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Abstract: Given a distribution of pebbles on the vertices of a connected graph
G, a pebbling move is defined as the removal of two pebbles from some vertex
and the placement of one of those pebbles on an adjacent vertex. The t - pebbling
number of G is the smallest number, ft(G) such that from any distribution of ft(G)
pebbles, it is possible to move t pebbles to any specified target vertex by a sequence
of pebbling moves. The detour pebbling number of a graph f ∗(G) is the smallest
number such that from any distribution of f ∗(G) pebbles, it is possible to move
a pebbles to any specified target vertex by a sequence of pebbling moves using a
detour path. In this paper, we find the detour pebbling number for some Cartesian
product graphs and also the detour t - pebbling number for those cartesian product
graphs.
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1. Introduction

Graph Pebbling has its origin in Number Theory. Chung introduced graph
pebbling into literature in [1].

Let G be a simple connected graph with vertex set V (G) and edge set E(G).
Consider a connected graph with fixed number of pebbles distributed on its vertices.
A pebbling move consists of the removal of two pebbles from a vertex and placement
of one of those pebbles at an adjacent vertex. The pebbling number of a vertex v in
a graph G is the smallest number f(G, v) such that for every placement of f(G, v)
pebbles, it is possible to move a pebble to v by a sequence of pebbling moves.
Then the pebbling number of G is the smallest number, f(G) such that from any
distribution of f(G) pebbles, it is possible to move a pebble to any specified target
vertex by a sequence of pebbling moves. Thus f(G) is the maximum value of
f(G, v) over all vertices v.

Thus Pebbling number for a graph is the minimum number of required pebbles
to reach any target vertex in a graph. Pebbling number is extended to t - pebbling
number for making to reach t pebbles to any desired vertex.

The t - pebbling number of a vertex v in a graph G is the smallest number
ft(G, v) such that for every placement of ft(G, v) pebbles, it is possible to move t
pebbles to v by a sequence of pebbling moves. Then the t - pebbling number of G is
the smallest number, ft(G) such that from any distribution of ft(G) pebbles, it is
possible to move t pebbles to any specified target vertex by a sequence of pebbling
moves. Thus ft(G) is the maximum value of ft(G, v) over all vertices v. There are
many papers with regard to t - pebbling number [3], [4], [9], [10], [11], [12].

Detour pebbling was introduced by Lourdusamy et. al. in [5] using a detour
path in any connected graph. For placing t pebbles using detour paths the detour
t - pebbling was introduced by Lourdusamy et. al. in [8]. The detour pebbling
number and detour t - pebbling number for so many classes of graphs were found
on [5], [6], [7], [8].

In this paper, we investigate the detour pebbling number and the detour t -
pebbling number for some Cartesian product graphs. In Section 2, we give some
preliminary definitions and results which are useful for proving the main results.
In Section 3, we find the detour pebbling number for the Cartesian product of
path graphs Pn�Pn, path graph and a cycle graph Pn�Cn and path graph and
a complete graph Pn�Kn. Also we calculate the detour t - pebbling numbers for
these graphs.

2. Preliminaries

For graph theoretic terminologies, the reader can refer [2].
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Definition 2.1. [5] A detour pebbling number of a vertex v of a graph G is the
smallest number f ∗(G, v) such that for any placement of f ∗(G, v) pebbles on the
vertices of G it is possible to move a pebble to v using a detour path by a sequence
of pebbling moves. The detour pebbling number of a graph is denoted by f ∗(G), is
the maximum f ∗(G, v) over all the vertices of G.

Definition 2.2. [8] A detour t - pebbling number of a vertex v of a graph G is the
smallest number f ∗

t (G, v) such that for any placement of f ∗
t (G, v) pebbles on the

vertices of G it is possible to move t pebble to v using a detour path by a sequence
of pebbling moves.

Definition 2.3. [8] The detour t- pebbling number of a graph is denoted by f ∗
t (G),

is the maximum f ∗
t (G, v) over all the vertices of G.

Theorem 2.4. [5] For any path Pn with n vertices, the detour pebbling number is
f ∗(Pn) = 2n−1.

Theorem 2.5. [8] For any path Pn with n vertices, the detour t - pebbling number
is f ∗

t (Pn) = t2n−1.

Theorem 2.6. [5] For cycles Cnwith n vertices, the detour pebbling number is
f ∗(Cn) = 2n−1.

Theorem 2.7. [8] For any cycle Cn with n vertices, the detour t - pebbling number
is f ∗

t (Cn) = t2n−1.

Theorem 2.8. [5] For Complete graph Kn with n vertices (n > 1), the detour
pebbling number is f ∗(Kn) = 2n−1.

Theorem 2.9. [5] Let K1,n be an n-star where n > 1. The detour pebbling number
for the n -star graph is f ∗(K1,n) = n + 2.

Theorem 2.10. [5] For the fan graph Fn with n vertices, the detour pebbling
number is f ∗(Fn) = 2n−1.

Theorem 2.11. [5] For the wheel graph Wn with n+1 vertices, the detour pebbling
number is f ∗(Wn) = 2n.

Theorem 2.12. [6] Let P 2
n be the square of path with n vertices. The detour

pebbling number f ∗(P 2
n) = 2n−1.

Theorem 2.13. [6] Let M(Pn) be the middle graph path with 2n−1 vertices. Then
the detour pebbling number f ∗(M(Pn)) = 22n−2.

3. Main Results

First we find the detour pebbling number for the Cartesian product of path
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graphs Pn�Pn, path graph and a cycle graph Pn�Cn and path graph and a com-
plete graph Pn�Kn.

Theorem 3.1. The detour pebbling number for P3�P3 is

f ∗(P3�P3) = 256.

Proof. Let us label the vertices of the Cartesian product P3�P3 as (ui, vj) where
1 ≤ i, j ≤ 3. Placing 255 pebbles on the vertex (u1, v1) we cannot reach the vertex
(u3, v3) as a detour path has length 8. Thus f ∗(P3�P3) ≥ 256.

For the sufficiency, let us consider any distribution of 256 pebbles on the Carte-
sian product graph. Let (u1, v1) be the target vertex. Assume p((u1, v1)) = 0. In
this case from the target vertex we can find many paths containing all the vertices
of the graph. Since the length of each path is 8, it is detour. Thus by Theorem 2.4
using 256 pebbles we can move a pebble to the target vertex.

Let (u1, v2) be the target vertex. Assume p((u1, v2)) = 0. Suppose p((u1, v1)) ≥
128. Then there exists a detour path P : (u1, v1), (u2, v1), (u3, v1), (u3, v2), (u3, v3),
(u2, v3), (u2, v2), (u1, v2) of length 7. By Theorem 2.4, using 128 pebbles we can
pebble the target. Otherwise at least 128 pebbles are distributed on the vertices
other than the vertex (u1, v1). Thus we can find a cycle C containing all the
other vertices of length 8. Hence by Theorem 2.6 using 128 pebbles we can move
a pebble to (u1, v2). By symmetry we can pebble every vertex in the Cartesian
product graph P3�P3.

Theorem 3.2. The detour pebbling number for Pn�Pn is

f ∗(Pn�Pn) = 2n2−1.

Proof. Let us label the vertices of the Cartesian product Pn�Pn as (ui, vj) where
1 ≤ i, j ≤ n. Placing 2n2−1 − 1 pebbles on the vertex (u1, v1) we cannot reach the
vertex (un, vn) as a detour path has length n2 − 1. Thus f ∗(Pn�Pn) ≥ 2n2−1. For
the sufficiency, let us consider any distribution of 2n2−1 pebbles on the Cartesian
product graph.
Case 1: Let n be even.

Let (u1, v1) be the target vertex. Assume p((u1, v1)) = 0. In this case from
the target, we can find many paths consisting of all vertices in the graph. Since
every path contains all the vertices of the graph, the length of those paths is n2−1.
Thus it will become detour path consists of 2n2−1 pebbles distributed on its vertices.
Therefore by Theorem 2.4 using 2n2−1 pebbles we can move a pebble to (u1, v1).

Let (u1, vi), where 1 < i < n be the target vertex. Assume p((u1, vi)) = 0. Then
there exists a cycle C consisting of all the vertices in the Cartesian product graph.
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Since the cycle is spanning, it will be the detour cycle of length n2 consists of 2n2−1

pebbles distributed on its vertices. Thus by Theorem 2.6, using 2n2−1 pebbles we
can move a pebble to the vertex (u1, vi), where 1 < i < n. By symmetry we can
pebble all the vertices of the graph.
Case 2: Let n be odd.

Let (u1, v1) be the target vertex. Assume p((u1, v1)) = 0. In this case also from
the target, we can find many paths consisting of all the vertices of the graph. Also
these detour paths have length n2 − 1 consists of 2n2−1 pebbles distributed on its
vertices. Thus by the Theorem 2.4, using 2n2−1 pebbles we can move a pebble to
(u1, v1). Let (u1, vi), where 1 < i < n be the target vertex. Assume p(u1, vi) = 0.
Subcase 2.1: Suppose i is odd.

Then from the target vertex (u1, vi), we can find many paths, each containing all
the vertices of the graph. Since the paths contain all the vertices of the Cartesian
product graph they are detour paths of length n2 − 1 consists of 2n2−1 pebbles on
its vertices. Thus by Theorem 2.4, we can pebble the target.
Subcase 2.2: Suppose i is even.

Suppose there exists a cycle C with containing n2 − 1 vertices of the Carte-
sian product graph including our target vertex, then by Theorem 2.6 using 2n2−2

pebbles we can move a pebble to any vertex of the cycle. Thus we can pebble
our target vertex. Suppose not, then we can find a cycle C1 containing n2 − 1
vertices (including our target vertex) with at most 2n2−2 − 1 pebbles on its ver-
tices. Thus there exists a vertex say (u, v) which is not on C1 containing at least
2n2−1− (2n2−2− 1) = 2n2−2 + 1 pebbles. Also the detour distance between (u, v) to
our target vertex is at most n2−2, we can find a detour path from (u, v) to (u1, vi)
of length at most n2 − 2 and hence by Theorem 2.4 we can reach the target. By
symmetry we can reach all the vertices of the graph.

Theorem 3.3. The detour pebbling number for P3�C3 is

f ∗(P3�C3) = 256.

Proof. Let us label the vertices of the Cartesian product P3�C3 as (ui, vj) where
1 ≤ i, j ≤ 3. Placing 255 pebbles on the vertex (u1, v1) we cannot reach the vertex
(u3, v3) as a detour path has length 8. Thus f ∗(P3�C3) ≥ 256.

Now let us consider any distribution of 256 pebbles on the Cartesian product
graph. Let (ui, vj) be the target vertex, where 1 ≤ i, j ≤ 3. Assume p(ui, vj) = 0.
Then we can find a cycle C with starting vertex at (ui, vj) containing all the vertices
of the Cartesian product graph. Since this cycle is a spanning cycle, it is a detour
cycle of length 8 consists of all the 256 pebbles on its vertices. Thus by Theorem
2.6, we can move a pebble to the vertex (ui, vj) using 256 pebbles. By symmetry,
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we are done for any target vertex.

Theorem 3.4. The detour pebbling number for Pn�Cn is

f ∗(Pn�Cn) = 2n2−1.

Proof. Let the vertices of the Path graph Pn be u1, u2, ..., un and the vertices of the
Cycle graph Cn be v1, v2, ..., vn. Let us label the vertices of the Cartesian product
Pn�Cn as (ui, vj) where 1 ≤ i, j ≤ n. Placing 2n2−1 − 1 pebbles on the vertex
(u1, v1) we cannot reach the vertex (un, vn). Thus f ∗(Pn�Cn) ≥ 2n2−1. Now let us
consider any distribution of 2n2−1 pebbles on the vertices of the graph Pn�Cn.
Case 1: Let n be even.

Let (ui, vj) be the target vertex, where 1 ≤ i, j ≤ n. Then there exists a cycle C
from (ui, vj) containing all the vertices of the graph. Thus the cycle is a spanning
cycle and hence detour cycle of length n2 consists of 2n2−1 pebbles distributed on
its vertices. By Theorem 2.6, using 2n2−1 pebbles we can move a pebble to the
target vertex. By symmetry, we can reach any vertex of the Cartesian product
graph.
Case 2: Let n be odd.

Let (ui, vj) be the target vertex, where 1 ≤ i, j ≤ n. From (ui, vj) we can find
a path containing all the vertices of the graph. Also since this path is a spanning
path, it is a detour path of length n2 − 1 consists of 2n2−1 pebbles distributed on
its vertices. Thus by Theorem 2.4, we can move a pebble to the target vertex.

Hence by symmetry, we can reach any vertex of the Cartesian product graph.

Theorem 3.5. The detour pebbling number for Pn�Kn is

f ∗(Pn�Kn) = 2n2−1.

Proof. Let the vertices of the Path graph Pn be u1, u2, ..., un and the vertices of
the Complete graph Kn be v1, v2, ..., vn. Let us label the vertices of the Cartesian
product Pn�Kn as (ui, vj) where 1 ≤ i, j ≤ n. Placing 2n2−1 − 1 pebbles on the
vertex (u1, v1) we cannot reach the vertex (un, vn). Thus f ∗(Pn�Kn) ≥ 2n2−1.

Now let us consider any distribution of 2n2−1 pebbles on the vertices of the
graph Pn�Cn. Let (ui, vj) be the target vertex, where 1 ≤ i, j ≤ n. Then we
can find a cycle C with starting vertex at (ui, vj) containing all the vertices of the
Cartesian product graph. Since this cycle is a spanning cycle, it is a detour cycle
of length n2 consists of all the 2n2−1 pebbles on its vertices. Thus by Theorem 2.6,
we can move a pebble to the vertex (ui, vj) using 2n2−1 pebbles. By symmetry, we
are done for any target vertex.
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Now let us compute the detour t - pebbling number for the Cartesian product
graphs.

Theorem 3.6. The detour t - pebbling number for Pn�Pn is

f ∗
t (Pn�Pn) = t2n2−1

Proof. Placing t2n2−1−1 pebbles on (u1, v1) we cannot move t pebbles to (un, vn).
Thus f ∗(Pn�Pn) ≥ t2n2−1. Let us consider any distribution of t2n2−1 pebbles on
the Cartesian product graph. We prove this part by induction on t. For t = 1, the
result follows from Theorem 3.2. We assume that the result is true for 2 ≤ k < t.

Let (u, v) be the target vertex. The Cartesian product graph contains at least
2n2

pebbles. Since the detour distance between the target vertex and any vertex
of the Cartesian product graph is at most n2 − 1, we can move one pebble to the
target using maximum of 2n2−1 pebbles. Thus the number of remaining pebbles is
at least

t2n2−1 − 2n2−1 = (t− 1)2n2−1 = f ∗
t−1(Pn�Pn).

Hence by induction we can move (t− 1) additional pebbles to the target. Thus the
any target vertex receives 1 + (t− 1) = t pebbles.

Theorem 3.7. The detour t- pebbling number for Pn�Cn is

f ∗
t (Pn�Cn) = t2n2−1

Proof. Placing t2n2−1−1 pebbles on (u1, v1) we cannot move t pebbles to (un, vn).
Thus f ∗(Pn�Cn) ≥ t2n2−1. Let us consider any distribution of t2n2−1 pebbles on
the Cartesian product graph. We prove this part by induction on t. For t = 1, the
result follows from Theorem 3.4. We assume that the result is true for 2 ≤ k < t.

Let (ui, vj) be the target vertex, where ui ∈ Pn and vj ∈ Cn. Since the Cartesian
product graph Pn�Cn contains at least 2n2

pebbles we can move a pebble to the
target vertex from any vertex at a cost of at most 2n2−1 pebbles as the distance
between the target vertex and any vertex is at most n2 − 1. Thus we are left with
at least

t2n2−1 − 2n2−1 = (t− 1)2n2−1 = f ∗
t−1(Pn�Cn).

Hence by induction we can move (t− 1) additional pebbles to the target. Thus the
any target vertex receives 1 + (t− 1) = t pebbles.

Theorem 3.8. The detour t - pebbling number for Pn�Kn is

f ∗
t (Pn�Kn) = t2n2−1.
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Proof. Placing t2n2−1−1 pebbles on (u1, v1) we cannot move t pebbles to (un, vn).
Thus f ∗(Pn�Kn) ≥ t2n2−1. Let us consider any distribution of t2n2−1 pebbles on
the Cartesian product graph. We prove this part by induction on t. For t = 1, the
result follows from Theorem 3.5. We assume that the result is true for 2 ≤ k < t.

Let (ui, vj) be the target vertex, where ui ∈ Pn and vj ∈ Kn. As t ≥ 2, the
Cartesian product graph Pn�Kn contains at least 2n2

pebbles on its vertices. Since
the distance between the target vertex and any vertex is at most n2 − 1, we can
move a pebble to the target vertex from any vertex at a cost of at most 2n2−1

pebbles. Thus the number of remaining pebbles is at least

t2n2−1 − 2n2−1 = (t− 1)2n2−1 = f ∗
t−1(Pn�Kn).

By induction we can move (t−1) additional pebbles to (ui, vj). Hence we can move
t pebbles to the target. By symmetry we are done for any target vertex.
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