South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 3 (2022), pp. 339-346 DOI: 10.56827/SEAJMMS.2022.1803.28 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ANTIPODAL DOMINATION NUMBER OF GRAPHS

G. Kokilambal

D/O V. Gajendran, 11, Nadar West Street, Thiruppuvanam - 630611, Tamil Nadu, INDIA

E-mail : gkokilambal@gmail.com

(Received: May 18, 2021 Accepted: Nov. 22, 2022 Published: Dec. 30, 2022)

Abstract: A dominating set $S \subseteq V$ is said to be an Antipodal Dominating Set(ADS) of a connected graph G if there exist vertices $x, y \in S$ such that d(x, y) = diam(G). The minimum cardinality of an ADS is called the Antipodal Domination Number(ADN), and is denoted by $\gamma_{ap}(G)$. In this paper, we determined the antipodal domination number for various graph products, bound for antipodal domination and characterize the graphs with $\gamma_{ap}(G) = 2$.

Keywords and Phrases: Antipodal Domination, Diameter.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. A set $D \subseteq V$ is a **dominating set** of G if every vertex not in D is adjacent to a vertex in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set.

A thorough study of domination, with its many variations, appears in [1, 2]. We introduced a new domination parameter called Antipodal domination by imposing the antipodal condition on the dominating set [3].

Let G be a connected graph. A dominating set S of G is said to be an **Antipodal Dominating Set (ADS)** if there exist vertices $x, y \in S$ such that d(x, y) = diam(G). The minimum cardinality of an ADS is called the **Antipodal Domination Number (ADN)**, and is denoted by $\gamma_{ap}(G)$. It is easy to note that ADS is superhereditary and $\gamma \leq \gamma_{ap} \leq \gamma + 2$. We have determined γ_{ap} for paths, complete bipartite graphs, generalized wheel, double star, wounded spider and Jahangir graphs in [3]. Moreover, we derived a bound for antipodal domination in graphs and characterize the graphs with $\gamma_{ap}(G) =$ n, n - 1, n - 2. Also we derived a Nordhaus-Gaddum type bound for γ_{ap} [4].

In this paper, we determined the antipodal domination number for various graph products, bound for antipodal domination and characterize the graphs with $\gamma_{ap}(G) = 2$.

2. Ore's Type Theorem

Theorem 2.1. A dominating set S is a minimal ADS iff for every $u \in S$ one of the following holds:

(i) u is an isolate in S

(ii) there exists a vertex v in V - S for which $N(v) \cap S = \{u\}$

(iii) For every $x, y \in S - \{u\}, d(x, y) \neq diam(G)$.

Proof. Let S be a minimal ADS.

Then for every $u \in S$, $S - \{u\}$ is not an ADS of G. Then one of the following holds:

(a) For every $x, y \in S - \{u\}, d(x, y) \neq diam(G)$.

(b) $S - \{u\}$ is not a dominating set.

Now (a) implies (iii) and (b) implies that S is a minimal dominating set; and so (i) or (ii) holds.

Conversely, suppose that S is not a minimal ADS. Then there exists a vertex $u \in S$ such that $S - \{u\}$ is an ADS.

Hence every vertex in $V - (S - \{u\})$ is adjacent to at least one vertex in $S - \{u\}$; and so condition(i) and (ii) does not hold.

Moreover there exists $x, y \in S - \{u\}$ such that d(x, y) = diam(G); and so condition(iii) does not hold.

3. γ_{ap} -for Graph Products

Theorem 3.1. $\gamma_{ap}(P_n \times K_m) = n, n, m \ge 3, n \le m.$

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of P_n and $v_1, v_2, ..., v_m$ be vertices of K_m . Let $x_{ij} = (u_i, v_j), 1 \le i \le n, 1 \le j \le m$ be the vertices of $P_n \times K_m$. First note that $diam(P_n \times K_m) = n$.

Without loss of generality, let x_{11} and x_{nm} be the vertices with

 $d(x_{11}, x_{nm}) = diam(P_n \times K_m).$

To dominate the vertices in $K_m^{(i)}$ either we need one vertex of $K_m^{(i)}$ or we need m vertices not in $K_m^{(i)}$.

If no vertex of $K_m^{(i-1)}$ lies in S, then to dominate all the vertices in $K_m^{(i)}$, we need m-vertices in $K_m^{(i-1)} \cup K_m^{(i+1)}$; and these m-vertices dominate at most 3m vertices in $K_m^{(i-2)} \cup K_m^{(i-1)} \cup K_m^{(i)} \cup K_m^{(i+1)} \cup K_m^{(i+2)}$. Hence to dominate (n-2)m-2 vertices in $\bigcup_{i=1}^{n-1} K_m^{(i)}$, we need at least $\frac{m}{3m} \times m(n-1)$ 2) - 2 = $\left\lceil \frac{m(n-2)-2}{3} \right\rceil$ vertices. But a single vertex in $K_m^{(i)}$ dominates all the vertices of $K_m^{(i)}$. Hence to dominate (n-2)m-2 vertices in $\bigcup_{i=2}^{n-1} K_m^{(i)}$, it is enough to choose n-2vertices.(one vertex in each $K_m^{(i)}$, $2 \le i \le n-1$. But $\left\lceil \frac{m(n-2)-2}{3} \right\rceil \ge n-2.$ Hence $\gamma_{ap}(P_n \times K_m) \ge n - 2 + 2 = n.$ Now $S = \{x_{11}, x_{12}, ..., x_{(n-1)1}, x_{n2}\}$ is an ADS; and so $\gamma_{ap}(P_n \times K_m) = n$. Theorem 3.2. $\gamma_{ap}(P_n[K_m]) = \left\lceil \frac{n-1}{3} \right\rceil + 1, n \ge 2.$ **Proof.** Let $u_1, u_2, ..., u_n$ be the vertices on P_n and $v_1, v_2, ..., v_m$ be the vertices of K_m . Let $x_{ij} = (u_i, u_j), 1 \le i \le n, 1 \le j \le m$ be the vertices of $P_n[K_m]$. First note that $diam(P_n[K_m]) = n - 1$. Without loss of generality, let x_{11} and x_{n1} be vertices with $d(x_{11}, x_{n1}) = diam(P_n[K_m]) = n - 1.$ x_{11} and x_{m1} dominates four copies of K_m . Let S_1 be an ADS of the remaining n - 4 copies of K_m . Every internal vertex x_{ij} , for some $2 \le i \le n, 1 \le j \le m$ is adjacent with at most three copy of K_n ; and so $|S_1| \ge \left\lceil \frac{n-4}{3} \right\rceil$, and

$$\gamma_{ap}(P_n[K_m]) \ge |S_1| + 2 \ge \left\lceil \frac{n-4}{3} \right\rceil + 2 \ge \left\lceil \frac{n-1}{3} \right\rceil + 1.$$
 (3.1)

Case(i): $n \equiv 0 \pmod{3}$ $S = \{x_{11}, x_{n1}\} \cup \{x_{41}, x_{71}, x_{(10)}, ..., x_{(n-2)}\}$ is an ADS; and so $|S| = \frac{n}{3} + 1$. Case(ii): $n \equiv 1 \pmod{3}$ $S = \{x_{11}, x_{n1}\} \cup \{x_{41}, x_{71}, x_{(10)1}, ..., x_{(n-3)1}\}$ is an ADS; and so $|S| = \frac{n-1}{3} + 1$. Case(iii): $n \equiv 2 \pmod{3}$ $S = \{x_{11}, x_{n1}\} \cup \{x_{41}, x_{71}, x_{(10)1}, ..., x_{(n-1)1}\}$ is an ADS; and so $|S| = \frac{n-2}{3} + 2$. In all the cases, we have

$$|S| = \left\lceil \frac{n-1}{3} \right\rceil + 1. \tag{3.2}$$

Hence $\gamma_{ap}(P_n[K_m]) = \left\lceil \frac{n-1}{3} \right\rceil + 1.$

Theorem 3.3. $\gamma_{ap}(P_n \boxtimes K_m) = \left\lceil \frac{n-1}{3} \right\rceil + 1, n \ge 2.$ **Proof.** The proof is similar to proof of Theorem 3.2.

Theorem 3.4. $\gamma_{ap}(P_n \otimes K_m) = n - 2$. **Proof.** Let $u_1, u_2, ..., u_n$ be the vertices of P_n and $v_1, v_2, ..., v_m$ be the vertices of K_n . Let $x_{ij} = (u_i, v_j), 1 \le i \le n, 1 \le j \le m$. Let S be any RDS of G. First note that $diam(P_n \otimes K_m) = n - 1$. Without loss of generality, let x_{11} and x_{n1} be vertices with $d(x_{11}, x_{n1}) = diam(P_n \otimes K_m) = n - 1$. Then x_{11} and $x_{n1} \in S$. Now x_{11} dominates x_{2j} and x_{n1} dominates $x_{(n-1)j}, 2 \le j \le m$. Also to dominate x_{1j} and $x_{nj}, 2 \le j \le m$, we must need x_{21} and x_{3j} , $2 \le j \le m$. Also note that every vertex in $P_n \otimes K_m$ dominates at least m vertices; and so to dominate the remaining nm - 6m vertices we need at least $\frac{nm-6m}{m}$ vertices. Hence $|S| \ge 4 + n - 6 \ge n - 2$.

Now $S = \{x_{11}, x_{n1}\} \cup \{x_{21}, x_{(n-1)1}\} \cup \{x_{42}, x_{52}, x_{62}, \dots, x_{(n-3)2}\}.$ Hence $|S| \le n-2.$

Theorem 3.5. $\gamma_{ap}(P_n \times G) = n + 1$, where G is a graph with $\Delta(G) = n_1 - 1$, where n_1 is the number of vertices in G, $n \leq m, n \geq 3$.

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of P_n and $v_1, v_2, ..., v_m$ be vertices of G. Let $x_{ij} = (u_i, v_j), 1 \le i \le n, 1 \le j \le m$ be the vertices of $P_n \times G$. First note that $diam(P_n \times G) = n$.

Without loss of generality, let x_{11} and x_{n2} be the vertices with $d(x_{11}, x_{n2}) = diam(P_n \times G) = n$.

To dominate the vertices in $G^{(i)}$ either we need one vertex of G or we need m vertices not in $G^{(i)}$.

If no vertex of $G^{(i-1)}$ lies in S, then to dominate all the vertices in $G^{(i)}$, we need m-vertices in $G^{(i-1)} \cup G^{(i+1)}$; and these m-vertices dominate at most 3m vertices in $G^{(i-2)} \cup G^{(i-1)} \cup G^{(i)} \cup G^{(i+1)} \cup G^{(i+2)}$.

Hence to dominate nm - (m+3) vertices in $\bigcup_{i=2}^{n-1} G^{(i)}$, we need at least $\frac{m}{3m} \times (nm - 1)$

 $(m+3)) = \left\lceil \frac{m(n-1)-3}{3} \right\rceil$ vertices.

But a single vertex in $G^{(i)}$ dominates all the vertices of $G^{(i)}$.

Hence to dominate (n-1)m-3 vertices in $\bigcup_{i=2}^{n-1} G^{(i)}$, it is enough to choose n-1 vertices.(one vertex in each $G^{(i)}$, $2 \le i \le n-1$). But $\left\lceil \frac{m(n-1)-3}{3} \right\rceil \ge n-1$. Hence $\gamma_{ap}(P_n \times G) \ge n-1+2=n+1$. Now $S = \{x_{11}, x_{n2}\} \cup \{x_{21}, x_{31}, ..., x_{n1}\}$ is an ADS; and so $\gamma_{ap}(P_n \times G) = n+1$.

Theorem 3.6. $\gamma_{ap}(P_n \boxtimes G) = \left\lceil \frac{n-1}{3} \right\rceil + 1, n \ge 2.$ **Proof.** The proof is similar to the proof of Theorem 3.2.

Theorem 3.7. $\gamma_{ap}(P_n[G]) = n + 1$. **Proof.** The proof is similar to proof of Theorem 3.5.

Theorem 3.8. $\gamma_{ap}(P_n \otimes G) = n - 2$, wher G is a graph with full degree vertex. **Proof.** The proof is similar to the proof of Theorem 3.5.

4. Bound For Antipodal Domination

Theorem 4.1. For any connected graph G with $\Delta(G) \leq n-r$, $\gamma_{ap}(G) \leq r+1$, $r \geq 2$.

Moreover equality holds iff one of the following conditions holds

- 1. |W| = 2, where W = V N[v], v is a vertex of maximum degree, $Z \neq \phi$, Z does not have a vertex of degree |Z| 1, where $Z = V (N[x] \cup N[y])$ where x and y be two vertices with d(x, y) = diam(G) and there is no $x \in V Z$ such that $zx \in E(G)$ for all $z \in Z$.
- 2. |W| = 1 and there exists $z \in V (N[u_1] \cup N[u_2])$, where u_1 and u_2 be two vertices with $d(u_1, u_2) = diam(G)$.

Proof. Let G be a connected graph with $\Delta(G) = n - r, r \ge 2$. Let v be a vertex of maximum degree.

Let $N(v) = \{u_1, u_2, ..., u_{n-r-1}, u_{n-r}\}$ and $V - N[v] = \{w_1, w_2, ..., w_{r-2}, w_{r-1}\}$. If the diametrical distance lies between u_i and w_j for some $i, j, 1 \le i \le n - r, 1 \le j \le r - 1$, then $S = \{w_1, w_2, ..., w_{r-1}, v, u_i\}$ is an ADS.

Otherwise, the diametrical-distance exists between w_i, w_j or v and w_i , or between u_i and u_j , for some i and j.

In these cases also, the set S is an ADS of G.

Hence $\gamma_{ap}(G) \leq r+1$.

Equality:

Assume that $\gamma_{ap}(G) = r + 1$.

Case 1: diameter exists between w_i and w_j , for some *i* and *j* Then V - N(v) is an ADS of G; and so $\gamma_{ap}(G) \leq r$, a contradiction. **Case 2:** diameter exists between w_i and v, for some iThen V - N(v) is an ADS of G; and so $\gamma_{av}(G) \leq r$, a contradiction. **Case 3:** diameter exists between u_i 's Then $diam(G) \leq 2$. If diam(G) = 1, then G is complete, a contradiction. If diam(G) = 2, then V - N(v) is an ADS of G; and so $\gamma_{ap}(G) \leq r$, a contradiction. **Case 4:** diameter exists between w_i and u_i , for some *i* and *j* Case 4.1: W have an edge Without loss of generality, $w_k w_l \in E(G)$ for some k and l. Without loss of generality, let $k \neq j$, now $S = (W - \{w_k\}) \cup \{u_i, v\}$ is an ADS of G; and so $\gamma_{ap}(G) \leq r$, a contradiction. **Case 4.1:** W does not have an edge Then every $w \in W$ is adjacent with some $u \in N(v)$. (since G is connected). Now $2 \leq diam(G) \leq 3$ (Since diameter exists between w_i and u_i ; and so $diam(G) \leq diam(G) < diam(G)$ 3; if diam(G) = 1, then G is complete). Case 4.2.1: diam(G) = 2Since $d(v, w_i) = 2$ for all *i*, we can apply case 2. Case 4.2.2: diam(G) = 3If $d(w_i, w_j) = 3 (= diam(G))$ for some $w_i, w_j \in W$, then we can apply case 1. Otherwise $d(w_i, w_j) = 2$ for every pair $w_i, w_j \in W$. Hence every pair of vertices in W have a common neighbour in N(v). Case 4.2.2.1: $|W| \ge 3$ Let $w_1, w_2, w_3 \in W$. Without loss of generality, let w_1 and u_1 be vertices with $d(w_1, u_1) = diam(G)$; and u_2 be a common neighbour of w_2 and w_3 . Then $(W - \{w_2, w_3\}) \cup \{u_1, u_2, v\}$ is an ADS; and so $\gamma_{ap}(G) \leq r$, a contradiction. Case 4.2.2.2: |W| = 2Then r = 3 and r + 1 = 4. Let $w_1, w_2 \in W$ and w_1, w_2 have a common neighbour in N(v) (say) u_2 . If $w_1w_2 \in E(G)$, then $\{w_1, u_1, v\}$ is an ADS; and so $\gamma_{ap}(G) \leq r$, a contradiction. If $w_2u_1 \in E(G)$, then $\{w_1, u_1, v\}$ is an ADS; and so $\gamma_{ap}(G) \leq r$, a contradiction. Now we shall prove that for every pair of vertices w_j, u_i with $d(w_i, u_i) = diam(G)$, the following 2 claims hold. Let $Z = V - (N[w_i] \cup N[u_i]).$ Claim 1 : Z does not have a vertex of degree |Z| - 1Claim 2 : There is no $x \in N(w_i) \cup N(u_i)$ such that $zx \in E(G)$ for all $z \in Z$

Without loss of generality, let w_1, u_1 be vertices with $d(w_1, u_1) = diam(G)$.

Already we have noted that $w_1w_2 \notin E(G)$ and $w_2u_1 \notin E(G)$.

Now to dominate w_2 , either we need $w_2 \in S$ or $u_2 \in S$.

Suppose w_2 is adjacent to all u_i 's in Z, then $\{w_1, u_1, w_2\}$ is an ADS; and so $\gamma_{ap}(G) \leq 3$, a contradiction.

Then w_2 is not adjacent to at least one u_i in Z.

Hence w_2 is not a vertex of degree |Z| - 1.

Suppose u_k , for some k is a vertex of degree |Z| - 1 in Z; then $\{w_1, u_1, u_k\}$ is an ADS; and so $\gamma_{ap}(G) \leq 3$, a contradiction.

Hence u_k is not adjacent to at least one vertex in Z.

Hence there is no vertex in Z of degree |Z| - 1.

Hence the claim holds.

Suppose if there exists $x \in N(u_1) \cup N(w_1)$ such that $zx \in E(G)$ for all $z \in Z$.

Hence $\{u_1, w_1, x\}$ is an ADS; and so $\gamma_{ap}(G) \leq 3$, a contradiction.

Hence claim 2 holds.

Case 4.2.2.3:
$$|W| = 1$$

Then r = 2; and so r + 1 = 3.

Without loss of generality, let w_1 and u_1 be vertices with $d(w_1, u_1) = diam(G)$, $w_1, u_1 \in S$.

Claim : There exists $z \in V - (N[w_1] \cup N[u_1])$

Assume the contrary that $N[w_1] \cup N[u_1] = V(G)$, then $W \cup \{u_1\}$ is an ADS; and so $\gamma_{ap}(G) \leq r$, a contradiction.

Then there exists $u_k \in V - (N[w_1] \cup N[u_1])$ adjacent to v or some vertices in $V - \{u_1, w_1\}$.

Now to dominate u_k we need at least one more vertex; and so $\gamma_{ap}(G) \ge 3$. Now $\{u_1, w_1, v\}$ is an ADS; and so $\gamma_{ap}(G) = 3 = r + 1$.

5. Characterization of graphs with $\gamma_{ap} = 2$

Definition 5.1. Let G_1 be a graph obtained by adding zero or more leaves to the pendant vertex of the path P_3 .

Let G_2 be a graph obtained by adding zero or more leaves to the pendant vertex of the path P_4

Theorem 5.1. For any connected graph G of order $n \ge 2$, $\gamma_{ap}(G) = 2$ iff $diam(G) \le 3$ and one of the following holds (i) G is complete (ii) diam(G) = 2 and G_1 is a spanning subgraph of G. (iii) diam(G) = 3 and G_2 is a spanning subgraph of G, where G_1 and G_2 are graphs defined in Definition 5.1. **Proof.** Assume that $\gamma_{ap}(G) = 2$. Let $S = \{u, v\}$ be a γ_{ap} -set of G. Then $N[u] \cup N[v] = V(G)$ (5.1)Case 1 : $uv \in E(G)$ Then G is complete; and so condition (i) holds. Case 2 : $uv \notin E(G)$ Case 2.1: $N(u) \cap N(v) \neq \phi$ Then there exists $w \in N(u) \cap N(v)$. Then G has $\langle P_3 \rangle$: uwv as an induced path. Now, by (1), it follows that diam(G) = 2 and G_1 is a spanning subgraph of G. Case 2.2 : $N(u) \cap N(v) = \phi$ Since G is connected, then there exists vertices $x_1 \in N(u)$ and $x_2 \in N(v)$ such that $x_1x_2 \in E(G)$. Then G has $\langle P_4 \rangle : ux_1x_2v$ as an induced path. Now, by (5.1), it follows that diam(G) = 3 and G_2 is a spanning subgraph of G. Conversely, assume that one of the following holds If G is complete, then $\gamma_{ap}(G) = 2$. If diam(G) = 2 and G_1 is a spanning subgraph of G, then G has $\langle P_3 \rangle : w_1 w_2 w_3$ (say). Also if there exists $x \in V - \{w_1, w_2, w_3\}$ such hat xw_1 or $xw_3 \in E(G)$. Now $\{w_1, w_2\}$ is an ADS; and so $\gamma_{ap}(G) = 2$. If diam(G) = 3 and G_2 is a spaning subgraph of G, then G has $\langle P_4 \rangle : w_1 w_2 w_3 w_4$ (say). Suppose there exists $x \in V - \{w_1, w_2, w_3, w_4\}$, such that xw_1 or $xw_4 \in E(G)$. Hence $\{w_1, w_4\}$ is an ADS; and so $\gamma_{ap}(G) = 2$.

Corollary 5.1. Let G be a disconnected graph. Then $\gamma_{ap}(G) = 2$ iff $G = 2K_1$.

References

- Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [2] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [3] Kayathri K., Kokilambal G., Antipodal Domination in Graphs, Proceedings of ReDeEM March 2015, Thiagarajar College, Madurai, (2015), 65-72.
- [4] Kokilambal G., Kayathri K., Antipodal Domination in terms of the order of graphs, Mathematical sciences international research journal, Vol. 5, No. 2, 27-30.