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Abstract: A dominating set S ⊆ V is said to be an Antipodal Dominating
Set(ADS) of a connected graph G if there exist vertices x, y ∈ S such that
d(x, y) = diam(G). The minimum cardinality of an ADS is called the
Antipodal Domination Number(ADN), and is denoted by γap(G). In this
paper, we determined the antipodal domination number for various graph prod-
ucts, bound for antipodal domination and characterize the graphs with γap(G) = 2.
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1. Introduction
Let G = (V,E) be a graph with vertex set V and edge set E. A set D ⊆ V

is a dominating set of G if every vertex not in D is adjacent to a vertex in D.
The domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set.

A thorough study of domination, with its many variations, appears in [1, 2]. We
introduced a new domination parameter called Antipodal domination by imposing
the antipodal condition on the dominating set [3].

Let G be a connected graph. A dominating set S of G is said to be an
Antipodal Dominating Set (ADS) if there exist vertices x, y ∈ S such that
d(x, y) = diam(G). The minimum cardinality of an ADS is called the Antipodal
Domination Number (ADN), and is denoted by γap(G).



340 South East Asian J. of Mathematics and Mathematical Sciences

It is easy to note that ADS is superhereditary and γ ≤ γap ≤ γ + 2. We have
determined γap for paths, complete bipartite graphs, generalized wheel, double
star, wounded spider and Jahangir graphs in [3]. Moreover, we derived a bound
for antipodal domination in graphs and characterize the graphs with γap(G) =
n, n− 1, n− 2. Also we derived a Nordhaus-Gaddum type bound for γap [4].

In this paper, we determined the antipodal domination number for various
graph products, bound for antipodal domination and characterize the graphs with
γap(G) = 2.

2. Ore’s Type Theorem

Theorem 2.1. A dominating set S is a minimal ADS iff for every u ∈ S one of
the following holds:
(i) u is an isolate in S
(ii) there exists a vertex v in V − S for which N(v) ∩ S = {u}
(iii) For every x, y ∈ S − {u}, d(x, y) 6= diam(G).
Proof. Let S be a minimal ADS.
Then for every u ∈ S, S − {u} is not an ADS of G.
Then one of the following holds:

(a) For every x, y ∈ S − {u}, d(x, y) 6= diam(G).
(b) S − {u} is not a dominating set.

Now (a) implies (iii) and (b) implies that S is a minimal dominating set; and so
(i) or (ii) holds.
Conversely, suppose that S is not a minimal ADS. Then there exists a vertex u ∈ S
such that S − {u} is an ADS.
Hence every vertex in V − (S − {u}) is adjacent to at least one vertex in S − {u};
and so condition(i) and (ii) does not hold.
Moreover there exists x, y ∈ S − {u} such that d(x, y) = diam(G); and so condi-
tion(iii) does not hold.

3. γap−for Graph Products

Theorem 3.1. γap(Pn ×Km) = n, n,m ≥ 3, n ≤ m.
Proof. Let u1, u2, ..., un be the vertices of Pn and v1, v2, ..., vm be vertices of Km.
Let xij = (ui, vj), 1 ≤ i ≤ n, 1 ≤ j ≤ m be the vertices of Pn ×Km.
First note that diam(Pn ×Km) = n.
Without loss of generality, let x11 and xnm be the vertices with
d(x11, xnm) = diam(Pn ×Km).

To dominate the vertices in K
(i)
m either we need one vertex of K

(i)
m or we need m

vertices not in K
(i)
m .
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If no vertex of K
(i−1)
m lies in S, then to dominate all the vertices in K

(i)
m , we need

m−vertices in K
(i−1)
m ∪K(i+1)

m ; and these m−vertices dominate at most 3m vertices
in K

(i−2)
m ∪K(i−1)

m ∪K(i)
m ∪K(i+1)

m ∪K(i+2)
m .

Hence to dominate (n− 2)m− 2 vertices in
n−1⋃
i=2

K
(i)
m , we need at least m

3m
×m(n−

2)− 2 =
⌈
m(n−2)−2

3

⌉
vertices.

But a single vertex in K
(i)
m dominates all the vertices of K

(i)
m .

Hence to dominate (n − 2)m − 2 vertices in
n−1⋃
i=2

K
(i)
m , it is enough to choose n − 2

vertices.(one vertex in each K
(i)
m , 2 ≤ i ≤ n− 1.

But
⌈
m(n−2)−2

3

⌉
≥ n− 2.

Hence γap(Pn ×Km) ≥ n− 2 + 2 = n.
Now S = {x11, x12, ..., x(n−1)1, xn2} is an ADS; and so γap(Pn ×Km) = n.

Theorem 3.2. γap(Pn[Km]) =
⌈
n−1
3

⌉
+ 1, n ≥ 2.

Proof. Let u1, u2, ..., un be the vertices on Pn and v1, v2, ..., vm be the vertices of
Km.
Let xij = (ui, uj), 1 ≤ i ≤ n, 1 ≤ j ≤ m be the vertices of Pn[Km].
First note that diam(Pn[Km]) = n− 1.
Without loss of generality, let x11 and xn1 be vertices with
d(x11, xn1) = diam(Pn[Km]) = n− 1.
x11 and xm1 dominates four copies of Km.
Let S1 be an ADS of the remaining n− 4 copies of Km.
Every internal vertex xij, for some 2 ≤ i ≤ n, 1 ≤ j ≤ m is adjacent with at most
three copy of Kn; and so |S1| ≥

⌈
n−4
3

⌉
, and

γap(Pn[Km]) ≥ |S1|+ 2 ≥
⌈
n− 4

3

⌉
+ 2 ≥

⌈
n− 1

3

⌉
+ 1. (3.1)

Case(i): n ≡ 0(mod 3)
S = {x11, xn1} ∪ {x41, x71, x(10) 1, ..., x(n−2)1} is an ADS; and so |S| = n

3
+ 1.

Case(ii): n ≡ 1(mod 3)
S = {x11, xn1} ∪ {x41, x71, x(10)1, ..., x(n−3)1} is an ADS; and so |S| = n−1

3
+ 1.

Case(iii): n ≡ 2(mod 3)
S = {x11, xn1} ∪ {x41, x71, x(10)1, ..., x(n−1)1} is an ADS ; and so |S| = n−2

3
+ 2.

In all the cases, we have

|S| =
⌈
n− 1

3

⌉
+ 1. (3.2)
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Hence γap(Pn[Km]) =
⌈
n−1
3

⌉
+ 1.

Theorem 3.3. γap(Pn �Km) =
⌈
n−1
3

⌉
+ 1, n ≥ 2.

Proof. The proof is similar to proof of Theorem 3.2.

Theorem 3.4. γap(Pn ⊗Km) = n− 2.
Proof. Let u1, u2, ..., un be the vertices of Pn and v1, v2, ..., vm be the vertices of
Kn.
Let xij = (ui, vj), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let S be any RDS of G.
First note that diam(Pn ⊗Km) = n− 1.
Without loss of generality, let x11 and xn1 be vertices with
d(x11, xn1) = diam(Pn ⊗Km) = n− 1.
Then x11 and xn1 ∈ S.
Now x11 dominates x2j and xn1 dominates x(n−1)j, 2 ≤ j ≤ m.
Also to dominate x1j and xnj, 2 ≤ j ≤ m, we must need x21 and x3j,
2 ≤ j ≤ m.
Also note that every vertex in Pn ⊗Km dominates at least m vertices; and so to
dominate the remaining nm− 6m vertices we need at least nm−6m

m
vertices.

Hence |S| ≥ 4 + n− 6 ≥ n− 2.
Now S = {x11, xn1} ∪ {x21, x(n−1)1} ∪ {x42, x52, x62, ..., x(n−3)2}.
Hence |S| ≤ n− 2.

Theorem 3.5. γap(Pn × G) = n + 1, where G is a graph with ∆(G) = n1 − 1,
where n1 is the number of vertices in G, n ≤ m, n ≥ 3.
Proof. Let u1, u2, ..., un be the vertices of Pn and v1, v2, ..., vm be vertices of G.
Let xij = (ui, vj), 1 ≤ i ≤ n, 1 ≤ j ≤ m be the vertices of Pn ×G.
First note that diam(Pn ×G) = n.
Without loss of generality, let x11 and xn2 be the vertices with
d(x11, xn2) = diam(Pn ×G) = n.
To dominate the vertices in G(i) either we need one vertex of G or we need m
vertices not in G(i).
If no vertex of G(i−1) lies in S, then to dominate all the vertices in G(i), we need
m−vertices in G(i−1) ∪G(i+1); and these m−vertices dominate at most 3m vertices
in G(i−2) ∪G(i−1) ∪G(i) ∪G(i+1) ∪G(i+2).

Hence to dominate nm− (m+ 3) vertices in
n−1⋃
i=2

G(i), we need at least m
3m
× (nm−

(m+ 3)) =
⌈
m(n−1)−3

3

⌉
vertices.

But a single vertex in G(i) dominates all the vertices of G(i).
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Hence to dominate (n − 1)m − 3 vertices in
n−1⋃
i=2

G(i), it is enough to choose n − 1

vertices.(one vertex in each G(i) , 2 ≤ i ≤ n− 1).

But
⌈
m(n−1)−3

3

⌉
≥ n− 1.

Hence γap(Pn ×G) ≥ n− 1 + 2 = n+ 1.
Now S = {x11, xn2} ∪ {x21, x31, ..., xn1} is an ADS; and so
γap(Pn ×G) = n+ 1.

Theorem 3.6. γap(Pn �G) =
⌈
n−1
3

⌉
+ 1, n ≥ 2.

Proof. The proof is similar to the proof of Theorem 3.2.

Theorem 3.7. γap(Pn[G]) = n+ 1.
Proof. The proof is similar to proof of Theorem 3.5.

Theorem 3.8. γap(Pn ⊗G) = n− 2, wher G is a graph with full degree vertex.
Proof. The proof is similar to the proof of Theorem 3.5.

4. Bound For Antipodal Domination

Theorem 4.1. For any connected graph G with ∆(G) ≤ n−r, γap(G) ≤ r+1, r ≥
2.
Moreover equality holds iff one of the following conditions holds

1. |W | = 2, where W = V −N [v], v is a vertex of maximum degree, Z 6= φ, Z
does not have a vertex of degree |Z| − 1, where Z = V − (N [x]∪N [y]) where
x and y be two vertices with d(x, y) = diam(G) and there is no x ∈ V − Z
such that zx ∈ E(G) for all z ∈ Z.

2. |W | = 1 and there exists z ∈ V − (N [u1] ∪ N [u2]), where u1 and u2 be two
vertices with d(u1, u2) = diam(G).

Proof. Let G be a connected graph with ∆(G) = n− r, r ≥ 2.
Let v be a vertex of maximum degree.
Let N(v) = {u1, u2, ..., un−r−1, un−r} and V −N [v] = {w1, w2, ..., wr−2, wr−1}.
If the diametrical distance lies between ui and wj for some i, j, 1 ≤ i ≤ n− r, 1 ≤
j ≤ r − 1, then S = {w1, w2, ..., wr−1, v, ui} is an ADS.
Otherwise, the diametrical-distance exists between wi, wj or v and wi, or between
ui and uj, for some i and j.
In these cases also, the set S is an ADS of G.
Hence γap(G) ≤ r + 1.
Equality:
Assume that γap(G) = r + 1.



344 South East Asian J. of Mathematics and Mathematical Sciences

Case 1: diameter exists between wi and wj, for some i and j
Then V −N(v) is an ADS of G; and so γap(G) ≤ r, a contradiction.
Case 2: diameter exists between wi and v, for some i
Then V −N(v) is an ADS of G; and so γap(G) ≤ r, a contradiction.
Case 3: diameter exists between ui’s
Then diam(G) ≤ 2.
If diam(G) = 1, then G is complete, a contradiction.
If diam(G) = 2, then V −N(v) is an ADS of G; and so γap(G) ≤ r, a contradiction.
Case 4: diameter exists between wj and ui, for some i and j
Case 4.1: W have an edge
Without loss of generality, wkwl ∈ E(G) for some k and l.
Without loss of generality, let k 6= j, now S = (W − {wk}) ∪ {ui, v} is an ADS of
G; and so γap(G) ≤ r, a contradiction.
Case 4.1: W does not have an edge
Then every w ∈ W is adjacent with some u ∈ N(v). (since G is connected).
Now 2 ≤ diam(G) ≤ 3 (Since diameter exists between wj and ui; and so diam(G) ≤
3; if diam(G) = 1, then G is complete).
Case 4.2.1: diam(G) = 2
Since d(v, wi) = 2 for all i, we can apply case 2.
Case 4.2.2: diam(G) = 3
If d(wi, wj) = 3(= diam(G)) for some wi, wj ∈ W , then we can apply case 1.
Otherwise d(wi, wj) = 2 for every pair wi, wj ∈ W .
Hence every pair of vertices in W have a common neighbour in N(v).
Case 4.2.2.1: |W | ≥ 3
Let w1, w2, w3 ∈ W .
Without loss of generality, let w1 and u1 be vertices with d(w1, u1) = diam(G);
and u2 be a common neighbour of w2 and w3.
Then (W − {w2, w3}) ∪ {u1, u2, v} is an ADS; and so γap(G) ≤ r, a contradiction.
Case 4.2.2.2: |W | = 2
Then r = 3 and r + 1 = 4.
Let w1, w2 ∈ W and w1, w2 have a common neighbour in N(v) (say)u2.
If w1w2 ∈ E(G), then {w1, u1, v} is an ADS; and so γap(G) ≤ r, a contradiction.
If w2u1 ∈ E(G), then {w1, u1, v} is an ADS; and so γap(G) ≤ r, a contradiction.
Now we shall prove that for every pair of vertices wj, ui with d(wj, ui) = diam(G),
the following 2 claims hold.
Let Z = V − (N [wi] ∪N [ui]).
Claim 1 : Z does not have a vertex of degree |Z| − 1
Claim 2 : There is no x ∈ N(wj) ∪N(ui) such that zx ∈ E(G) for all z ∈ Z
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Without loss of generality, let w1, u1 be vertices with d(w1, u1) = diam(G).
Already we have noted that w1w2 /∈ E(G) and w2u1 /∈ E(G).
Now to dominate w2, either we need w2 ∈ S or u2 ∈ S.
Suppose w2 is adjacent to all ui’s in Z, then {w1, u1, w2} is an ADS; and so
γap(G) ≤ 3, a contradiction.
Then w2 is not adjacent to at least one uj in Z.
Hence w2 is not a vertex of degree |Z| − 1.
Suppose uk, for some k is a vertex of degree |Z| − 1 in Z; then {w1, u1, uk} is an
ADS; and so γap(G) ≤ 3, a contradiction.
Hence uk is not adjacent to at least one vertex in Z.
Hence there is no vertex in Z of degree |Z| − 1.
Hence the claim holds.
Suppose if there exists x ∈ N(u1) ∪N(w1) such that zx ∈ E(G) for all z ∈ Z.
Hence {u1, w1, x} is an ADS; and so γap(G) ≤ 3, a contradiction.
Hence claim 2 holds.
Case 4.2.2.3: |W | = 1
Then r = 2; and so r + 1 = 3.
Without loss of generality, let w1 and u1 be vertices with d(w1, u1) = diam(G),
w1, u1 ∈ S.
Claim : There exists z ∈ V − (N [w1] ∪N [u1])
Assume the contrary that N [w1] ∪N [u1] = V (G), then W ∪ {u1} is an ADS; and
so γap(G) ≤ r, a contradiction.
Then there exists uk ∈ V − (N [w1] ∪ N [u1]) adjacent to v or some vertices in
V − {u1, w1}.
Now to dominate uk we need at least one more vertex; and so γap(G) ≥ 3.
Now {u1, w1, v} is an ADS; and so γap(G) = 3 = r + 1.

5. Characterization of graphs with γap = 2

Definition 5.1. Let G1 be a graph obtained by adding zero or more leaves to the
pendant vertex of the path P3.
Let G2 be a graph obtained by adding zero or more leaves to the pendant vertex of
the path P4

Theorem 5.1. For any connected graph G of order n ≥ 2, γap(G) = 2 iff
diam(G) ≤ 3 and one of the following holds
(i) G is complete
(ii) diam(G) = 2 and G1 is a spanning subgraph of G.
(iii) diam(G) = 3 and G2 is a spanning subgraph of G,
where G1 and G2 are graphs defined in Definition 5.1.
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Proof. Assume that γap(G) = 2.
Let S = {u, v} be a γap−set of G.
Then N [u]∪N [v] = V (G) (5.1)
Case 1 : uv ∈ E(G)
Then G is complete; and so condition (i) holds.
Case 2 : uv /∈ E(G)
Case 2.1: N(u) ∩N(v) 6= φ
Then there exists w ∈ N(u) ∩N(v).
Then G has 〈P3〉 : uwv as an induced path.
Now, by (1), it follows that diam(G) = 2 and G1 is a spanning subgraph of G.
Case 2.2 : N(u) ∩N(v) = φ
Since G is connected, then there exists vertices x1 ∈ N(u) and x2 ∈ N(v) such
that x1x2 ∈ E(G).
Then G has 〈P4〉 : ux1x2v as an induced path.
Now, by (5.1), it follows that diam(G) = 3 and G2 is a spanning subgraph of G.
Conversely, assume that one of the following holds
If G is complete, then γap(G) = 2.
If diam(G) = 2 and G1 is a spanning subgraph of G, then G has 〈P3〉 : w1w2w3(say).
Also if there exists x ∈ V − {w1, w2, w3} such hat xw1 or xw3 ∈ E(G).
Now {w1, w2} is an ADS; and so γap(G) = 2.
If diam(G) = 3 andG2 is a spaning subgraph ofG, thenG has 〈P4〉 : w1w2w3w4(say).
Suppose there exists x ∈ V − {w1, w2, w3, w4}, such that xw1 or xw4 ∈ E(G).
Hence {w1, w4} is an ADS; and so γap(G) = 2.

Corollary 5.1. Let G be a disconnected graph. Then γap(G) = 2 iff G = 2K1.
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