# ANTIPODAL DOMINATION NUMBER OF GRAPHS 

G. Kokilambal<br>D/O V. Gajendran, 11, Nadar West Street, Thiruppuvanam - 630611, Tamil Nadu, INDIA<br>E-mail : gkokilambal@gmail.com

(Received: May 18, 2021 Accepted: Nov. 22, 2022 Published: Dec. 30, 2022)
Abstract: A dominating set $S \subseteq V$ is said to be an Antipodal Dominating Set(ADS) of a connected graph G if there exist vertices $x, y \in S$ such that $d(x, y)=\operatorname{diam}(G)$. The minimum cardinality of an ADS is called the Antipodal Domination Number(ADN), and is denoted by $\gamma_{a p}(G)$. In this paper, we determined the antipodal domination number for various graph products, bound for antipodal domination and characterize the graphs with $\gamma_{a p}(G)=2$.
Keywords and Phrases: Antipodal Domination, Diameter.
2020 Mathematics Subject Classification: 05C69.

## 1. Introduction

Let $G=(V, E)$ be a graph with vertex set V and edge set E . A set $D \subseteq V$ is a dominating set of G if every vertex not in D is adjacent to a vertex in D . The domination number of G , denoted by $\gamma(G)$, is the minimum cardinality of a dominating set.

A thorough study of domination, with its many variations, appears in [1, 2]. We introduced a new domination parameter called Antipodal domination by imposing the antipodal condition on the dominating set [3].

Let $G$ be a connected graph. A dominating set $S$ of $G$ is said to be an Antipodal Dominating Set (ADS) if there exist vertices $x, y \in S$ such that $d(x, y)=\operatorname{diam}(G)$. The minimum cardinality of an ADS is called the Antipodal Domination Number (ADN), and is denoted by $\gamma_{a p}(G)$.

It is easy to note that ADS is superhereditary and $\gamma \leq \gamma_{a p} \leq \gamma+2$. We have determined $\gamma_{a p}$ for paths, complete bipartite graphs, generalized wheel, double star, wounded spider and Jahangir graphs in [3]. Moreover, we derived a bound for antipodal domination in graphs and characterize the graphs with $\gamma_{a p}(G)=$ $n, n-1, n-2$. Also we derived a Nordhaus-Gaddum type bound for $\gamma_{a p}$ [4].

In this paper, we determined the antipodal domination number for various graph products, bound for antipodal domination and characterize the graphs with $\gamma_{a p}(G)=2$.

## 2. Ore's Type Theorem

Theorem 2.1. A dominating set $S$ is a minimal $A D S$ iff for every $u \in S$ one of the following holds:
(i) $u$ is an isolate in $S$
(ii) there exists a vertex $v$ in $V-S$ for which $N(v) \cap S=\{u\}$
(iii) For every $x, y \in S-\{u\}, d(x, y) \neq \operatorname{diam}(G)$.

Proof. Let $S$ be a minimal ADS.
Then for every $u \in S, S-\{u\}$ is not an ADS of $G$.
Then one of the following holds:
(a) For every $x, y \in S-\{u\}, d(x, y) \neq \operatorname{diam}(G)$.
(b) $S-\{u\}$ is not a dominating set.

Now (a) implies (iii) and (b) implies that $S$ is a minimal dominating set; and so (i) or (ii) holds.

Conversely, suppose that $S$ is not a minimal ADS. Then there exists a vertex $u \in S$ such that $S-\{u\}$ is an ADS.
Hence every vertex in $V-(S-\{u\})$ is adjacent to at least one vertex in $S-\{u\}$; and so condition(i) and (ii) does not hold.
Moreover there exists $x, y \in S-\{u\}$ such that $d(x, y)=\operatorname{diam}(G)$; and so condition(iii) does not hold.

## 3. $\gamma_{a p}$-for Graph Products

Theorem 3.1. $\gamma_{a p}\left(P_{n} \times K_{m}\right)=n, n, m \geq 3, n \leq m$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of $P_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be vertices of $K_{m}$. Let $x_{i j}=\left(u_{i}, v_{j}\right), 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices of $P_{n} \times K_{m}$.
First note that $\operatorname{diam}\left(P_{n} \times K_{m}\right)=n$.
Without loss of generality, let $x_{11}$ and $x_{n m}$ be the vertices with
$d\left(x_{11}, x_{n m}\right)=\operatorname{diam}\left(P_{n} \times K_{m}\right)$.
To dominate the vertices in $K_{m}^{(i)}$ either we need one vertex of $K_{m}^{(i)}$ or we need $m$ vertices not in $K_{m}^{(i)}$.

If no vertex of $K_{m}^{(i-1)}$ lies in $S$, then to dominate all the vertices in $K_{m}^{(i)}$, we need $m$-vertices in $K_{m}^{(i-1)} \cup K_{m}^{(i+1)}$; and these $m$-vertices dominate at most $3 m$ vertices in $K_{m}^{(i-2)} \cup K_{m}^{(i-1)} \cup K_{m}^{(i)} \cup K_{m}^{(i+1)} \cup K_{m}^{(i+2)}$.
Hence to dominate $(n-2) m-2$ vertices in $\bigcup_{i=2}^{n-1} K_{m}^{(i)}$, we need at least $\frac{m}{3 m} \times m(n-$
2) $-2=\left\lceil\frac{m(n-2)-2}{3}\right\rceil$ vertices.

But a single vertex in $K_{m}^{(i)}$ dominates all the vertices of $K_{m}^{(i)}$.
Hence to dominate $(n-2) m-2$ vertices in $\bigcup_{i=2}^{n-1} K_{m}^{(i)}$, it is enough to choose $n-2$ vertices.(one vertex in each $K_{m}^{(i)}, 2 \leq i \leq n-1$.
But $\left\lceil\frac{m(n-2)-2}{3}\right\rceil \geq n-2$.
Hence $\gamma_{a p}\left(P_{n} \times K_{m}\right) \geq n-2+2=n$.
Now $S=\left\{x_{11}, x_{12}, \ldots, x_{(n-1) 1}, x_{n 2}\right\}$ is an ADS; and so $\gamma_{a p}\left(P_{n} \times K_{m}\right)=n$.
Theorem 3.2. $\gamma_{a p}\left(P_{n}\left[K_{m}\right]\right)=\left\lceil\frac{n-1}{3}\right\rceil+1, n \geq 2$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices on $P_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of $K_{m}$.
Let $x_{i j}=\left(u_{i}, u_{j}\right), 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices of $P_{n}\left[K_{m}\right]$.
First note that $\operatorname{diam}\left(P_{n}\left[K_{m}\right]\right)=n-1$.
Without loss of generality, let $x_{11}$ and $x_{n 1}$ be vertices with
$d\left(x_{11}, x_{n 1}\right)=\operatorname{diam}\left(P_{n}\left[K_{m}\right]\right)=n-1$.
$x_{11}$ and $x_{m 1}$ dominates four copies of $K_{m}$.
Let $S_{1}$ be an ADS of the remaining $n-4$ copies of $K_{m}$.
Every internal vertex $x_{i j}$, for some $2 \leq i \leq n, 1 \leq j \leq m$ is adjacent with at most three copy of $K_{n}$; and so $\left|S_{1}\right| \geq\left\lceil\frac{n-4}{3}\right\rceil$, and

$$
\begin{equation*}
\gamma_{a p}\left(P_{n}\left[K_{m}\right]\right) \geq\left|S_{1}\right|+2 \geq\left\lceil\frac{n-4}{3}\right\rceil+2 \geq\left\lceil\frac{n-1}{3}\right\rceil+1 . \tag{3.1}
\end{equation*}
$$

Case(i): $n \equiv 0(\bmod 3)$
$S=\left\{x_{11}, x_{n 1}\right\} \cup\left\{x_{41}, x_{71}, x_{(10) 1}, \ldots, x_{(n-2)} 1\right\}$ is an ADS; and so $|S|=\frac{n}{3}+1$.
Case(ii): $n \equiv 1(\bmod 3)$
$S=\left\{x_{11}, x_{n 1}\right\} \cup\left\{x_{41}, x_{71}, x_{(10) 1}, \ldots, x_{(n-3) 1}\right\}$ is an ADS; and so $|S|=\frac{n-1}{3}+1$.
Case(iii): $n \equiv 2(\bmod 3)$
$S=\left\{x_{11}, x_{n 1}\right\} \cup\left\{x_{41}, x_{71}, x_{(10) 1}, \ldots, x_{(n-1) 1}\right\}$ is an ADS ; and so $|S|=\frac{n-2}{3}+2$.
In all the cases, we have

$$
\begin{equation*}
|S|=\left\lceil\frac{n-1}{3}\right\rceil+1 . \tag{3.2}
\end{equation*}
$$

Hence $\gamma_{a p}\left(P_{n}\left[K_{m}\right]\right)=\left\lceil\frac{n-1}{3}\right\rceil+1$.
Theorem 3.3. $\gamma_{a p}\left(P_{n} \boxtimes K_{m}\right)=\left\lceil\frac{n-1}{3}\right\rceil+1, n \geq 2$.
Proof. The proof is similar to proof of Theorem 3.2.
Theorem 3.4. $\gamma_{a p}\left(P_{n} \otimes K_{m}\right)=n-2$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of $P_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of $K_{n}$.
Let $x_{i j}=\left(u_{i}, v_{j}\right), 1 \leq i \leq n, 1 \leq j \leq m$.
Let $S$ be any RDS of $G$.
First note that $\operatorname{diam}\left(P_{n} \otimes K_{m}\right)=n-1$.
Without loss of generality, let $x_{11}$ and $x_{n 1}$ be vertices with $d\left(x_{11}, x_{n 1}\right)=\operatorname{diam}\left(P_{n} \otimes K_{m}\right)=n-1$.
Then $x_{11}$ and $x_{n 1} \in S$.
Now $x_{11}$ dominates $x_{2 j}$ and $x_{n 1}$ dominates $x_{(n-1) j}, 2 \leq j \leq m$.
Also to dominate $x_{1 j}$ and $x_{n j}, 2 \leq j \leq m$, we must need $x_{21}$ and $x_{3 j}$, $2 \leq j \leq m$.
Also note that every vertex in $P_{n} \otimes K_{m}$ dominates at least $m$ vertices; and so to dominate the remaining $n m-6 m$ vertices we need at least $\frac{n m-6 m}{m}$ vertices.
Hence $|S| \geq 4+n-6 \geq n-2$.
Now $S=\left\{x_{11}, x_{n 1}\right\} \cup\left\{x_{21}, x_{(n-1) 1}\right\} \cup\left\{x_{42}, x_{52}, x_{62}, \ldots, x_{(n-3) 2}\right\}$.
Hence $|S| \leq n-2$.
Theorem 3.5. $\gamma_{a p}\left(P_{n} \times G\right)=n+1$, where $G$ is a graph with $\Delta(G)=n_{1}-1$, where $n_{1}$ is the number of vertices in $G, n \leq m, n \geq 3$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of $\bar{P}_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be vertices of $G$.
Let $x_{i j}=\left(u_{i}, v_{j}\right), 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices of $P_{n} \times G$.
First note that $\operatorname{diam}\left(P_{n} \times G\right)=n$.
Without loss of generality, let $x_{11}$ and $x_{n 2}$ be the vertices with $d\left(x_{11}, x_{n 2}\right)=\operatorname{diam}\left(P_{n} \times G\right)=n$.
To dominate the vertices in $G^{(i)}$ either we need one vertex of $G$ or we need $m$ vertices not in $G^{(i)}$.
If no vertex of $G^{(i-1)}$ lies in $S$, then to dominate all the vertices in $G^{(i)}$, we need $m$-vertices in $G^{(i-1)} \cup G^{(i+1)}$; and these $m$-vertices dominate at most $3 m$ vertices in $G^{(i-2)} \cup G^{(i-1)} \cup G^{(i)} \cup G^{(i+1)} \cup G^{(i+2)}$.
Hence to dominate $n m-(m+3)$ vertices in $\bigcup_{i=2}^{n-1} G^{(i)}$, we need at least $\frac{m}{3 m} \times(n m-$ $(m+3))=\left\lceil\frac{m(n-1)-3}{3}\right\rceil$ vertices.
But a single vertex in $G^{(i)}$ dominates all the vertices of $G^{(i)}$.

Hence to dominate $(n-1) m-3$ vertices in $\bigcup_{i=2}^{n-1} G^{(i)}$, it is enough to choose $n-1$ vertices. (one vertex in each $G^{(i)}, 2 \leq i \leq n-1$ ).
But $\left\lceil\frac{m(n-1)-3}{3}\right\rceil \geq n-1$.
Hence $\gamma_{a p}\left(P_{n} \times G\right) \geq n-1+2=n+1$.
Now $S=\left\{x_{11}, x_{n 2}\right\} \cup\left\{x_{21}, x_{31}, \ldots, x_{n 1}\right\}$ is an ADS; and so
$\gamma_{a p}\left(P_{n} \times G\right)=n+1$.
Theorem 3.6. $\gamma_{a p}\left(P_{n} \boxtimes G\right)=\left\lceil\frac{n-1}{3}\right\rceil+1, n \geq 2$.
Proof. The proof is similar to the proof of Theorem 3.2.
Theorem 3.7. $\gamma_{a p}\left(P_{n}[G]\right)=n+1$.
Proof. The proof is similar to proof of Theorem 3.5.
Theorem 3.8. $\gamma_{a p}\left(P_{n} \otimes G\right)=n-2$, wher $G$ is a graph with full degree vertex.
Proof. The proof is similar to the proof of Theorem 3.5.

## 4. Bound For Antipodal Domination

Theorem 4.1. For any connected graph $G$ with $\Delta(G) \leq n-r, \gamma_{a p}(G) \leq r+1, r \geq$ 2.

Moreover equality holds iff one of the following conditions holds

1. $|W|=2$, where $W=V-N[v]$, $v$ is a vertex of maximum degree, $Z \neq \phi, Z$ does not have a vertex of degree $|Z|-1$, where $Z=V-(N[x] \cup N[y])$ where $x$ and $y$ be two vertices with $d(x, y)=\operatorname{diam}(G)$ and there is no $x \in V-Z$ such that $z x \in E(G)$ for all $z \in Z$.
2. $|W|=1$ and there exists $z \in V-\left(N\left[u_{1}\right] \cup N\left[u_{2}\right]\right)$, where $u_{1}$ and $u_{2}$ be two vertices with $d\left(u_{1}, u_{2}\right)=\operatorname{diam}(G)$.

Proof. Let $G$ be a connected graph with $\Delta(G)=n-r, r \geq 2$.
Let $v$ be a vertex of maximum degree.
Let $N(v)=\left\{u_{1}, u_{2}, \ldots, u_{n-r-1}, u_{n-r}\right\}$ and $V-N[v]=\left\{w_{1}, w_{2}, \ldots, w_{r-2}, w_{r-1}\right\}$.
If the diametrical distance lies between $u_{i}$ and $w_{j}$ for some $i, j, 1 \leq i \leq n-r, 1 \leq$ $j \leq r-1$, then $S=\left\{w_{1}, w_{2}, \ldots, w_{r-1}, v, u_{i}\right\}$ is an ADS.
Otherwise, the diametrical-distance exists between $w_{i}, w_{j}$ or $v$ and $w_{i}$, or between $u_{i}$ and $u_{j}$, for some $i$ and $j$.
In these cases also, the set $S$ is an ADS of $G$.
Hence $\gamma_{a p}(G) \leq r+1$.
Equality:
Assume that $\gamma_{a p}(G)=r+1$.

Case 1: diameter exists between $w_{i}$ and $w_{j}$, for some $i$ and $j$
Then $V-N(v)$ is an ADS of $G$; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Case 2: diameter exists between $w_{i}$ and $v$, for some $i$
Then $V-N(v)$ is an ADS of $G$; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Case 3: diameter exists between $u_{i}$ 's
Then $\operatorname{diam}(G) \leq 2$.
If $\operatorname{diam}(G)=1$, then $G$ is complete, a contradiction.
If $\operatorname{diam}(G)=2$, then $V-N(v)$ is an ADS of $G$; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Case 4: diameter exists between $w_{j}$ and $u_{i}$, for some $i$ and $j$
Case 4.1: $W$ have an edge
Without loss of generality, $w_{k} w_{l} \in E(G)$ for some $k$ and $l$.
Without loss of generality, let $k \neq j$, now $S=\left(W-\left\{w_{k}\right\}\right) \cup\left\{u_{i}, v\right\}$ is an ADS of $G$; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Case 4.1: $W$ does not have an edge
Then every $w \in W$ is adjacent with some $u \in N(v)$. (since $G$ is connected).
Now $2 \leq \operatorname{diam}(G) \leq 3$ (Since diameter exists between $w_{j}$ and $u_{i}$; and so $\operatorname{diam}(G) \leq$ 3 ; if $\operatorname{diam}(G)=1$, then $G$ is complete).
Case 4.2.1: $\operatorname{diam}(G)=2$
Since $d\left(v, w_{i}\right)=2$ for all $i$, we can apply case 2 .
Case 4.2.2: $\operatorname{diam}(G)=3$
If $d\left(w_{i}, w_{j}\right)=3(=\operatorname{diam}(G))$ for some $w_{i}, w_{j} \in W$, then we can apply case 1 .
Otherwise $d\left(w_{i}, w_{j}\right)=2$ for every pair $w_{i}, w_{j} \in W$.
Hence every pair of vertices in $W$ have a common neighbour in $N(v)$.
Case 4.2.2.1: $|W| \geq 3$
Let $w_{1}, w_{2}, w_{3} \in W$.
Without loss of generality, let $w_{1}$ and $u_{1}$ be vertices with $d\left(w_{1}, u_{1}\right)=\operatorname{diam}(G)$; and $u_{2}$ be a common neighbour of $w_{2}$ and $w_{3}$.
Then $\left(W-\left\{w_{2}, w_{3}\right\}\right) \cup\left\{u_{1}, u_{2}, v\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Case 4.2.2.2: $|W|=2$
Then $r=3$ and $r+1=4$.
Let $w_{1}, w_{2} \in W$ and $w_{1}, w_{2}$ have a common neighbour in $N(v)$ (say) $u_{2}$.
If $w_{1} w_{2} \in E(G)$, then $\left\{w_{1}, u_{1}, v\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq r$, a contradiction. If $w_{2} u_{1} \in E(G)$, then $\left\{w_{1}, u_{1}, v\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Now we shall prove that for every pair of vertices $w_{j}, u_{i}$ with $d\left(w_{j}, u_{i}\right)=\operatorname{diam}(G)$, the following 2 claims hold.
Let $Z=V-\left(N\left[w_{i}\right] \cup N\left[u_{i}\right]\right)$.
Claim 1: $Z$ does not have a vertex of degree $|Z|-1$
Claim 2: There is no $x \in N\left(w_{j}\right) \cup N\left(u_{i}\right)$ such that $z x \in E(G)$ for all $z \in Z$

Without loss of generality, let $w_{1}, u_{1}$ be vertices with $d\left(w_{1}, u_{1}\right)=\operatorname{diam}(G)$.
Already we have noted that $w_{1} w_{2} \notin E(G)$ and $w_{2} u_{1} \notin E(G)$.
Now to dominate $w_{2}$, either we need $w_{2} \in S$ or $u_{2} \in S$.
Suppose $w_{2}$ is adjacent to all $u_{i}$ 's in $Z$, then $\left\{w_{1}, u_{1}, w_{2}\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq 3$, a contradiction.
Then $w_{2}$ is not adjacent to at least one $u_{j}$ in $Z$.
Hence $w_{2}$ is not a vertex of degree $|Z|-1$.
Suppose $u_{k}$, for some $k$ is a vertex of degree $|Z|-1$ in $Z$; then $\left\{w_{1}, u_{1}, u_{k}\right\}$ is an
ADS; and so $\gamma_{a p}(G) \leq 3$, a contradiction.
Hence $u_{k}$ is not adjacent to at least one vertex in $Z$.
Hence there is no vertex in $Z$ of degree $|Z|-1$.
Hence the claim holds.
Suppose if there exists $x \in N\left(u_{1}\right) \cup N\left(w_{1}\right)$ such that $z x \in E(G)$ for all $z \in Z$.
Hence $\left\{u_{1}, w_{1}, x\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq 3$, a contradiction.
Hence claim 2 holds.
Case 4.2.2.3: $|W|=1$
Then $r=2$; and so $r+1=3$.
Without loss of generality, let $w_{1}$ and $u_{1}$ be vertices with $d\left(w_{1}, u_{1}\right)=\operatorname{diam}(G)$, $w_{1}, u_{1} \in S$.
Claim : There exists $z \in V-\left(N\left[w_{1}\right] \cup N\left[u_{1}\right]\right)$
Assume the contrary that $N\left[w_{1}\right] \cup N\left[u_{1}\right]=V(G)$, then $W \cup\left\{u_{1}\right\}$ is an ADS; and so $\gamma_{a p}(G) \leq r$, a contradiction.
Then there exists $u_{k} \in V-\left(N\left[w_{1}\right] \cup N\left[u_{1}\right]\right)$ adjacent to $v$ or some vertices in $V-\left\{u_{1}, w_{1}\right\}$.
Now to dominate $u_{k}$ we need at least one more vertex; and so $\gamma_{a p}(G) \geq 3$.
Now $\left\{u_{1}, w_{1}, v\right\}$ is an ADS; and so $\gamma_{a p}(G)=3=r+1$.
5. Characterization of graphs with $\gamma_{a p}=2$

Definition 5.1. Let $G_{1}$ be a graph obtained by adding zero or more leaves to the pendant vertex of the path $P_{3}$.
Let $G_{2}$ be a graph obtained by adding zero or more leaves to the pendant vertex of the path $P_{4}$
Theorem 5.1. For any connected graph $G$ of order $n \geq 2, \gamma_{a p}(G)=2$ iff $\operatorname{diam}(G) \leq 3$ and one of the following holds
(i) $G$ is complete
(ii) $\operatorname{diam}(G)=2$ and $G_{1}$ is a spanning subgraph of $G$.
(iii) $\operatorname{diam}(G)=3$ and $G_{2}$ is a spanning subgraph of $G$,
where $G_{1}$ and $G_{2}$ are graphs defined in Definition 5.1.

Proof. Assume that $\gamma_{a p}(G)=2$.
Let $S=\{u, v\}$ be a $\gamma_{a p}-$ set of $G$.
Then $N[u] \cup N[v]=V(G)$
Case $1: u v \in E(G)$
Then $G$ is complete; and so condition (i) holds.
Case 2: $u v \notin E(G)$
Case 2.1: $N(u) \cap N(v) \neq \phi$
Then there exists $w \in N(u) \cap N(v)$.
Then $G$ has $\left\langle P_{3}\right\rangle$ : uwv as an induced path.
Now, by (1), it follows that $\operatorname{diam}(G)=2$ and $G_{1}$ is a spanning subgraph of $G$.
Case 2.2 : $N(u) \cap N(v)=\phi$
Since $G$ is connected, then there exists vertices $x_{1} \in N(u)$ and $x_{2} \in N(v)$ such that $x_{1} x_{2} \in E(G)$.
Then $G$ has $\left\langle P_{4}\right\rangle: u x_{1} x_{2} v$ as an induced path.
Now, by (5.1), it follows that $\operatorname{diam}(G)=3$ and $G_{2}$ is a spanning subgraph of $G$.
Conversely, assume that one of the following holds
If $G$ is complete, then $\gamma_{a p}(G)=2$.
If $\operatorname{diam}(G)=2$ and $G_{1}$ is a spanning subgraph of $G$, then $G$ has $\left\langle P_{3}\right\rangle: w_{1} w_{2} w_{3}$ (say).
Also if there exists $x \in V-\left\{w_{1}, w_{2}, w_{3}\right\}$ such hat $x w_{1}$ or $x w_{3} \in E(G)$.
Now $\left\{w_{1}, w_{2}\right\}$ is an ADS; and so $\gamma_{a p}(G)=2$.
If $\operatorname{diam}(G)=3$ and $G_{2}$ is a spaning subgraph of $G$, then $G$ has $\left\langle P_{4}\right\rangle: w_{1} w_{2} w_{3} w_{4}$ (say).
Suppose there exists $x \in V-\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$, such that $x w_{1}$ or $x w_{4} \in E(G)$.
Hence $\left\{w_{1}, w_{4}\right\}$ is an ADS; and so $\gamma_{a p}(G)=2$.
Corollary 5.1. Let $G$ be a disconnected graph. Then $\gamma_{a p}(G)=2$ iff $G=2 K_{1}$.

## References

[1] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
[2] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[3] Kayathri K., Kokilambal G.,Antipodal Domination in Graphs, Proceedings of ReDeEM March 2015, Thiagarajar College, Madurai, (2015), 65-72.
[4] Kokilambal G., Kayathri K., Antipodal Domination in terms of the order of graphs, Mathematical sciences international research journal, Vol. 5, No. 2, 27-30.

