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Abstract: Let G be a simple graph with vertex set V and edge set E. BG,NINC,Kq

(G), known as boolean graph of G-first kind,simply denoted by BG1(G) is defined
as the graph with vertex set V ∪E and two vertices are adjacent if and only if they
correspond to adjacent vertices in G or to a vertex and an edge in G such that
the edge is not incident with the vertex. In this paper we give a bound for metric
dimension of BG1(G) and also find expression for metric dimension of boolean
graphs of Complete graphs and Star graphs. Finally, an algorithm for finding the
metric dimension of BG1(G) is established.
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1. Introduction
T. N. Janakiraman, M. Bhanumathi, S. Muthammai have contributed much

in the study of boolean graph operation and boolean graph [6]. Considering the
numerous adjacency relations 32 different kinds of graphs can be generated from
a single graph. Globally, like Facebook and Whatsapp, many other networks are
also flourishing. Hence, the study of such graphs are trending. The concept of
location set and location number have contemporary significance as these concepts
have applications in GPS, mobile phone technology and many other networks.
The concepts of location set and location number introduced by P J Slater are
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renamed as resoliving set and metric dimension respectively. These concepts also
have substantial functions in artificial intelligence which is the technology of this
era.
A graph G and its boolean graph BG1(G) is given below.

The graphs that are considered throughout this paper are simple, finite and undi-
rected. Harary [4] and Buckley and Harary [1] are referred for terminologies of
graph theory. Let G be a graph with vertex set V and edge set E. The distance
from a vertex u to another vertex v, denoted by d(u, v) is the length of any shortest
path from u to v. If there is no path from u to v, then d(u, v) = ∞. In a simple
connected graph G the eccentricity of a vertex v, radius of the graph G and the
diameter of the graph G respectively defined as follows.

e(v) = max
u∈V
{d(u, v)}, r(G) = min

v∈V
{e(v)}, diam(G) = max

v∈V
{e(v)}

If G is a graph with p vertices and q edges, then BG1(G) is a graph of order p+ q
and size q(p− 1).

Definition 1.1. [3] Let u,v and w be vertices of a simple connected graph G with
vertex set V . If d(u,w) 6= d(v, w), then w is said to resolve the vertices u and v.
The set S ⊆ V is called a resoliving set if for every pair of vertices of G there is a
resolving vertex in S.
If S = {s1, s2, · · · , sk} is a resoliving set, then every vertex u of G can be uniquely
identified by a k-vector CS(u) = (d(u, s1), d(u, s2), · · · , d(u, sk)). The vector CS(u)
is called The metric code or location code of u in V . Resolving set of a graph is
not unique, since every super set of a resoliving set is a resoliving set.

Definition 1.2. [3] A resoliving set with minimum cardinality is known as a
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metric base and this minimum cardinality is called the metric dimension of a graph
G, denoted by β(G).

Definition 1.3. Number of edges incident with a vertex is called degree of the
vertex. ∆(G) and δ(G) respectively denote the maximum and minimum degrees
among the vertices of a graph G.
Let G = (V,E) and vεV , then the corresponding vertex in BG1(G)is denoted by v′

and is called a point vertex . If eεE is an edge of G, then the corresponding vertex
in BG1(G) is denoted by e′ and is called a line vertex.

Theorem 1.1. [7] β(G) = 1 iff G is a path.

Theorem 1.2. [5] β(G) = n− 1 iff G = Kn.

Theorem 1.3. [2] log3(∆ + 1) ≤ β(G) ≤ n− diam(G).

2. Metric Dimension and Boolean Graph BG1(G)

Theorem 2.1. For any connected undirected non trivial graph β(BG1(G)) =1 iff
G = P3.
Proof. Let β(BG1(G)) =1. Assume that G is not a path. Then by definition of
BG1(G), it is also not a path. Hence by theorem 1.1, β(BG1(G)) > 1. This is a
contradiction and so G is a path. Let G = Pn and consider the following cases for
n.
Case 1 : n > 3.
Let e be an edge meeting a pendant vertex. Then there will be at least two vertices
v1 and v2 in G which are not meeting the edge e. Since G is connected there is
atleast one path v1u1u2 · · ·ukv2 from v1 to v2. Then v′1u

′
1u
′
2 · · ·u′kv′2e′v′1 is a cycle

in BG1(G). Hence by theorem 1.1, β(BG1(G)) > 1. This is a contradiction.
Case 2: n=3.
From the following figure BG1(P3) is P5. Therefore, β(BG1(G)) = β(P5) = 1

Case 3: n=2.
BG1(P2) is disconnected . Therefore, β(BG1(P2)) 6= 1.

Thus if β(BG1(G)) = 1, then G = P3.
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Conversely assume that G = P3, then from Figure BG1(P3) is P5 and hence,
β(BG1(P3)) = 1.

Theorem 2.2. The set of all point vertices of a boolean graph is a resoliving set.
Proof. Let G=(V,E ), where V = {v1, v2 · · · vp} and E = {e1, e2 · · · eq} .Let V ′

and E ′ are the sets of point vertices and line vertices. Let V ′ = {v′1, v′2 . . . v′p}
and E ′ = {e′1, e′2 · · · e′q}. CV ′(v′i) 6= CV ′(v′j) since the ith component of CV ′(v′i)
is zero and that of CV ′(v′j) is the distance from vi to vj which is at least one.
Thus, codes of point vertices from V ′ are different. Let e′ be a line vertex of
BG1(G) and assume e joins vm and vn in G, then in BG1(G) e′ is adjacent to
neither v′m nor v′n but it is adjacent to all the remaining point vertices. Then p-2
of components of CV ′(e′) are 1 and the remaining two components are more than
1. i.e., CV ′(e′) = (1, 1, · · · , a, 1, 1 · · · , b, 1 · · · 1), a and b occur respectively in mth

and nth positions. Now assume e′i and e′j are two line vertices of BG1(G) with
CV ′(e′i) = CV ′(e′j). This means components which are not 1 occur in same posi-
tions. That is ei and ej join same vertices in G and this contradicts the fact that
G is simple. Therefore, CV ′(e′i) 6= CV ′(e′j). Moreover, CV ′(v′i) 6= CV ′(e′j) since the
ith component of CV ′(v′i) = 0 and none of the components of CV ′(e′j) is zero. Hence
all the vertices of BG1(G)have different codes. So V ′ is a resoliving set.

Corollary 2.1. If G=(V,E) and BG1(G) is connected, then β(BG1(G)) ≤| V |.
Proof. Theorem 2.2 says V ′ is a resoliving set. Then by definition, metric dimen-
sion will not exceed the cardinality of V .

Theorem 2.3. If G=(V,E) and BG1(G) is connected, then log3(| E | +1) ≤
β(BG1(G) ≤| E | + | V | −diam(BG1(G)).
Proof. The degree of a point vertex in BG1(G) is | E | and that of a line vertex
is | V | −2 [1] ,implies that ∆ =| E |. Theorem 1.3 gives ,
log3(∆ + 1) ≤ β(G) ≤ n− diam(G). BG1(G) has | E | + | V | number of vertices
and then
log3(| E | +1) ≤ β(BG1(G) ≤| E | + | V | −diam(BG1(G)).

Corollary 2.2. if G=(V,E) and BG1(G) are connected, then
log3(| E | +1) ≤ β(BG1(G)) ≤| V |.
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Proof. Theorem 2.3 gives log3(| E | +1) ≤ β(BG1(G)).
Corollary 2.1 gives β(BG1(G)) ≤| V |.
Combining these results, log3(| E | +1) ≤ β(BG1(G)) ≤| V |.
Theorem 2.4. Let G=(V,E) and BG1(G) are connected, then β(G) < 3β(BG1(G)).
Proof. For any connected graph G,

β(G) ≤| V | −1 [6] (2.1)

Since G is connected,

| V | −1 ≤| E | (2.2)

Now log3 is an increasing function, Then (2.1) gives
log3(β(G)) ≤ log3(| V | −1)
≤ log3(| E |) ..... by (2.2)
< log3(| E |) + 1
≤ β(BG1(G)) · · · by corollary 2.2,
i.e., log3(β(G)) < β(BG1(G)) or
β(G) < 3β((BG1(G).

Theorem 2.5. If G is complete and | V |> 2, then any | V | −1 point vertices
form a resoliving set of BG1(G).
Proof. Let S = {v′1, v′2, · · · , v′i−1, v′i+1 · · · , v′n} be a set of | V | −1 point vertices.
v′i and all line vertices are out side S, then CS(v′i) = (1, 1, ..., 1) .Let e′ be a line
vertex, then there are two cases.
Case 1: (e is incident with vi),
Let e=vivj, In this case the distance from e′ to a point vertex other than v′i and v′j is
1. The distance from e′ to both v′i and v′j is 2. Hence CS(e′) = (1, 1, .., 1, 2, 1, ..., 1).
The position of 2 varies for each edge, so the codes are different.
Case 2: (e is not incident with vi),
Let e=vkvh,here the distances from e′ to both v′k and v′h are two and the distances
from e′ to other point vertices are one. Hence CS(e′) = (1, 1, ...2, ...2, 1...).
The 2’s occur in positions corresponding to v′k and v′h. The position of 2’s will vary
from line vertex to line vertex, so metric codes of all line vertices are different.
Thus , Metric codes of all point and line vertices are different in both the cases,
i.e., S is a resoliving set.

Theorem 2.6. If G is complete and | V |> 2, then β(BG1(G)) =| V | −1.
Proof. There are following possibilities to discuss in the proof
Case 1: (| V |= 3),
Theorem 2.5 implies, β(BG1(G)) ≤ 2. Also, BG1(G) is not a path. Therefore,
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β(BG1(G))=2.
Case 2: (| V |> 3),
Using Theorem 2.5, β(BG1(G))) ≤| V | −1. Assume that S is a resoliving set of
BG1(G) with less than | V | −1 vertices. Now following subcases are there to be
discussed.
Sub case 1: (S contains point vertices only),
Here, at least two point vertices lie outside S, say v′i and v′j.
CS(vi) = (1, 1, ..., 1) = CS(vj),which contradicts the fact that S is a resoliving set.
Hence, there must be at least one line vertex in S.
Sub case 2: (S contains line vertices only),
Choose two line vertices e′i and e′j out side from S. Then,
CS(e′i) = (2, 2, ..., 2) = CS(e′j), Which is not possible. Hence, there must be at least
one point vertex in S.
Sub case 3: ( S contains at least one point vertex and one line vertex),
In this case, there must be at least 3 point vertices out from S. Consider the
3C2 line vertices associated to these point vertices. If at least two of these line
vertices lie outside S, metric codes of those line vertices will be same and is of
the form (...,1,...,2,..,1,...) where the 1’s correspond to point vertices in S and 2’s
corresponding to line vertices of S.This is a contradiction ,so two or more line
vertices among the 3C2 must lie in S. Then at least four point vertices lie out side
S. Now consider the 4C2 line vertices corresponding to these point vertices. If any
two of them lie outside S, their codes will be same and that is not possible, so
there must be at least 7 point vertices outside S. Repeating the same arguments
for a finite number of times, the number of line vertices in S will be greater than or
equal to cardinality of S. Which is a contradiction as S cannot include line vertices
alone.
Therefore, there is no resoliving set for BG1(G) with less than | V | −1 elements.
i.e., β(BG1(G)) =| V | −1.

Corollary 2.3. If | V |> 3, then β(BG1(G)) =| V | −1 = β(G).
Proof. The graph G is complete implies β(G) =| V | −1 [4]. Now the result
follows from the Theorem 2.6.

Theorem 2.7. Let G be a star graph with | V |> 3, then the set of all point
vertices except any of the leaves is a resoliving set of BG1(G).
Proof. Let V={v1, v2..., vn} and v1 be the centre vertex of G.
Let S={v′1, v′2, · · · , v′i−1, v′i+1 · · · , v′n}. Here,CS(v′i) = (1, 2, 2..., 2).
Let e=v1vk, k 6= i. Then CS(e′) = (2, 1, ..., 2, ..., 1), where the 2’s occur in positions
corresponding to both v′1 and v′k . Every line vertex is uniquely determined by the
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vertex vk, So the metric code of each line vertex is also different. Therefore, S is a
resoliving set.

Corollary 2.4. If G is a star graph and | V |> 3, then β(BG1(G)) ≤| V | −1.

Theorem 2.8. If G is a star graph and | V |> 3, then β(BG1(G)) =| V | −1.
Proof. From corollary 2.4, β(BG1(G)) ≤| V | −1. Assume that BG1(G) has a
resoliving set S with fewer elements than | V | −1. Without loss of Generality,
assume that S have | V | −2 elements. Let e′i be the line vertex corresponding to
the edge ei = v1vi. Now consider the following | V | pairs of vertices of BG1(G).
(v′1, v

′
1), (v

′
2, e
′
2), (v

′
3, e
′
3)...(v

′
n, e
′
n). Eliminate the pairs if at least one component is

in S, then there remain minimum two pairs and which leads to following cases.
Case 1: ( v′1 is in S),
In this case, there must be two pairs (v′i, e

′
i) and (v′j, e

′
j), whose components are

not in S. Also, CS(e′i) = (2, 1, 1...2, ...2) = CS(e′j) where the 2’s corresponding to
v′1 and other line vertices in S. 1’s corresponding to point vertices in S. which is
not possible.
Case 2: ( v′1 is not in S),
Here v′1 and the components of at least one pair (v′i, e

′
i) are not in S. Then CS(v′1) =

(1, 1, ..., 2, 2...2) = CS(e′i), where the 1’s are corresponding to point vertices in S
and 2’s are corresponding to line vertices of S, It is a contradiction. Hence, S is
not a resoliving set. Therefore, β(BG1(G)) =| V | −1.

Corollary 2.5. If G is a star graph with | V |> 3, then β(BG1(G)) exceeds β(G)
by one.
Proof. If G is a Star graph, then
β(G) =| V | −2 (set of | V | −2 leaves is the smallest resoliving set).
From theorem 2.8 , β(BG1(G)) =| V | −1.

3. An Algorithmic Approach to Metric Dimension of BG1(G).

In this section an algorithm is established to find the metric dimension of the
boolean graph of a given graph G.The inputs are
1. number of vertices of G (Must be greater than 4)
2. aij,i¿j (upper triangular part of the adjacency matrix).
The out put part includes
1. adjacency matrix of BG1(G)
2. the distance matrix of BG1(G)
3. metric dimension of BG1(G)
4. a metric base( a smallest resoliving set) of BG1(G).
Step 1: Start.
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Step 2: Declare two dimensional arrays a, b and c.
Declare the integer variables e = 0, n, r, i, j, k, f lag = 0.
Step 3: Read n,the number of vertices in G.
Step 4: For i and j from 0 to n− 1, read aij for i > j, the upper triangular part
of adjacency matrix of G.
If aij=1,
{e = e+ 1 , dij = 1,
bi,n+e−1 = 0, bj,n+e−1 = 0, di,n+e−1 = 2, dj,n+e−1 = 2.
for k = 0 to k = n− 1 ,
if k is different from i and j,
then set bk,n+e−1 = 1, dk,n+e−1 = 1. }
If aij = 0, then set dij = 2, bij = 0.
Step 5: For i and j from n to n+ e− 1,
If i 6= j, then set bij = 0 and dij = 2.
Step 6: For all possible i and j; set aii = 0, bii = 0, dii = 0, aji = aij, bji = bij,
dji=dij.
Set r = 2
Step 7: If flag = 0, then go to step 8.
If flag = 1, then go to step 9.
Step 8: Consider all possible n+eCr combinations of vertices of BG1(G). Check
whether any combination is a resoliving set with the help of dij’s. If any of the
combination is a resoliving set, then set flag = 1, store the combination and goto
step 7.
Reset r = r + 1 and goto step 7.
Step 9: Print bij-adjacency matrix of BG1(G).
Print dij -distace matirix of BG1(G).
Print r -metric dimension of BG1(G).
Print the stored combination -metric base of BG1(G).
Step 10 Stop.
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