
From equations (8)− (12), we have five equations involving A,B,C,G,Λ, p and

ρ seven unknowns, therefore two more relations required to get solution of field
equations. So, we consider following two relations:
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Figure 1: Variation of DP q versus t.

� We consider a power law form of gravitational parameter with scale factor as
considered in [19]:

G = G0a
m (19)

Here G0 > 0 is constant and 0 < m < 2.

� The perfect-gas equation is
p = γρ (20)

Here, 0 ≤ γ ≤ 1; (γ = cons.)

The DP (deceleration parameter) q for the model can be obtained as

q = −aä
ȧ2

= −

(
Ḣ +H2

H2

)
(21)
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The metric functions can be determined as the functions of cosmic time t if av-
erage scale factor is known. The choice of scale factor attracts a time dependent
deceleration parameter, as shown in Eq. (40), which brings that dark energy era,
the solution gives inflation and radiation/matter dominance era with subsequent
transition from deceleration to acceleration. Now for a Universe, which has been
decelerating in past and accelerating at the present time, the deceleration param-
eter must show signature flipping [37]. This theme motivates to choose such scale
factor (22) that yields a time dependent deceleration parameter given by Eq. (40).
Thus, to proposed a solution to derived model, we assumed a time dependent scale
factor as [10, 11, 26, 48, 57].
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Figure 2: Variation of Am versus t.

a =
(
tαet

)1/n
(22)
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Figure 3: Variation of G versus t.
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Integrating (12) and neglecting the integration constant, we get

A2 = BC (23)

Solving equations (8)-(11), using (22), we obtained

A =
(
tαet

)1/n
(24)

B = l
(
tαet

)1/n
exp

[
b

∫ (
tαet

)−3/n
dt

]
(25)

C = l−1
(
tαet

)1/n
exp

[
−b
∫ (

tαet
)−3/n

dt

]
(26)

and the Gravitational constant is

G = G0

(
tαet

)m/n
(27)

Using (22) and (27) and solving the field equations (8)-(11), we get

ρ = 1
8πG0(1+γ)

[
2α
nt2

(tαet)
−m/n − 2b2 (tαet)

−(m+6)/n
]

− 2k2

8πG0(1+γ)

[
(tαet)

−(m+2)/n
]

(28)
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Figure 4: Plot of ρ versus t.
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p = γ
8πG0(1+γ)

[
2α
nt2

(tαet)
−m/n − 2b2 (tαet)

−(m+6)/n
]

− 2k2γ
8πG0(1+γ)

[
(tαet)

−(m+2)/n
]

(29)

Λ = 3
n2

(
α
t

+ 1
)2 − 2α

n(1+γ)t2
− (γ−1)b2

(γ+1)
(tαet)

−6/n

− (3γ+1)k2

(γ+1)
(tαet)

−2/n
(30)

The energy and critical densities for vaccum and the density parameters are read
as

ρν = 1
8πG0

[
3
n2

(
α
t

+ 1
)2

(tαet)
−m/n

+ 2α
n(1+γ)t2

(tαet)
−m/n

]
− 1

8πG0

[
(γ−1)b2

(γ+1)
(tαet)

−(m+6)/n
+ (3γ+1)k2

(γ+1)
(tαet)

−(m+2)/n
]

(31)

ρc =
1

8πG0

[
3

n2

(α
t

+ 1
)2 (

tαet
)−m/n]

(32)

Ωm = 1
3(1+γ)

[
2nα
t2

(
α
t

+ 1
)−2 − 2n2b2

(
α
t

+ 1
)−2

(tαet)
−6/n

]
− 2n2k2

3(1+γ)

[(
α
t

+ 1
)−2

(tαet)
−2/n

]
(33)

ΩΛ = 1− 2nα
3(1+γ)t2

(
α
t

+ 1
)−2 − (γ−1)n2b2

3(γ+1)

(
α
t

+ 1
)−2

(tαet)
−6/n

− (3γ+1)n2k2

3(γ+1)

(
α
t

+ 1
)−2

(tαet)
−2/n

(34)

Adding (33) and (34), we get

Ωtotal = 1− n2b2

3

(
α
t

+ 1
)−2

(tαet)
−6/n − n2k2

(
α
t

+ 1
)−2

(tαet)
−2/n

(35)

4. Some Physical and Geometric Properties
The spatial volume and average Hubble parameter for model (1) are given by

V =
(
tαet

)3/n
(36)

H =
1

n

(α
t

+ 1
)

(37)
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Figure 5: Plot of Λ versus t.

The physical parameters defined in Eqs. (17)-(18) are obtained as

Am =
2n2b2

3

(α
t

+ 1
)−2 (

tαet
)−6/n

(38)

σ2 = b2
(
tαet

)−6/n
(39)

The deceleration parameter is given by

q = −1 +
nα

(α + t)2
(40)

From Eq. (40), we observe that q > 0 for t <
√
nα−α and q < 0 for t >

√
nα−α.
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Figure 6: Plot of Ωm versus t.

From Eq. (40), the value of DP at present can be estimated as

q0 = −1 +
α

nH2
0 t

2
0

(41)
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Figure 7: Variation of ΩΛ versus t.

The DP of the universe vary in the range −1 ≤ q ≤ 0 as affirmed by experi-
mental observation. For n = 0.27α, we obtain q0 = −0.73 [21]. The values from
table can be used for plotting and numerical validation.

n α

0.25 0.9259259260
0.50 1.851851852
0.75 2.77777778
3.0 11.11111111

Table 1: Table of Values of n and β

Eq. (38), where Am → 0 as t → ∞, shows a transitioning of the model from
early anisotropy to isotropy at late time. The variation of Am has been plotted
in fig.2. It can be confirmed from figure that the universe is isotropic at present
epoch.

From above Eqs. (28)-(30), It has been found that the present model is radiating
dominated, False vaccum, empty model and stiff fluid model respectively for γ =
1/3, γ = −1, γ = 0 and γ = 1.

Eq. (28), states that energy density ρ is a time decreasing function. Figure-4,
shows the variation of energy density. The cosmological term Λ has a similar effect
as a uniform mass density of universe i.e., ρeff = −Λ

4πG
. Figure-5, show variation

of cosmological term Λ with time and express that the universe is in acceleration
phase, for all three models i.e., radiating dominated, empty and stiff fluid universe
models.
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Figure 8: Variation of Ω versus t.

Plots 6 and 7 represent respectively, the variation of matter density parameter,
and cosmological term density parameter. These figures explain that evaluation
of universe in early phase is matter dominated and later phase is dark energy
dominated at present epoch. Figure-8 of total density parameter explains that
Ω→ 1 as t→∞ and match with experimental observational results [58].

5. Statefinder Diagnostic

To discuss the geometrical diagnosis of DE models, the state-finders are given
as [51]

ΛCDM

quintessence

-2 -1 0 1 2

-2

-1

0

1

2

s

r

·

Figure 9: Plots of Variation r versus s.

r =
˙̈a

a
H−3 (42)
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s =
r − 1

3(q − 0.5)
(43)

Here, one can not choose q = 0.5. The trajectories of s − r plane is shown in
figure 9. From the figure, we observed that the trajectory lying in quintessence
region r < 1, s > 0 and (s, r) = (0, 1), the model is evolving into ΛCDM model.
Plot of the trajectory in q− r plane is shown in fig.10. For r < 1, q > 0 the region
belongs to quintessence models, for r = 1, q > 0 models evolve as ΛCDM models
and for r > 1, q > 0 the region belongs to Chaplygin gas models [2, 29].

quintessence

ΛCDM

Chaplygin gas

0 2 4 6 8
-3

-2

-1

0

1

2

3

4

q

r

·

Figure 10: Plots of Variation r versus q.

6. Om Diagnostic Analysis
The Om(z) parameter is given by

Om(z) =

[
H(z)
H0

]2

− 1

(z + 1)3 − 1
(44)

The Om(z) parameter of derived model is given by

Om(z) =


1

W

(( a0
z+1)n)1/α

α


+1

n


2

−H2
0

(z + 1)3H2
0 −H2

0

(45)

Om(z) diagnostic analysis is more suitable than the state-finders to validate dy-
namics of dark energy models [52]. For Om(z) > 0, Om(z) = 0 and Om(z) < 0,
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the behavior of the models are phantom, quintessence and ΛCDM respectively [28,
49, 52, 65]. The behavior of the derived model is quintessence like as indicated by
the negative slope of Om(z)− z trajectories.
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-4

-2

0

2

4

z

O
m
(z
)

·

.

Figure 11: Plot of Om(z) versus z with H0 = 71.12kms−1Mpc−1.

7. Conclusion
In this work a new class of models of accelerating universe with variable G(t)

and Λ(t) has been presented. Following are the main aspects of investigation:

� The model suffers point type singularity initially as also described by other
authors [15, 32, 34, 44]. The present model shows a transitioning from
anisotropy to isotropy, shows good agreement with the observations. The
parameters like p→ 0, ρ→ 0, Λ→ 0, and G→∞, V →∞ as t→∞.

� The present model is radiating dominated for γ = 1/3, empty model for γ = 0
and stiff fluid model for γ = 1.

� The cosmological constant has a similar consequence as mass density of uni-
verse i.e., ρeff = −Λ

4πG
. Figure-5, show variation of Λ and express that the

universe is in acceleration phase for possible cases i.e., radiating dominated,
empty and stiff fluid universe models.

� The plots 6 and 7, explain that evaluation of universe in early phase is matter
dominated and later phase is dark energy dominated phase. Plot of total den-
sity parameter explains that at t→∞, Ω→ 1, and shows a good agreement
with observational result [51].

� Plot of the trajectory in q − r plane is shown in fig.10. For r < 1, q > 0
the region belongs to quintessence models, for r = 1, q > 0 models evolve
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as ΛCDM models and for r > 1, q > 0 the region belongs to Chaplygin gas
models [2].

� The negative slope of parameter Om(z), shows the consistency of the present
model.
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