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Abstract: For any graph G(V, E), a function f : V (G) → {0, 1, 2, 3} is called
Double Roman dominating function (DRDF) if the following properties holds,

1. If f(v) = 0, then there exist two vertices v1, v2 ∈ N(v) for which f(v1) =
f(v2) = 2 or there exist one vertex u ∈ N(v) for which f(u) = 3.

2. If f(v) = 1, then there exist one vertex u ∈ N(v) for which f(u) = 2 or
f(u) = 3.

The weight of DRDF is the value w(f) =
∑

v∈V (G) f(v). The minimum weight
among all double Roman dominating function is called double Roman domination
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number and is denoted by γdR(G). In this article we initiated research on double
Roman domination number for middle graphs. We established lower and upper
bounds and also we characterize the double Roman domination number of middle
graphs. Later we calculated numerical value of double Roman domination number
of middle graph of path, cycle, star, double star and friendship graphs.

Keywords and Phrases: Roman Domination, Double Roman Domination, Mid-
dle Graph.

2020 Mathematics Subject Classification: 05C69, 05C38.

1. Introduction
Let G(V, E) be a simple finite, and undirected graph with vertex set V =

V (G) and edge set E = E(G). The cardinality of the vertex set is order and the
cardinality of the edge set is size of the graph G. The number of edges incident
on the vertex v is called degree of the vertex v and is denoted by d(v). The
minimum and maximum degree of G is denoted by δ = δ(G) and ∆ = ∆(G)
respectively. If the degree of each vertex is r then the graph is called r-regular
graph i.e. if ∀v ∈ V (G), d(v) = r. For any vertex v ∈ V, the open neighborhood
N(v) = {u ∈ V (G) \ uv ∈ E(G)} and the closed neighborhood N [v] = N(v) ∪ v.
A connected acyclic graph is called tree. We denote Kn for complete graph with n
vertices, Cn for a cycle of length n, Pn for a path of length n. The line graph L(G)
of a given graph G is a graph whose vertex set V (L(G)) = E(G) and two vertices
e1, e2 ∈ V (L(G)) are adjacent if e1 and e2 has common vertex in G. For notation
and graph theory terminology we refer [1].

R. A. Beeler et al. introduced the double Roman domination number in order
to give a strong protection to an empty location and a location with one legion can
be defended by two legions. A function f : V (G)→ {0, 1, 2, 3} is said to be double
Roman dominating function (DRDF) if the following properties holds,

1. If ∀v ∈ V (G) with f(v) = 0, then there exist two vertices v1, v2 ∈ N(v) such
that f(v1) = f(v2) = 2 or one vertex u ∈ N(v) such that f(u) = 3.

2. If ∀x ∈ V (G) with f(x) = 1, then there exist y ∈ N(y) such that either
f(y) = 2 or f(y) = 3.

The summation of the function value of double Roman dominating function is
called weight of DRDF. The minimum weight among all the DRDF is called double
Roman domination number of a given graph G and is denoted by γdR. The double
Roman dominating function with a minimum weight is called γdR- function of
graph G. The DRDF of a graph G partitioned the vertex set by V0, V1, V2, V3
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where Vi = {v ∈ V (G)|f(v) = i}. Hence the DRDF f can be represented by the
vertex partition (V0, V1, V2, V3) and clearly weight w(f) = |V1|+ 2|V2|+ 3|V3|.

Let G be a given graph, the middle graph of G denoted by M(G) is the graph
obtained by subdividing each edge of G exactly once and joining all the adjacent
vertices of G. Precisely the vertex set and the edge set of M(G) is defined as
follows,

� V (M(G)) = V (G) ∪ E(G).

� Two vertices u and v of M(G) are adjacent if one of the following holds,

– u, v ∈ E(G) and u, v are adjacent in G.

– u ∈ V (G), v ∈ E(G), and u, v are incident in G.

If G is a graph of order n and size m then the middle graph M(G) is of order n+m
and size 2m+ |E(L(G))|.

We noted the following concepts to study the double Roman domination num-
ber in the class of middle graph. For v ∈ V (G), the open neighborhood of vertex
v in the middle graph M(G) is defined as {e ∈ E(G)|e is incident with u} and is
denoted by NM(v). For e ∈ E(G), the open neighborhood of an edge e in the middle
graphM(G) is defined as {x ∈ V (G)∪E(G)| x is either adjacent or incident with e}
and is denoted by NM(e). The closed neighborhood of element of G in the middle
graph of G is written as NM [x] = NM(x) ∪ {x}. The double Roman dominating
function of a middle graph of a given graph G is a function f : V (G) ∪ E(G) →
{0, 1, 2, 3} satisfying the following conditions,

1. For every element v ∈ V (G)∪E(G) with f(v) = 0 is adjacent to two elements
x, y ∈ V (G) ∪ E(G) such that f(x) = f(y) = 2 or adjacent to one element
z ∈ V (G) ∪ E(G) such that f(z) = 3.

2. For every element v ∈ V (G) ∪ E(G) with f(v) = 1 is adjacent one element
x ∈ V (G) ∪ E(G) such that either f(x) = 2 or f(x) = 3.

The weight of double Roman dominating function f of a middle graph G is w(f) =
Σu∈V ∪E|f(u)|. The minimum weight of double Roman dominating function of a
middle graph G is called double Roman domination number of M(G) and is de-
noted by γ∗dR(G). Clearly γ∗dR(G) = γdR(M(G)) for any graph G. A double Roman
dominating function of M(G) can be ordered partitioned into (V0∪E0, V1∪E1, V2∪
E2, V3∪E3) where Vi = {v ∈ V (G) | f(v) = i}, and Ei = {e ∈ E(G) | f(e) = i}.
Here weight of MRDF is w(f) = |V1 ∪ E1|+ 2|V2 ∪ E2|+ 3 | V3 ∪ E3|.
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2. Results

Proposition 2.1. For any graph G, γ∗dR = 2γ(M(G)) if and only if G = Kn.
Proof. If G = Kn, then γ(M(G)) =| V (G) | and f is a γ∗dR- function of Kn and is
defined as f(x) = 2,∀x ∈ V (Kn). Hence γ∗dR(G) = 2γ(M(G)).
On the other hand consider γ∗dR(G) = 2γ(M(G)). Let us assume that G contains
an edge uv and let f be a γ∗dR function such that f(uv) = 3, f(u) = 0, f(v) = 0
and f(x) = 2 otherwise. Obviously γ∗dR(G) ≤ 2n− 3. Now, let S be a dominating
set of the middle graph G and S contains uv and all elements other than u and v.
Clearly, γ(M(G)) ≤ n− 1. Which is contradiction as γ∗dR(G) = 2γ(M(G)).

Proposition 2.2. For any γ∗dR- function of a given graph G, no vertex or no edge
is assigned by the value 1.
Proof. Let f be γ∗dR- function of a given graph G. Let us assume that for some
x ∈ V (G) ∪ E(G), f(x) = 1. Which implies from the definition of double Roman
dominating function there exist an element y ∈ V (G) ∪ E(G) such that either
f(y) = 2 or f(y) = 3. If f(y) = 3, then we obtain another double Roman dominat-
ing function strictly lesser weight than f which can be obtained by reassigning 0 to
x. This contradicts our assumption as f is γ∗dR- function of G. If f(y) = 2, then we
can easily define another double Roman dominating function of middle graph of G,
g : V (G)∪E(G)→ {0, 1, 2, 3} such that g(v) = f(v) ∀ v ∈ V (G)∪E(G)−{x, y},
g(x) = 0, g(y) = 3. Clearly weight of both the functions are equal. Hence no
vertex or edge need to assign the value 1.

Proposition 2.3. For any γ∗dR- function of given graph G, no edge is assigned by
the value 2 and no vertex is assigned by the value 3.
Proof. Let f be γ∗dR- function of a given graph G. Suppose that for some
e = uv ∈ E(G), f(e) = 2. This implies that the end vertices u and v of e
and adjacent edges of u and v can take the function values either 1 or 2. Which
leads the function value greater than f .
To prove no vertex is assigned by the value 3, in middle graph clearly the degree of
a vertex is lesser than the degree of any incident edge of that vertex. Hence every
edge e = uv covers the vertices u, v, NM(u) and NM(v). Hence, in the double
Roman dominating function no vertex is assigned by the value 3.

Proposition 2.4. Let f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2, V3 ∪ E3) be a γ∗dR function
then,

1. V1 ∪ E1 = ∅

2. V2 ∪ E2 ⊂ V (G) and V3 ∪ E3 ⊂ E(G)
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3. No edge joins from V2 ∪ E2 to E3

4. The subgraph induced by V2 ∪ E2 has a maximum degree 1.

Proposition 2.5. For a given graph G and f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) is a
γ∗R- function of G, then γ∗dR(G) ≤ 2|V1 ∪ E1|+ 3|V2 ∪ E2|.
Proof. Let f = (V0∪E0, V1∪E1, V2∪E2) be a γ∗R- function of G. Now let us define
g : V (G)∪E(G)→ {0, 1, 2, 3} as ∀x ∈ V0∪E0 g(x) = 0, ∀y ∈ V1∪E1 g(y) = 2 and
∀z ∈ V2 ∪ E2 g(z) = 3. Thus if ∀u ∈ V (G) ∪ E(G) with g(u) = 0 then there exist
v ∈ NM(u) such that g(u) = 3. Hence g is double Roman dominating function of
middle graph G and γdR(G) ≤ 2|V1 ∪ E1|+ 3|V2 ∪ E2|.

To prove the equality of the above proposition first we would like find the double
Roman domination number for middle graph of stars.

Proposition 2.6. For any star graph K1, n−1 on n ≥ 3 vertices,

γ∗dR(K1, n−1) = 2n− 1.

Proof. Let the vertex set and edge set of star graph is V (K1, n−1) = {v0, v1, . . . , vn−1}
and E(K1, n−1) = {v0v1, v0v2, . . . , v0vn−1}. Now the corresponding vertex and edge
set of middle graph of star K1,n−1 is V (M(K1, n−1)) = V (K1, n−1) ∪ A where
A = {ai, 1 ≤ i ≤ n − 1} and E(M(K1, n−1)) = {a1v1, a2v2, . . . , anvn−1} ∪ X ∪ Y
where X = {v0ai, 1 ≤ i ≤ n− 1}, Y = {aiaj, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1}. Since
the vertex set V ′ = {v0, a1, a2, . . . , an−1} forms a complete graph γdr(〈V ′〉) = 3
(assign 3 to any of one the vertex and remaining all vertices 0 ). Let us define
a γ∗dR function f such that V0 ∪ E0 = {v0, v1} ∪ {ei, 2 ≤ i ≤ n − 1}, V1 ∪ E1 =
∅, V2 ∪ E2 = {vi, 2 ≤ i ≤ n− 1} and V3 ∪ E3 = {e1}. Hence

γ∗dR(K1, n) = 2|V2 ∪ E2|+ 3|V3 ∪ E3| = 2(n− 2) + 3 = 2n− 1.

Figure 1: Middle graph of star K1,4
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The equality of the proposition holds for family of stars K1,n−1. Let f =
(V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) be the middle Roman dominating function of K1,n−1.
Since |V1 ∪ E1| = n− 2, V2 ∪ E2 = 1. Let g = (V ′0 ∪ E ′0, V ′1 ∪ E ′1, V ′2 ∪ E ′2, V ′3 ∪ E ′3)
be the double Roman dominating function of the middle graph of K1,n−1, here
V ′2 ∪ E ′2 = n− 2 and V ′3 ∪ E ′3 = 1 γ∗dR(K1,n−1) = 2n− 1.

2|V1 ∪ E1|+ 3|V2 ∪ E2| = 2(n− 2) + 3(1) = γ∗dR(K1,n−1).

Proposition 2.7. Let G be a graph. Then γ∗dR(G) ≤ 2γ∗R(G).
Proof. Let f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) be a γ∗R function of graph G. Since
γ∗R = |V1 ∪E1|+ 2|V2 ∪E2| by proposition 2.2, γ∗dR(G) ≤ 2|V1 ∪E1|+ 3|V2 ∪E2| =
γ∗R(G) + |V1 ∪ E1|+ |V2 ∪ E2| ≤ 2γ∗R(G).

Proposition 2.8. For any graph G, γ∗R(G) < γ∗dR(G).

Theorem 2.9. For any graph G, γ∗dR(G)− 3 ≤ γ∗dR(G+ e) ≤ γ∗dR(G) + 3.
Proof. Let f be a γ∗dR- function of G and e = uv. Obviously we can extend f to
double RDF of middle graph of G+ e by assigning f(e) = 3 and f(u) = f(v) = 0.
Hence γ∗dR(G+ e) ≤ γ∗dR(G) + 3.
Let f be a γ∗dR(G+ e)- function and e = uv. Now here arises two cases.
Case 1: If f(e) = 0, then the function f : V (G) ∪ E(G)→ {0, 1, 2, 3} is a double
RDF of middle graph G. This implies γ∗dR(G)− 3 ≤ γ∗dR(G) ≤ γ∗dR(G+ e).
Case 2: If f(e) 6= 0 obviously f(e) must be equal to 3. Now let us define a
function g : V (G) ∪ E(G) → {0, 1, 2, 3} such that g(u) = g(v) = 0 and g(x) =
f(x) ∀x ∈ V (G) ∪ E(G). Now g is a double RDF of middle graph with weight
γ∗dR(G+ e) + f(e). Thus γ∗dR(G)− 3 ≤ γ∗dR(G)− f(e) ≤ γ∗dR(G+ e).

Theorem 2.10. For any graph G with maximum degree ∆ ≥ 2,

γ∗dR(G)−∆(G) + 2 ≤ γ∗dR(G \ v) ≤ γ∗dR(G).

Proof. Let f be a γ∗dR function of G \ v. We define a function g : V (G)∪E(G)→
{0, 1, 2, 3} such that g(v) = 3, g(ei) = 0 for all ei ∈ NM(v) and g(u) = f(u)
otherwise. Clearly function g is a DRDF of middle graph of G with weight at most
γ∗dR(G)−∆(G) + 2. Hence γ∗dR(G)−∆(G) + 2 ≤ γ∗dR(G \ v).
Now we need to prove that γ∗dR(G\v) ≤ γ∗dR(G). Let f be a γ∗dR function of G. Let
us define a function h : V (G\ v)∪E(G\ v)→ {0, 1, 2, 3} by h(u) = 1 if u ∈ NM(v)
and h(w) = f(w) otherwise. Clearly h is double RDF of middle graph of G with a
weight lesser than the weight of f .

Proposition 2.11. For any graph G, γ∗dR(G) = 3 if and only if G = P2.
Proof. Let G = P2. Clearly, γ∗dR(P2) = 3. On the other hand, let us assume that
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G 6= P2 then G must be either K2 or n ≥ 3. In both the cases γ∗dR(G) ≥ 4 and
which contradicts our assumption. Hence G = P2.

Theorem 2.12. Let G by a connected graph of order n ≥ 3 and size m. Then
γ∗dR(G) = 2n− 1 if and only if ∆(M(G)) = m+ n− 1.
Proof. Let f = (V0∪E0, V1∪E1, V2∪E2, V3∪E3) be a γ∗dR function of given graph
G and V1 ∪ E1 = ∅ (by Theorem ). By the definition double Roman dominating
function of middle graph γ∗dR(G) = 2|V2 ∪ E2| + 3|V3 ∪ E3| ≥ 3. If ∆(M(G)) =
m+ n− 1 then clearly it must be an edge e = uv of G and degree of e in M(G) is
maximum i.e., ∆(M(G)) = d(e) = m+ n− 1. Since it covers vertices u, v and all
edges of G, γ∗dR(G) = 3+2(n−2) = 2n−1. On the other hand let γ∗dR(G) = 2n−1
implies 2|V2 ∪ E2|+ 3|V3 ∪ E3| = 2n− 1.
Case 1: If |V3 ∪ E3| = 1 then for any e = uv such that V3 ∪ E3 = {e} . Clearly,
2|V2 ∪ E2|+ 3|V3 ∪ E3| = 2|V2 ∪ E2|+ 3 = 2(n− 2) + 3. Implies |V2 ∪ E2| = n− 2
which means ∀x ∈ V (G) − {u, v} such that x is adjacent to either u or v. Hence
∆(M(G)) = d(e) = m+ n− 1.
Case 2: If |V3 ∪ E3| > 1 then there exist at least two edges e1 and e2 such that
f(e1) = f(e2) = 3. Suppose e1 and e2 are adjacent edges then ∆(M(G)) ≤ m+n−2
and if they are non adjacent edges then ∆(M(G)) ≤ m+ n− 3, which contradicts
our assumption.

3. Double Roman domination and domination number of Middle graph

In this section we obtained upper and lower bounds for double Roman domi-
nation number of middle graphs in terms of domination number of middle graph.

Proposition 3.1. For any graph G, 2γ(M(D)) ≤ γ∗dR(G) ≤ 3γ(M(D)).
Proof. Let f = (V0 ∪ E0, V2 ∪ E2, V3 ∪ E3) be a γ∗dR function of G and let S be
a γ set of middle graph of G. Clearly f = (∅, ∅, S) is double Roman dominating
function of middle graph of G which implies γ∗dR(G) ≤ 3γ(M(D)).
Next to prove the upper bound, S = (V1 ∪ E1) ∪ (V2 ∪ E2) is a dominating set
of M(G) and hence γ(M(G)) ≤ |V2 ∪ E2| + |V3 ∪ E3|. From proposition 2.2,
γ∗dR(G) = 2|V2 ∪ E2|+ 3|V3 ∪ E3| ≥ 2(|V2 ∪ E2|+ |V3 ∪ E3|) ≥ 2γ(M(G)).

Theorem 3.2. Let T be a tree of order n ≥ 2 then,

γ∗dR(T ) ≤ 3(n− 1).

Proof. Let S is dominating set of M(T ). From [2] S ⊆ E(T ), implies |S| ≤
|E(T )| = n− 1. From proposition,

γ∗dR(T ) ≤ 3γ(M(D)) ≤ 3(n− 1)
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Theorem 3.3. Let T be a tree of order n ≥ 2 then,

γ∗dR(T ) ≥ 3|leaf(T )|

where leaf(T ) = {v ∈ V (G)|d(v) = 1}.
Theorem 3.4. If G be any graph of order n and size m, then

γ∗dR(G) ≤ 2(m+ n)− 2∆(M(G)) + 1.

Theorem 3.5. For any tree T of order n ≥ 3, γ∗dR ≤ 3dn
3
e.

Proof. We prove the result by induction on n. If T = P3 obviously γ∗dR(P3) = 3 ≤
3dn

3
e.

Now consider tree T of order n ≥ 4. Let us assume the result is holds good for all the
tree T ′ of order n′ < n i.e., γ∗dR(T ′) ≤ 3dn′

3
e. Let f : V (T ′)∪E(T ′)→ {0, 1, 2, 3} be

a γ∗dR- function of T ′. If T = K1,n−1 is a star then clearly γ∗dR(T ) = 2n+ 1 ≤ 3dn
2
e.

Theorem 3.6. For any graph G of order n and size m,

5 ≤ γ∗dR(G) + γ∗dR(G) ≤ n(n+ 1)/2 + 3.

Proof. Suppose G is a graph of order 2 then γ∗dR(G) ≥ 3. The equality holds,
only when M(G) has a dominating vertex. Since, the graph G and its complement
G does not contain domination vertices, we have γ∗dR(G) + γ∗dR(G) ≥ 5. Equality
holds if and only if G or G has an edge e = uv with d(u) + d(v) = n − 1 and its
complement has an edge e′ = xy with d(x) + d(y) = n− 2.

Now we claim that γ∗R(G) + γ∗R(G) ≤ m + n + 3. From the above proposition
2.8

γ∗R(G) + γ∗R(G) ≤ (n+m−∆(G) + 1) + (n(n− 1)/2−m−∆(G) + 1)

= n+ n(n− 1)/2−∆(G) + δ(G) + 3

≤ n(n+ 1)/2 + 3.

Definition 3.1. A double star graph S1,n,n is obtained from the star graph K1,n by
replacing every edge with a path of length 2.

Proposition 3.7. For any double star graph S1,n,n on 2n+ 1 vertices with n ≥ 2,

γ∗dR(S1,n,n) = 3(n+ 1).

Proof. For notation, let us consider V (S1,n,n) = {v0, v1, v2, . . . , vn, u1, u2, . . . , un}
and E(S1,n,n) = {v0vi, viui, | 1 ≤ i ≤ n}. The vertex and edge set of middle
graph of S1,n,n is V (M(S1,n,n)) = V (S1,n,n) ∪ A, Where A = {v′i, u′i | 1 ≤ i ≤ n}
and E(S1,n,n) = {v0v′i, v′ivi, viu′i, u′iui, v′iu′i | 1 ≤ i ≤ n} ∪ E(Kn+1), where Kn+1 is
complete graph with vertex set V (Kn+1) = {v0, v′1, v′2, . . . , v′n}.
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Figure 2: Middle graph of double star S1,4,4

If f : V (M(S1,n,n))→ {0, 1, 2, 3} is DRD function of middle graph of S1,n,n with
minimum weight. Since, middle graph of S1,n,n contains n independent P3 and a
complete graph Kn+1. Hence, γ∗dR(S1,n,n) = 3n+ 3 = 3(n+ 1).

Proposition 3.8. For a path of length n ≥ 2, γ∗dR(Pn) = n+ 1.
Proof. Let Pn = v1v2v3 . . . vn be a path of length n. The middle graph of path Pn

divides each edge v1v2, v2v3 . . . vn−1vn by adding new vertices x1, x2 . . . xn−1 respec-
tively and which forms a path P2n−1 = v1x1v2x2v3x3 . . . xn−1vn of length 2n − 1.
Hence the middle graph M(Pn) = P2n−1 +Qn−1 where Qn−1 = x1x2 . . . xn−1.
Now let us prove the result by induction on n. One can easily obtain γ∗dR(P3) =
4, γ∗dR(P4) = 5, γ∗dR(P5) = 6.
Let us assume the result holds for n = m. We claim that γ∗dR(Pm+1) = m + 2.
Consider a double Roman dominating function f : V (M(Pn)) → {0, 1, 2, 3} with
a vertex partition V0 ∪ E0 = {x1, v2, v3, x3, v4, x4 . . . }, V1 ∪ E1 = ∅, V2 ∪ E2 =
{v1, v4, v8, . . . , } and V3 ∪E3 = {x2, x5, x8, . . . }. Then, the double Roman domina-
tion number is γ∗dR(Pm+1) = γ∗dR(P (m))+f(vm+1)+f(xm). Suppose xm−1 ∈ V2∪E2,
then clearly f(xm) = 0 and f(vm+1) = 1. On the other hand if xm−1 ∈ V0 ∪ E0

then obviously f(vm) = 1. Now assign f(xm) = 2 f(vm) = 0 and f(vm+1) = 0.
Hence the proof.

In figure 3, the vertices assigned with 0, 2 and 3 are shaded by white, gray and
black colors respectively.
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Figure 3: γ∗dR function for path P7, P8 and P9

Proposition 3.9. For a cycle of length n ≥ 3, γ∗dR(Cn) = n.
Proof. Let Cn = v1v2 . . . vnv1 be a cycle of length n. Let f be a γ∗R function of a
path Pn with minimum weight. Clearly the E(M(Cn)) = E(M(Pn))∪{v1xn, xnvn}.
Here, we get two cycles C2n = v1x1v2x2 . . . vnxn and Cn = x1x2 . . . xn. Hence the
middle graph M(Cn) = C2n ∪Cn. Now let f be a γ∗dR function for the path Pn and
we can extend this function for the cycle Cn say g : V (M(Cn))→ {0, 1, 2, 3}. Here
arises two cases.
Case 1: If f(xn−1) = 0 then f(vn) = 2. Now the double Roman dominating func-
tion is defined as g(xn) = 3, g(v1) = g(vn) = 0, andg(v) = f(v) ∀v ∈ V (M(Cn)).
Case 2: If f(xn−1) = 3 then f(vn) = 0 and the double Roman domination number
is obtained by reassigning 0 to v1 and 3 to xn, then and Cn is a closed path of
length n. Hence γ∗R(Cn) = n.

Corollary 3.10. For any wheel graph Wn where n ≥ 3, γ∗R(Wn) = n− 1.

Proposition 3.11. For any complete bipartite graph Km,n with 1 ≤ m ≤ n,

γ∗dR(Km,n) = m+ 2n.

Proof. Let us assume that, V (Km,n) = {v1, v2, . . . vm, u1, u2, . . . , un} and E(Km,n) =
{viuj = xij|}. Clearly V (M(Km,n)) = V (Km,n) ∪ E(Km,n) and E(M(Km,n)) =
E(Km) ∪ {vixij|1 ≤ i ≤ m and 1 ≤ j ≤ n} ∪ {ujxij|1 ≤ i ≤ m and 1 ≤ j ≤ n}
where X〉 = {}. Let us define f : V (Km,n) ∪ E(Km,n)→ {0, 1, 2, 3} with minimum
weight by f(xij) = 3 for i = j , f(NM(xij)) = 0 and f(uj) = 2 for n−m ≤ j ≤ n.
Hence γ∗dR(Km,n) = 3m+ 2(n−m) = m+ 2n.
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Definition 3.2. The friendship graph Fn of order 2n+ 1 is obtained by joining n
copies of the cycle C3 with a common vertex.

Proposition 3.12. Let Fn be a friendship graph with n ≥ 2 then,

γ∗dR(Fn) = 3n+ 2.

Proof. Let vertex set V (Fn) = {v0, v1, . . . v2n} and edge set E(Fn) = {ei =
v0vi|1 ≤ i ≤ 2n} ∪ {v1v2, v3v4, . . . , v2n−1v2n}. Clearly the middle graph of Fn form
a complete graph K2n+1 with the vertex set v0 ∪ {ei = v0vi|1 ≤ i ≤ 2n}. Hence,

γ∗dR(Fn) = γdR(K2n+1) + (n− 1)γdR(C3) + 2

= 3 + (n− 1)3 + 2 = 3n+ 2.

Figure 4: γ∗dR function for the friendship graph F4.
Definition 3.3. [5] The corona graph G ◦ K1 also denoted by cor(G), of a graph
G is the graph of order 2 | V (G) | obtained by adding a pendent edge to each vertex
of G. The 2-corona G ◦ P2 of G is the graph of order 3 | V (G) | obtained by
adding a path of length 2 to each vertex of G.

Theorem 3.13. For any connected graph G of order n ≥ 2,

γ∗dR(G ◦K1) ≤ 3n.

Proof. Let G be a graph with vertex set V (G) = {v1, . . . , vn}. Clearly V (G◦K1) =
{v1, . . . v2n} and E(G ◦K1) = {v1vn+1, . . . vnv2n} ∪ E(G). Then V (M(G ◦K1)) =
V (G ◦ K1) ∪M ∪ A, Where M = {mi(n+i) | 1 ≤ i ≤ n} and A = ∪{aij | vivj ∈
E(G)}.
The MRDF (A, ∅, ∅,M) has weight 3 | M |= 3n, and hence γ∗R(G ◦K1) ≤ 3n.



380 South East Asian J. of Mathematics and Mathematical Sciences

4. Conclusion
In this paper we established bounds for double Roman domination number of
middle graph. And also calculated the exact value of double Roman domination
number of middle graph of path, Cycle, Star, Double star etc. Furthermore, char-
acterization of double Roman domination of middle graph is studied.
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