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Abstract: In this research paper, the authors propose a generalized three-dimensional
fractional order tumor-immune response model. The generalization of the model
is made by introducing interleukin-2 (IL2) cell population as the third variable in
the proposed system. The study of the proposed model is performed by using a
new concept of fractional-order derivatives called as conformable fractional-order
derivative. The authors aim to study, analyze, and compare the dynamical be-
havior of both the three-dimensional fractional order model and the conformable
fractional order version of the proposed model. The stability analysis is done for
both versions of the model at the biologically feasible equilibrium points. To vali-
date the theoretical results numerically, numerical simulation is performed by using
a piecewise constant approximation process.

Keywords and Phrases: Tumor-Immune Response System, Fractional Deriva-
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1. Introduction

Tumors are considered among the families of soaring mortality diseases, reveal-
ing an insanity of cellular augmentation which often induces uncontrolled growth of
cells [8, 29]. Researchers are working for understanding the dynamics of interaction
between tumor cells and the immune system. In terms of biology and mathemat-
ics, the Immune system is regarded as one of the most interesting schemes. The
immune system can do multiple functions with various metabolic pathways. There-
fore, almost all effector cells perform more than one function and each function of
the immune system is typically done by more than one effector cell. Hence, this
makes it a more complex system [2]. Integer-order differential equations are being
used for modelling tumor phenomena for a long time [23, 9, 24, 25, 14, 21, 26],
on the other hand, differential equations with fractional order have a short history
in modeling such phenomena with memory [30]. Research on fractional calculus
has gained much interest over the past few decades and differential equations with
fractional order have been used in different research areas like medicine [13], finance
[10], engineering [33], physics [19, 35], and chemistry [37]. Fractional order differ-
ential equations are widely used to model biological systems and there are valuable
applications and good results in this field [3, 20- 22, 34, 36, 38]. It is also expressed
that models of biological systems developed by differential equations with fractional
order display more realistic results compared to models developed by integer order
differential equations [5, 8, 28]. This is only because of the fact that fractional
order derivatives involve memory concepts and that is quite favorable to work on
biological processes.
In this research paper, we study the tumor-immune interaction model by applying
the newly introduced definition called “conformable fractional order derivative”,
which was introduced in the year 2014 by Khalil et al. [17]. According to this
definition, if we consider a function f : [a,∞)→∞ and let 0 < α ≤ 1 be the order
of the function. Then:

1. The left fractional derivative of a function beginning from a, in limit form is
defined by:

(T aαf)(t) = lim
ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
, (1)

if the limit exists.

2. The right fractional derivative of a function ending at b, in limit form is
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defined by:

(bαTf)(t) = − lim
ε→0

f(t+ ε(b− t)1−α)− f(t)

ε
, (2)

if the limit exists.

3. The Caputo type fractional order derivative of the function is defined by:

Da
αf(t) =

1

Γ(1− α)

∫ t

a

fnx

(t− x)α−n+1
dx. (3)

4. If the function f(t) is differentiable at t ∈ [a,∞). Then, we have the following
results:

(T aαf)(t) = (t− a)1−αf ′(t) and (bαTf)(t) = (t− b)1−αf ′(t). (4)

Integer-order derivatives and conformable fractional-order derivatives have a few
common basic properties also. In [1] Abdeljawad introduced a conformable frac-
tional order version of Taylor series expansion, exponential functions, integration
by parts, Gronwall’s inequality, and Laplace transforms. Physical and biological
applications of conformable fractional-order derivatives can be found in [4, 11, 27,
32]. In [16] Kartal and Gurcan considered the conformable fractional-order logistic
equation with piecewise constant arguments by adopting the method presented by
Gopalsamy in [15].

2. Fractional Order Tumor-Immune Interaction Systems
Consider a fractional-order tumor-immune interaction model given by FA Rihan

et al. [31], which includes an external source of effector cells and immune stimu-
lation effects by treatment of interleukin-2 (IL2) cells. In the paper, the author’s
assumed three populations of the activated immune-system cells (E(t)), the tumor
cells (T (t)), and the concentration of IL2 cells in the tumor-site compartment. The
mathematical model in [32], governed by the fractional-order differential equations
is given by:

Dα1E(t) = s1 + p1E(t)T (t)− p2E(t) + p3E(t)IL(t),

Dα2T (t) = p4T (t)(1− p5T (t))− p6E(t)T (t), (5)

Dα3IL(t) = s2 + p7E(t)T (t)− p8IL(t), 0 ≤ αi ≤ 1, i = 1, 2, 3.

In research work [12], E. Balci, applied conformable fractional-order derivative
on model (5) in absence of concentration of IL2 in the tumor site compartment.
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In this paper, we will study the dynamical behavior of model (5) in presence of
immunotherapy (Interleukin-2) cells by using a conformable fractional order deriva-
tive.
Now, in order to reduce the sensitivity of system (5), we use the following re-scaling
for non-dimensionalization of model (5):

x(t) = E(t)/E0, y(t) = T (t)/T0, z(t) = (IL(t))/IL0, σ = s1/(E0t0),

ω = (p1T0)/t0, δ = p2/t0, θ = (p3IL0)/t0, γ = p4/t0, β = p5T0,

1 = (p0E0)/t0, σ
′ = s2/(IL0t0), ω

′ = (p7E0T0)/(IL0t0), δ′ = p8/t0.

Therefore, by applying these substitutions on model (5), we obtain the required
non-dimentionlized Caputo-type fractional-order tumor-immune interaction model
in presence of immunotherapy:

Dαx(t) = σ + ωx(t)y(t)− δx(t) + θx(t)z(t),

Dαy(t) = γy(t)(1− βy(t))− x(t)y(t), (6)

Dαz(t) = σ′ + ω′x(t)y(t)− δ′z(t).

Where, x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0 are the given initial
conditions and the parameters are defined in [31]. Some of the parameters used
in this model with their biological meaning are; σ, which is an external source of
effector cells with δ as the death rate of effector cells. ω is the rate of antigenicity
of tumor (response of the immune system to the tumor), θ is the cooperation rate
of effector cells to interleukin-2 parameter, γ is the growth rate of tumor cells, β−1

is the maximal carrying capacity of the biological environment. σ′ is the external
source of input for interleukin-2 cells, ω′ is the rate of competition between tumor
cells and effector cells, and δ′ is the loss rate parameter of interleukin-2 cells.
Now, the conformable fractional-order form of system (6) is given by:

TαE(t) = σ + ωET − δE + θEIL2,

TαT (t) = γT (1− βT )− ET, (7)

TαIL2(t) = σ′ + ω′ET − δ′IL2,

where, Tα represents the conformable fractional-order derivative of the functions
E(t), T (t), and IL2(t) with respect to time t, which is already defined in equation
(4).

3. Stability analysis of model (6)
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The stability analysis of the model (6) can be done by using the following
equilibrium points: E0(x, 0, 0), E1(x, y, 0), E2(0, y, z), and E3(x, y, z). These equi-
librium points can be obtained by solving the following system of equations:

σ + ωx(t)y(t)− δx(t) + θx(t)z(t) = 0,

γy(t)(1− βy(t))− x(t)y(t) = 0, (8)

σ′ + ω′x(t)y(t)− δ′z(t) = 0.

The required equilibrium points obtained from system (8) are given by:

1. E0

(σ
δ
, 0, 0

)
, the tumor-free equilibrium point.

2. E1

(
σω′ − ωσ′

δω′
,
1 +
√

∆

2β
, 0

)
, the IL2 free equilibrium point. Where ∆ =

1 + 4σ′β

γω′
.

3. E2

(
0,

1

β
,
σ′

δ′

)
, the tumor-dominant equilibrium point.

4. E3(x̄, ȳ, z̄), the positive interior equilibrium point given by.

The stability analysis at these equilibrium points of system (6) can be done by
using following theorems [12]:

Theorem 1. At the tumor-free equilibrium point E0(σ/δ, 0, 0) of the model (6),
the following results hold:
1. if σ > δγ, the tumor-free equilibrium point is locally asymptotically stable.
2. if σ < δγ,, the tumor-free equilibrium point is unstable and it is a saddle point.
Proof. The Jacobian matrix of system (6) at the equilibrium point E0(σ/δ, 0, 0)
is given by:

JE0 =

−δ σω/δ σθ/δ
0 γ − σ/δ 0
0 ω′σ/δ −δ′

 ,

which gives the eigenvalues as: λ1 = −δ, λ2 = γ − σ/δ, λ3 = −δ′.
Here λ1, λ3 satisfies the condition |arg(λ)| > απ/2. λ2 will satisfy these conditions
conditionally, i.e. if σ > δγ ⇒ λ2 < 0, implies that |arg(λ2)| > απ/2, therefore the
equilibrium point is locally asymptotically stable and if σ < δγ ⇒ λ2 > 0, implies
that arg(λ2) = 0. Which always satisfies |arg(λ)| < απ/2. Therefore, by the



398 South East Asian J. of Mathematics and Mathematical Sciences

theorem stated in [12], the equilibrium point E0 is a saddle point, so it is unstable.

Theorem 2. The equilibrium point E1

(
σω′ − ωσ′

δω′
,
1 +
√

∆

2β
, 0

)
, of the system

(6) is conditionally locally asymptotically stable.
Proof. At the equilibrium point E1(x, y, 0) of the system (6), the Jacobian matrix
is given by:

JE1 =

ωy − δ ωx θx
−y γ − 2βγy − x 0
ω′y ω′x −δ′

 .

The eigenvalues of the above matrix are given by the roots of the characteristic
equation:

λ3 + P1λ
2 + P2λ+ P3 = 0 (9)

Where,

P1 = 2βγy − ωy − γ + δ + δ′ + x,

P2 = ωyδ′ − δδ′ + ω′θxy − (2βγy − γ + x)(δ + δ′ − ωy − ωxy),

P3 = (2βγy − γ + x)(ωyδ′ − δδ′ + ω′θxy)− ωδxy − ω′θx2y, and

x = (σω′ − ωσ′)/(δω′), y = (1 +
√

∆)/2β.

To discuss the stability conditions of the equilibrium point, we first evaluate the
discriminant of the characteristic equation by using the stability conditions defined
in (3).

Discriminant : D = 18P1P2P3 + (P1P2)
2 − 4P 2

1P3 − 4P 2
2 − 27P

3

3 .

The equilibrium point is locally asymptotically stable if any one of the following
conditions are satisfied:
1, D > 0, P1 > 0, P3 > 0 and P1P2 > P3,
2, D < 0, P1 > 0, P2 > 0, P3 > 0 and α < 2/3,
3, D < 0, P1 > 0, P2 > 0, P1P2 = P3 and α ∈ (0, 1).

Theorem 3. For the equilibrium point, E2(0, y, z), if y 6= 0 and ω/β+(σθ′)/δ′ < δ,
then the equilibrium point is locally asymptotically stable (LAS).
Proof. The Jacobian matrix of the system (6) at the equilibrium point E2(0, 1/β,
σ′/δ′) is given by:

JE2 =

ωy − δ + θz 0 0
−y γ − 2βγy 0
ω′y 0 −δ′


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It’s eigenvalues are given by: λ1 = ω/β + (θσ′)/δ′ − δ, λ2 = −γ, λ3 = −δ′.
For λ2 and λ3, the equilibrium point is locally asymptotically stable. For λ1,
if ω/β + (θσ′)/δ′ < δ, the equilibrium point is asymptotically stable. If ω/β +
(θσ′)/δ′ < δ , then λ1 > 0, so the equilibrium point is unstable. Hence, the system
is conditionally locally asymptotically stable.

Theorem 4. The positive interior equilibrium point E3(x, y, z) is conditionally
locally asymptotically stable.
Proof. The Jacobian matrix of system (6) at the positive interior equilibrium
point E3(x, y, z) is given by:

JE3 =

ωy − δ + θz ωx θx
−y γ − 2βγy − x 0
ω′y ω′x −δ′

 .

Its characteristic equation is given by: λ3 +R1λ
2 +R2λ+R3 = 0.

Where, R1 = (2βγ − ω)y + x+ δ − θz − γ + x+ δ′,
R2 = (γ − 2βγy − x)((ωy − δ + θz)− δ′)− δ(ωy − δ + θz)− (ω′θ − ω)xy and
R3 = (γ − 2βγy − x)(−δ′(ωy − δ + θz)− ω′θxy))− δ′ωxy − ω′θx2y.
To determine the stability conditions for the positive interior equilibrium point, we
will make use of the same criteria defined in theorem 2.

Table 1: Parameter values to be used for numerical simulations

Model Pa-
rameters

Biological interpretation of the parameters Parameter
values

References

σ External source of effector cells (0, 1)
ω Antigenicity rate of tumor (immune response

to the tumor)
0.04

δ Death rate of effector cells 0.3743
θ Cooperation rate of effector cells to

interleukin-2 parameter
1

γ Growth rate of tumor cells 1.636 [11,13,18]
β−1 Maximal carrying capacity of the Biological

Environment
2× 10−3

σ′ External source of input for Interleukin-2 cells 1
ω′ Competition rate between tumor cells and ef-

fector cells
1

δ′ loss rate parameter of interleukin-2 0.02
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Figure 1: Graphical time series analysis of the model (6) by varying the parameter
α. Here, black line denotes α = 0.005, blue line denotes α = 0.01, red line denotes
α = 0.1, green line denotes α = 0.2, orange line denotes α = 0.3, and dashed line
denotes α = 0.4. The initial conditions are chosen as: (x, y, z) = (1.5, 1, 10) for
σ = 0.1181 in upper three plots and σ = 0.5 in lower three plots. The population
growth of effector cells (x(t)) is shown on the left, tumor cells (y(t)) at the center,
and IL2 (Immunotherapy) (z(t)) on the right.
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4. Dynamical Behavior of the Proposed Model (7)

4.1. Discretization Process
The discretization of the proposed tumor-immune interaction model (7) can be

done by using a piecewise constant approximation process [16]. Therefore, from
the proposed model (7), we obtain:

TαE(t) = σ + ωE(t)T

([
t

h

]
h

)
− δE(t) + θE(t)IL2

([
t

h

]
h

)
,

TαT (t) = γT (t)(1− βT (t))− E
([

t

h

]
h

)
T (t), (10)

TαIL2(t) = σ′ + ω′E

([
t

h

]
h

)
T

([
t

h

]
h

)
− δ′IL2(t).

Where, E(0) = E0, T (0) = T0, IL2(0) = IL2(0), [t] is the integral value of
t ∈ [0,∞), and h > 0 is the discretization parameter. Now we use the following
definition of conformable fractional-order derivative:

(T aαf)(t) = (t− a)1−αf ′(t). For t ∈ [nh, (n+ 1)h) or t ∈ [(n− 1)h, nh).

By applying this definition to the first equation of model (10), we get

E ′(t) + E(t)[(δ − ωT (nh)− θIL2(nh))/(t− nh)1−α] = σ/(t− nh)1−α).

This is a first-order linear differential equation and its solution is given by:

E(t) =

(δ − ωT (nh)− θIL2(nh))E(nh) + σ

(
exp(δ − ωT (nh)− θIL2(nh))

(t− nh)α

α

)
(δ − ωT (nh)− θIL2(nh))

(
exp(δ − ωT (nh)− θIL2(nh))h

α

α

) .

Letting t→ (n+ 1)h, then we obtain the required difference equation given by:

E((n+ 1)h) =
(δ − ωT (nh)− θIL2(nh))E(nh) + σ

(
exp(δ − ωT (nh)− θIL2(nh))h

α

α

)
(δ − ωT (nh)− θIL2(nh))

(
exp(δ − ωT (nh)− θIL2(nh))h

α

α

) .

By adjusting the notations of the difference equation and by replacing nh→ n, we
get the required equation given by:

E(n+ 1) =
σ + ((δ − ωT (n)− θIL2(n))E(n)− σ) exp (ωT (n) + θIL2(n)− δ) hα

α

δ − ωT (n)− θIL2(n)
.
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Now by applying the same definition to the second equation of system (10), we
have

(t− nh)1−αT ′(t) = γT (t)[1− βT (t)]− E(nh)T (t)

⇒ T ′(t)

T 2(t)
− (γ − E(nh))

(t− nh)1−α
1

T (t)
=

−βγ
(t− nh)1−α

.

Multiplying both sides by exp

(
(γ − E(nh))

(t− nh)α

α

)
and solving the equation,

we obtain the required solution given by:

T (t) =
T (nh)(γ − E(nh))

(γ − E(nh)− γβT (nh))
(

exp(E(nh)− γ) (t−nh)
α

α

)
+ βγT (nh)

.

Letting t → (n + 1)h and again by adjusting the notations of difference equation
and also by replacing nh→ n, we obtain the required difference equation given by:

T (n+ 1) =
T (n)(γ − E(n))

(γ − E(n)− γβT (n))
(
exp(E(n)− γ)h

α

α

)
+ βγT (n)

.

Finally applying the same definition to the third equation of system (10), we have

(t− nh)1−αIL′2(t) = σ′ + ω′E(nh)T (nh)− δ′IL(t)

⇒ IL′2(t) +
δ′

(t− nh)1−α
IL2(t) =

(σ′ + ω′E(nh)T (nh))

(t− nh)1−α
.

Multiplying both sides by exp

(
δ′

(t− nh)α

α

)
, and solving the equation, we obtain

the required solution of the equation given by:

IL2(t) =

(σ′ + ω′E(nh)T (nh) + (δ′IL2(nh)− (σ′ + ω′E(nh)T (nh))) exp

(
−δ′ (t− nh)α

α

)
δ′

.

Letting t→ (n+ 1)h and by adjusting the difference equation notation again and
also by replacing nh→ n, we get the required difference equation, given by:

IL2(n+ 1) =

(σ′ + ω′E(n)T (n))

(
1− exp(−δ′(h

α

α
))

)
+ δ′IL2(n) exp

(
−δ′(h

α

α
)

)
δ′

.
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Hence, the required three-dimensional conformable fractional-order derivative model
in discrete form is given by:

E(n+ 1) =
σ + ((δ − ωT (n)− θIL2(n))E(n)− σ) exp (ωT (n) + θIL2(n)− δ) hαα

δ − ωT (n)− θIL2(n)
,

T (n+ 1) =
T (n)(γ − E(n))

(γ − E(n)− γβT (n))
(
exp(E(n)− γ)h

α

α

)
+ βγT (n)

, (11)

IL2(n+ 1) =

(σ′ + ω′E(n)T (n))

(
1− exp(−δ′(h

α

α
))

)
+ δ′IL2(n) exp

(
−δ′(h

α

α
)

)
δ′

.

Figure 2: Stable dynamical behaviour of model (11) for the parameter values given
in Table 1 with initial conditions (E, T, IL2) = (1.5, 1, 10) and with σ = 0.1181
in first row and σ = 0.5 in second row. The population growth of effector cells
(E(n)), tumor cells (T (n)), and interleukin-2 (IL2) cells is shown by green line,
red line, and blue line respectively.
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4.2. Stability analysis of discrete system (11)
The local asymptotic stability analysis of system (11) can be done at the follow-

ing three equilibrium points: E0

(σ
δ
, 0, 0

)
, E1

(
(σω′ − ωσ′)

δω′
,
(ω′(γδ − σ) + ωσ′)

βγδω′
, 0

)
,

E2

(
0,

1

β
,
σ′

δ′

)
.

Theorem 5. For the equilibrium point E0

(σ
δ
, 0, 0

)
, we have the following results:

1 if δγ < σ , the system is locally asymptotically stable.
2 if δγ > σ, the system is unstable.
Proof. The Jacobian matrix of the discrete system (11) at the equilibrium point

E0

(σ
δ
, 0, 0

)
is given by:

JE0 =

exp(−δ hα
α

)
ωσ(1−exp(−δ h

α

α
))

δ2
θσ(1−exp(−δ h

α

α
))

δ2

0 exp[(γ − σ
δ
)h

α

α
] 0

0
ω′σ(1−exp(−δ′ h

α

α
))

δδ′
exp(−δ′ hα

α
)

 .

The eigenvalues of the matrix are given by: λ1 = exp(−δ hα
α

), λ2 = exp[(γ −
σ
δ
)h

α

α
], λ3 = exp(−δ′ hα

α
).

From the eigenvalues, it is easy to show that the equilibrium point is locally asymp-
totically stable if δγ < σ and unstable if δγ > σ.

Theorem 6. For the equilibrium point E1(x
′, y′, 0), the discrete system (11) is

conditionally locally asymptotically stable. Where x′ = (σω′−ωσ′)
δω′ , and y′ =

(ω′(γδ−σ)+ωσ′)
βγδω′ .

Proof. The Jacobian matrix of the discrete system (11) at the equilibrium point
E1(x

′, y′, 0) is given by:

JE1 =

a11 a12 a13
a21 a22 0
a31 a32 a33

 .

Where, a11 = exp

(
−(δ − ωy′)h

α

α

)
,

a12 =

ω(δ − ωy′) exp

(
−(δ − ωy′)h

α

α

)
((δ − ωy′)x′ − σ)

hα

α
+ ωσ

(
1− exp

(
−(δ − ωy′)h

α

α

))
(δ − ωy′)2

,

a13 =

θ(δ − ωy′) exp

(
−(δ − ωy′)h

α

α

)
((δ − ωy′)x′ − σ)

hα

α
+ θσ

(
1− exp

(
−(δ − ωy′)h

α

α

))
(δ − ωy′)2

,
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a21 =

βγy′2
(

1− exp

(
−(γ − x′)h

α

α

))
− y′ exp

(
−(γ − x′)h

α

α

)
(γ − x′ − γβy′)(γ − x′)h

α

α(
γ − x′ − γβy′) exp

(
−(γ − x′)h

α

α

)
+ βγy′

)2 ,

a22 =

(γ − x′)2 exp

(
−(γ − x′)h

α

α

)
(

(γ − x′ − γβy′) exp

(
−(γ − x′)h

α

α

)
+ βγy′

)2 , a31 =
ω′y′

δ′

(
1− exp

(
−δ h

α

α

))
,

a32 =
ω′x′

δ′

(
1− exp

(
−δh

α

α

))
, and a33 = exp

(
−δh

α

α

)
.

Its characteristic equation is given by:

λ3 + A1λ
2 + A2λ+ A3 = 0. (12)

Where, A1 = −(a11+a22+a33), A2 = a22a33+a11a33−a13a31+a11a22−a12a21, A3 =
a11a22a33 − a12a21a33 + a13a21a32 − a13a31a22.
The stability conditions of the discrete system (11) at the equilibrium point
E1(x

′, y′, 0) are defined by using the following lemma:

Lemma 1. [10] Consider a cubic polynomial of the type:

λ3 + β1λ
2 + β2λ+ β3 = 0. (13)

Where, β1, β2, and β3 are real constants. Furthermore, all the roots of the polyno-
mial (13) lie within the open unit disk if and only if the following conditions are
satisfied:

|β1 + β3| < 1 + β2, |β1 − 3β3| < 3− β2, β2
3 + β2 − β1β3 < 1. (14)

Therefore, the equilibrium point E1(x
′, y′, 0) is locally asymptotically stable if

and only if the following conditions are satisfied:

|A1 + A3| < 1 + A2, |A1 − 3A3| < 3− A2, A2
3 + A2 − A1A3 < 1. (15)

Where A1, A2 and A3 are defined above.

Theorem 7. For the equilibrium point E2

(
0,

1

β
,
σ′

δ′

)
, the discrete system (11) is

conditionally locally asymptotically stable.
Proof. The Jacobian matrix of the system (11) at the equilibrium point

E2

(
0,

1

β
,
σ′

δ′

)
is given by:

JE2 =

b11 b12 b13
b21 b22 0
b31 0 b33

 .
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Where, b11 = exp

(
−a1

hα

α

)
= exp

(
−
(
β(δδ′ − θσ′)− δ′ω

βδ′

)
hα

α

)
,

b12 =

ωσ

(
1−

(
exp

(
−a1

hα

α

)(
a1
hα

α
+ 1

)))
a21

, b13 =

θσ

(
1−

(
exp

(
−a1

hα

α

)(
a1
hα

α
+ 1

)))
a21

,

b21 =

1− exp

(
−γ h

α

α

)(
1 + γ

hα

α

(
δ′ − βσ′

δ′

))
β

(
1 +

(
δ′ − βσ′

δ′

)
exp

(
−γ h

α

α

))2 , b22 =

exp

(
−γ h

α

α

)
(

1 +

(
δ′ − βσ′

δ′

)
exp

(
−γ h

α

α

))2 ,

b31 =

ω′
(

1− exp

(
−δ′h

α

α

))
βδ′

, b33 = exp

(
−δ′h

α

α

)
.

Its characteristic equation is given by:

λ3 +R1λ
2 +R2λ+R3 = 0, (16)

where, R1 = −(b11 + b22 + b33), R2 = b22b33 + b11b33 − b13b31 + b11b22 − b12b21,
R3 = b11b22b33 − b12b21b33 − b13b31b22.
Again, the stability conditions for system (11) at the equilibrium point E2

(
0,

1

β
,
σ′

δ′

)
are defined by using lemma 1. Which states that, the equilibrium point E2

(
0,

1

β
,
σ′

δ′

)
is locally asymptotically stable if and only if the following conditions are satisfied:

|R1 +R3| < 1 +R2, |R1 − 3R3| < 3−R2, R2
3 +R2 −R1R3 < 1, (17)

where, R1, R2, and R3 are defined above.
Now the system (11) has a positive interior equilibrium point under the following

positivity conditions:
1. θσ′ ≥ δδ′

2. γ >

(
δ′ω +

√
∆′
)

θω′
, where ∆′ = (θω′γ + δ′ω)2 + 4θω′γβ (θσ′ − δδ′), and

3. δ >
ω
(
θω′γ + δ′ω +

√
∆′
)

2θω′γβ
.

Therefore, the positive interior equilibrium point of the system (11) under these
positivity conditions is given by: E∗(x, y, z). Where,

x =
1

2

(
γ − δ′ω +

√
∆′

θω′

)
, y =

θω′γ + δ′ω +
√

∆′

2θω′γβ
, z =

1

θ

(
δ − ω(θω′γ + δ′ω +

√
∆′)

2θω′γβ

)
.

Theorem 8. The positive interior equilibrium point E∗(x, y, z) of the model (11)
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under the above mentioned positivity conditions is locally asymptotically stable.
Proof. The Jacobian matrix of the system (8) at the positive interior equilibrium
point E∗(x, y, z) is given by:

JE3 =

c11 c12 c13
c21 c22 0
c31 c32 c33

 .

Where,

c11 = exp

(
−a1

hα

α

)
, c12 =

ωa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ ωσ

(
1− exp

(
−a1

hα

α

))
a21

,

c13 =

θa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ θσ

(
1− exp

(
−a1

hα

α

))
a21

,

c21 =
βγy2 (1− exp(−b1))− yb1c1 exp(−b1)

(c1 exp(−b1) + βγy)2
, c22 =

(γ − x)2 exp(−b1)
(c1 exp(−b1) + βγy)2

,

c31 =

ω′y

(
1− exp

(
−δ′h

α

α

))
δ′

, c32 =

ω′x

(
1− exp

(
−δ′h

α

α

))
δ′

,

c33 = exp

(
−δ′h

α

α

)
, a1 = δ − ωy − θz, b1 = (γ − x) hα

α
, c1 = γ − x− γβy.

Its characteristic equation is given by:

λ3 + r1λ
2 + r2λ+ r3 = 0. (18)

Where, r1 = −

(
exp

(
−a1

hα

α

)
+

(γ − x)2 exp(−b1)
(c1 exp(−b1) + βγy)2

+ exp

(
−δ′h

α

α

))
,

r2 = exp

(
−δ′h

α

α

)(
(γ − x)2 exp(−b1)

(c1 exp(−b1) + βγy)2
+ exp

(
−a1

hα

α

))
−

ω
′y

(
1− exp

(
−δ′h

α

α

))
δ′


θa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ θσ

(
1− exp

(
−a1

hα

α

))
a21


+

(
exp

(
−a1

hα

α

)(
(γ − x)2 exp(−b1)

(c1 exp(−b1) + βγy)2

))

−

ωa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ ωσ

(
1− exp

(
−a1

hα

α

))
a21


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(
βγy2(1− exp(−b1)− yb1c1 exp(−b1)

(c1 exp(−b1) + βγy)2

)
,

r3 =

(
exp

(
−δ′h

α

α

))(
exp(−a1

hα

α

)(
(γ − x)2 exp(−b1)

(c1 exp(−b1) + βγy)2

)

−

ωa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ ωσ

(
1− exp

(
−a1

hα

α

))
a21


(
βγy2(1− exp(−b1)− yb1c1 exp(−b1)

(c1 exp(−b1) + βγy]2

) (
exp

(
−δ′h

α

α

))

+

θa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ θσ

(
1− exp

(
−a1

hα

α

))
a21


ω

′x

(
1− exp

(
−δ′h

α

α

))
δ′

 (
βγy2(1− exp(−b1))− yb1c1 exp(−b1)

(c1 exp(−b1) + βγy)2

)

−

θa1 exp

(
−a1

hα

α

)
(a1x− σ)

hα

α
+ θσ

(
1− exp

(
−a1

hα

α

))
a21


ω

′y

(
1− exp

(
−δ′h

α

α

))
δ′


(

(γ − x)2 exp(−b1)

(c1 exp(−b1) + βγy)2

)
.

Therefore, under the positivity conditions defined above, the positive interior equi-
librium point E∗(x, y, z) is locally asymptotically stable if and only if the following
conditions are satisfied:

|r1 + r3| < 1 + r2, |r1 − 3r3| < 3− r2, r23 + r2 − r1r3 < 1, (19)

where r1,r2 and r3 given above are the coefficients of the characteristic equation
(18).

5. Result Discussion
The stability analysis at the tumor free equilibrium point for the system (6)

and the system (11) shows that both the systems are stable if and only if σ > δγ.
The positive interior equilibrium point is always stable under the positivity condi-
tions defined for both the systems. To explore the effects of constant source rate
of effector cells, we choose two different values of parameter σ and kept other pa-
rameters fixed for both the systems. The effects of σ for these two values on both
the systems is shown graphically in Figure 1 and Figure 2, for five different values
of α. For smaller values of α and larger values of σ, the growth rate of tumor
cells increases slowly as compared to the growth rate of effector cells and IL2 cells,
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which is shown in Figure 1. As the value of α increases and value of σ decreases the
growth rate of tumor cells increases and the system exhibits oscillatory behaviour
with higher peaks. But, after some time intervals the growth rate of tumor cells
starts slowing down and then population growth of tumor cells remains constant.
This analysis shows that there is great role of fractional order parameter α and the
parameter σ on the behaviour of model.
Analysis of Figure 1: We fix the value of σ at 0.1181, and increase α through
the values 0.005, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. Effector cells show growth spurts at
decreasing values of time as α is increased. Tumor cell population, for all values of
alpha tend to vanish as time increases. We observe that, as α increases, the slope
increases and tumor cells tend to vanish quickly. Hence, the growth rate of the
tumor cells can be effectively reduced by increasing α. On the other hand, growth
rate of interleukin-2 cells increases with increase in α. Next, we fix the value of σ
at 0.5 and α is increased through the same values. We observe similar dynamics for
all the three population cells. So, it follows that even with change in the external
source of effector cells, the populations exhibit stable dynamics for different values
of fractional order parameter.
Analysis of Figure 2: Here the discretized model (11) is simulated. Firstly, σ
is fixed at 0.1181, and α is increased through values 0.8, 0.9 and 0.98. All the
three cell populations show similar dynamics with peaks of the effector cells being
slightly different. Next, we change σ to 0.5 and we again observe similar dynamics
which indicates that the cell populations show stable dynamics even with change
in the external source parameter of effector cells and change in α. We observe that
change in slopes of the growth curve of the cell populations does not vary much
in any cases. Hence discretization leads to more stable dynamics than the original
fractional-order model (6).
Analysis of Figure 3: Once again, we simulate the discretized model (11).
Firstly, we fix the value of σ at 0.01, and obtain dynamics for different values
of n = 500, 1000, 2000. We observe same dynamics for all three cell populations.
Next, we vary the value of σ to 0.1181 and observe the same dynamics for all the
three values of n. However, comparing these graphs with the previous graphs, we
observe variation in the peak values of effector cell population. Next, we change the
value of σ to 0.25, then to 0.5 and lastly to 0.75. We observe that the populations
of tumor cells and interleukin-2 cells show no change in their dynamics while the
peak values attained by the effector cells shows decline as σ increases. Hence, we
conclude that after discretization, variation in the external source of effector cells
has no effect on the dynamics of tumor cells and interleukin-2 cells, but only on
effector cells. We also observe that the tumor cells are vanishing with the same
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Figure 3: Dynamical behaviour of discrete model (11) for discretized-time param-
eter n = 2000, 1000, and 500, by varying the parameter σ. The other parameter
values are given in Table 1 with initial conditions (E, T, IL2) = (1.5, 1, 10). The
population growth of effector cells (E(n)), tumor cells (T (n)) and Imterleukin-2
(IL2) cells is shown by green line, red line and blue line respectively.
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decay rate for all values of σ and this establishes the effectiveness of the proposed
system to limit the growth rate of tumor cells in all types of systems.

6. Conclusion
In this paper, we have studied three dimensional tumor-immune interaction

model defined by the system of fractional-order differential equations (6) and (7)
developed by using Caputo and conformable fractional order derivatives respec-
tively. On system (7), the discretization process is applied to find the discrete ver-
sion of the system (6) by using piecewise constant approximation method, which
is represented by system (11).
In this paper, we have applied conformable fractional-order derivative in order to
study the behaviour of tumor-immune interaction system without facing any dif-
ficulties which the other fractional-order derivatives are facing while dealing with
biological systems. The conformable fractional order derivative involves the con-
cept of long run memory, which is best suitable for understanding the behaviour
of tumor-immune interaction models. Graphical time series analysis for both the
systems is done, which shows that both system exhibit different dynamical be-
haviours. The time series analysis shows that there is sudden increase in the
population growth of tumor cells initially, but as the time increases, the popu-
lation growth of tumor cells starts decreasing and then after some time becomes
constant. Furthermore, the conformable fractional derivative can be applied to
other tumor-immune interaction models with some more complex behaviours. We
can also study the behaviour of tumor-immune interaction system by considering
the population growth of other effector cells especially macrophages by using con-
formable fractional derivative.
The observations of the stable dynamics for all the cell populations of fractional
order tumor model where effector cells increase, tumor cells decay to zero while
interleukin-2 cells stay within a fixed range for all values of fractional order param-
eter establishes effectiveness of interleukin-2 cells in the model. Further, discretiza-
tion leads to more stable dynamics as we observe that along with tumor cells and
interleukin-2 cells, effector cells population too shows same dynamics even after
varying sigma and fractional order parameter. Hence, our numerical simulations
confirm with our analytical findings.

References

[1] Abdeljawad T., On conformable fractional calculus, J Comput Appl Math,
279 (2015), 57-66.

[2] Ahmed E., Hashish A., Rihan FA, On fractional order cancer model, J Frac-
tional Calc Appl, 3 (2012), 1-6.



412 South East Asian J. of Mathematics and Mathematical Sciences

[3] Al-Shomrani and Abdelkawy, Numerical simulation for fractional-order dif-
ferential system of a Glioblastoma Multiforme and Immune system, Advances
in Difference Equations, (2020) 2020, 516.

[4] Atangana A., A novel model for the lassa hemorrhajic fever: deathly disease
for woman, Neural Comput Applic, 26 (2015), 1895-903.

[5] Baleanu D., Jajrmi A., Bonyah E., Hajipour M., New aspects of poor nu-
trition in the life cycle within the fractional calculus, Adv Differ Eqs, 230
(2018).

[6] Belloma N., Bellouquid A., Dellitala M., Mathematical topics on the mod-
elling of multicellular systems in competition between tumor and immune
cells, Math Models Methods Appl Sci, 12 (2004), 1683-1733.

[7] Belloma N., Bellouquid A., Nieto J., Solar J., Multiscale biological tissue
models and flux limited chemotaxis from binary mixtures of multicellular
growing systems, Math. Models Methods Appl Sci, 20 (2010), 1179-1207.

[8] Bolton L., Cloot AH, Schoombie SW, Slabbert JP, A proposed fractional
order gompertz model and its applications to tumor growth data, Math Med
Biol, 32 (2) 2015, 187-207.

[9] Camouzis, E., Ladas, G., Dynamics of third-order rational difference equation
with open problems and conjectures, Chapman and Hall, New York 2008.

[10] Chen WC, Nonlinear dynamics and chaos in a fractional order financial sys-
tem, Chaos, Solitons and Fractals, 36 (5) (2008), 1305-14.

[11] Chung WS, Fractional newton mechanics with conformable fractional deriva-
tive, J Comput Appl Math, 290 (2015), 150-58.

[12] Ercan B., Ozturk I., Kartal S., Dynamical behaviour of fractional order tumor
model with caputo and conformable fractional derivative, Chaos Solitons and
Fractals, (2019). Doi:10.1016/j.chaos.2019.03.032.

[13] Ferdi Y., Some applications of fractional order calculus to design digital filters
for biomedical signal processing, J Mech Med Biol, 12 (2) ((2012), 124008.

[14] Gokdogan A., Yildirim A., Merdan M., Solving a fractional order model of
HIV infection of CD4+ T cells, Math. Comput Modelling, 54 (2011), 2132-
2138.



Analysis of Tumor-immune Response Model ... 413

[15] Gopalsamy K., Liu P., Persistence and global stability in a population model,
J Math Anl Appl, 224 (1988), 59-80.

[16] Kartal S., Gurcan F., Discretization of conformable fractional differential
equations by a piecewise constant approximation, Intl J Comput Math, (2018).
doi:10.1080/00207160.2018.1536782.

[17] Khalil R., Horani MA, Yousuf A., Sababheh M., A new definition of fractional
derivative, J Comput Appl Math, 264 (2014), 65-70.

[18] Kirschner D., Paneta J., Modelling immunotherapy of the tumor immune
interaction, J Math. Biol, 37 (1998), 235-252.

[19] Laskin N., Fractional schrdinger equation, Phys. Rev E., 66 (2002), 056108.

[20] Li and Li., Long-time behaviour of a tumor-immune system competition
model perturbed by environmental noise, Advances in Difference Equations
(2017) 2017, 58.

[21] Mahmoud A. M. A., Ahmad I. I., Farah A. A. and Mohd H. M., Bifurcations
and chaos in a discrete SI epidemic model with fractional order, Advances in
Difference Equations, (2018) 2018, 44.

[22] Nazir et al., Fractional dynamical analysis of measles spread model under vac-
cination corresponding to nonsingular fractional order derivative, Advances
in Difference Equations, (2020) 2020, 171.

[23] Padder, M. Ausif, Afroz Afroz, and Ayub Khan, Stability and Bifurcation
Analysis of Tumor–Macrophages Response Model and Inhibitory Role of Treg
Cells, Iranian Journal of Science and Technology, Transactions A: Science, 46,
6 (2022), 1681-1695.

[24] Padder, M. Ausif, Afroz Afroz, and Ayub Khan, Solving and Analysing Tu-
mor–Immune Interaction Model by Generalized Differential Transformation
Method, International Journal of Applied and Computational Mathematics,
8, 2 (2022), 1-14.

[25] Padder, M. A., and A. Khan, Analysis of Tumor-Immune Response Model
by Differential Transformation Method, Journal of Scientific Research, 14, 1
(2022), 243-256.



414 South East Asian J. of Mathematics and Mathematical Sciences

[26] Porwal, Pradeep, P. Ausif, and S. K. Tiwari, An sis model for human and bac-
terial population with modified saturated incidence rate and logistic growth,
International Journal of Modern Mathematical Science, 12, 2 (2013), 98-111.

[27] Perez JES, Gomez-Aguilar JF, Baleanu D., Tchier F., Chaotic attractors
with fractional conformable derivatives in the Liouville-caputo sense and its
dynamical behaviours, Entropy, 20 (5) (2018), 384.

[28] Pinto CMA, Machado JT., Fractional model for malaria transmission under
control strategies, Comput Math Appl, 66 (5) (2013), 908-16.

[29] Preziosi L., Cancer modelling and simulation, Champan and Hal, CRC Press,
2013.

[30] Rihan FA, Numerical modelling of fractional order biological systems.In Ab-
stract and Applied Analysis 2013 (2013), 1-11.

[31] Rihan FA, Hashish A., Fatima AM, Mohamud SK, Ahmed E., Riaz MB,
Yafia R., Dynamics of tumor- immune system with fractional order, J Tumor
Res, 2 (109) (2016), 1.1000109.

[32] Rosales JJ, GodInez FA, Banda V., Valencia GH., Analysis of the drude
model in view of the conformable derivative, Optik, 178 (2019), 1010-15.

[33] Spanos PD, Malara G., Random variation of nonlinear continua endowed
with fractional derivative elements, Procedia Eng, 199 (2017), 18-27.

[34] Sweilam et al., Optimal control for cancer treatment mathematical model us-
ing Atangana–Baleanu–Caputo fractional derivative, Advances in Difference
Equations (2020) 2020, 334.

[35] Tarasov VE., Fractional vector calculus and fractional Maxwell’s equations,
Ann Phys. (N Y), 323 (11) (2008), 2756-78.

[36] Yousef et al., Mathematical modelling of the immune-chemotherapeutic treat-
ment of breast cancer under some control parameters, Advances in Difference
Equations, (2020) 2020:696.

[37] Yuste SB, Acedo L., Linderberg K., Reaction front in a+ b→ c reaction sub
diffusion process, Phys Rev E, 69 (2004), 036126.

[38] Zhou et al., Stability and Hopf bifurcation analysis in a fractional-order de-
layed paddy ecosystem, Advances in Difference Equations, (2018) 2018, 315.


