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Abstract: Let G = (V (G), E(G)) be a finite (p, q) graph and let (A, ∗) be a finite
non-abelain group with identity element 1. Let f : E(G) → Nq = {1, 2, . . . , q}
and let g : E(G) → A \ {1} be two edge labelings of G such that f is bijective.
Using these two labelings f and g we can define another edge labeling ` : E(G)→
Nq × A \ {1} by

`(e) := (f(e), g(e)) for all e ∈ E(G).

Define a relation ≤ on the range of ` by:

(f(e), g(e)) ≤ (f(e′), g(e′)) if and only if f(e) ≤ f(e′).

This relation ≤ is a partial order on the range of `. Let

{(f(e1), g(e1)), (f(e2), g(e2)), . . . , (f(ek), g(ek))}

be a chain in the range of `. We define a product of the elements of this chain as
follows:

k∏
i=1

(f(ei), g(ei)) := ((((g(e1) ∗ g(e2)) ∗ g(e3)) ∗ · · · ) ∗ g(ek).

Let u ∈ V and let N∗(u) be the set of all edges incident with u. Note that the
restriction of ` on N∗(u) is a chain, say (f(e1), g(e1)) ≤ (f(e2), g(e2)) ≤ · · · ≤
(f(en), g(en)). We define

`∗(u) :=
n∏

i=1

(f(ei), g(ei)).
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If `∗(u) is a constant, say a for all u ∈ V (G), we say that the graph G is A - magic.
The map `∗ is called an A -magic labeling of G and the corresponding constant a
is called the magic constant. In this paper, we consider the permutation group S3

and investigate graphs that are S3-magic.

Keywords and Phrases: A-magic labeling, non-abelian group, symmetric group
S3, S3-magic labeling.
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1. Introduction
A graph G is an ordered pair (V (G), E(G)), where V (G) is a finite nonempty

set whose elements are vertices and E(G) is a binary irreflexive and symmetric
relation on V (G) whose elements are called edges. For any abelian group A, written
additively, any mapping ` : E(G)→ A \ {0} is called a labeling. Given a labeling
on the edge set of G, one can introduce a vertex set labeling `+ : V (G) → A as
follows:

`+(v) =
∑

uv∈E(G)

`(uv)

A graph G is said to be A-magic if there is a labeling ` : E(G)→ A\{0} such that
for each vertex v, the sum of the labels of the edges incident with v are all equal
to the same constant;that is, `+(v) = a for some fixed a ∈ A. The original concept
of A-magic graph was introduced by Sedláček [5]. According to him, a graph G is
A magic if there exists an edge labeling on G such that

(i) distinct edges have distinct nonnegative labels; and

(ii) the sum of the labels of the edges incident to a particular vertex is the same
for all vertices

A natural question arises: given a nonabelian group A. Does there exist graphs
that admit A magic labelings? In this paper, we discuss this question.
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2. Main Results

Definition 1. [2] Let G = (V (G), E(G)) be a finite (p, q) graph and A be a finite
non-abelian group with identity element 1. Let f : E(G)→ Nq = {1, 2, . . . , q} and
let g : E(G) → A \ {1} be two edge labelings of G such that f is bijective. Define
an edge labeling ` : E(G) −→ Nq × A \ {1} by

l(e) := (f(e), g(e)), e ∈ E(G).

Define a relation ≤ on the range of ` by:

(f(e), g(e)) ≤ (f(e
′
), g(e′)) if and only if f(e) ≤ f(e′).

Then obviously the relation ≤ is a partial order on the range of `. Let {(f(e1), g(e1)),
(f(e2), g(e2)), . . . , (f(ek), g(ek))} be a chain in the range of `. We define the product
of the elements of this chain as follows:

k∏
i=1

(f(ei), g(ei)) := ((((g(e1) ∗ g(e2)) ∗ g(e3)) ∗ g(e4)) ∗ . . .) ∗ g(ek).

Let u ∈ V and let N∗(u) be the set of all edges incident with u. Note that the range
of `|N∗(u) is a chain, say (f(e1), g(e1)) ≤ (f(e2), g(e2)) ≤ · · · ≤ (f(en), g(en)). We
define

`∗(u) =
n∏

i=1

(f(ei), g(ei)). (2.1)

If `∗(u) is a constant, say a for all u ∈ V (G), we say that the graph G is A - magic.
The map `∗ is called an A -magic labeling of G and the corresponding constant a
is called the magic constant.

Example 2. Consider the cycle graph C3 = (uv, vw,wu) and the permutation
group S3. Note the group S3 is a nonabelian group of order 6 and its elements are
given by

ρ0 =

(
1 2 3
1 2 3

)
, µ1 =

(
1 2 3
1 3 2

)
,

ρ1 =

(
1 2 3
2 3 1

)
, µ2 =

(
1 2 3
3 2 1

)
,

ρ2 =

(
1 2 3
3 1 2

)
, µ3 =

(
1 2 3
2 1 3

)
.
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Define f : E(G) −→ Nq = {1, 2, 3} as f(uv) = 1, f(vw) = 2, f(uw) = 3 and
g : E(G)→ S3 \ {ρ0} as g(e) = ρ1 ,∀e ∈ E(G). Thus

`∗(u) = (1, ρ1)(3, ρ1) = ρ1ρ1 = ρ2.

Similarly `∗(v) = ρ1ρ1 = ρ2 and `∗(w) = ρ1ρ1 = ρ2. Thus C3 is S3 - magic with
magic constant ρ2.

In this paper, we consider the symmetric group S3 and investigate graphs that
are S3 −magic.
Theorem 3. Any regular graph is S3-magic.
Proof. Let G = (V (G), E(G)) be a regular graph with |E(G)| = q. Let g :
E(G)→ S3 \ {ρ0} be any constant map and let f : E(G)→ Nq = {1, 2, . . . , q} be
any bijective map. Then obviously, `∗ is a constant map. This completes the proof
of the theorem.

Corollary 4. For any n ≥ 3, the cycle graph Cn is S3-magic.

Corollary 5. For any n ≥ 2, the complete graph Kn is S3-magic.

Theorem 6. If the degrees of the vertices of graph G are either all even or odd,
then it is S3-magic.
Proof. Let G be a (p, q) graph. We consider two cases:

Case(i) Assume that all the vertices of G are of even degree. Define a map
g : E(G) → S3 \ {ρ0} by g(e) = µ1, ∀e ∈ E(G) and let f : E(G) → Nq be
any bijective map. Then obviously, G is S3-magic with `∗(u) = ρ0, for all
u ∈ V (G).

Case(ii) Assume that all vertices are of odd degree. The proof is exactly similar
to case (i) and the magic constant is µ1.

Corollary 7. All Eulerian graphs are S3-magic.
The graph obtained by joining a single pendant edge to each vertex of a cycle

is called a crown graph.

Corollary 8. A crown graph is S3-magic.
Proof. Since all the vertices of crown graph has odd degree (1 or 3), the proof
follows from Theorem 6.

Theorem 9. For any n ≥ 3, the path of order n is not S3-magic.
Proof. Let Pn = (u1, u2, . . . , un) be a path of order n. Assume to the contrary
that Pn admits a S3-magic labeling. This implies that, there exist two maps f and
g such that `∗(u1) = `∗(u2) = · · · = `∗(un) = a, for some a ∈ S3 \ {ρ0}. Since u1
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and un are vertices of degree 1, g(u1u2) = g(un−1un) = a. Let g(u2u3) = b, b ∈
S3 \ {ρ0} and let f(u1u2) = m1, f(u2u3) = m2 for some m1,m2 ∈ Nn−1. Now

`∗(u2) =

{
(m1, a)(m2, b), if m1 < m2,

(m2, b)(m1, a), if m2 < m1.

This implies that `∗(u2) = ab, if m1 < m2 and `∗(u2) = ba, if m2 < m1. This
implies that either a = ρ0 or b = ρ0, which is a contradiction. Hence the path Pn

is not S3-magic.

Comb graph is a graph obtained by joining a single pendant edge to each vertex
of a path Pn.

Theorem 10. Comb graphs are not S3-magic.
Proof. Let the vertices of Pn be u1, u2, . . . , un and the end vertex of each pendent
edge at ui be un+i. Suppose to the contrary that comb graph G is S3 magic. Then
by the definition, there exist functions f : E(G)→ N2n−1 and g : E(G)→ S3\{ρ0}
such that l∗(u1) = l∗(u2) = · · · = l∗(u2n) = a, for some a ∈ S3 \ {ρ0}. Since each
un+i, 0 ≤ i ≤ n are of degree 1, it follows that g(uiun+i) = a, 0 ≤ i ≤ n. This
implies that there exists b ∈ S3 \ {ρ0} such that g(u1u2) = b and l∗(u1) = a ∗ b or
l∗(u1) = b ∗ a according to the value of f(u1u2) and f(u1un+1). Since l∗(u1) = a,
it follows that ab = a or ba = a which implies either a = ρ0 or b = ρ0. This
contradiction shows that G is not S3-magic.

A splitting graph S(G) of a graph G is that graph obtained from G by adding
to G a new vertex z′ for each vertex z of G and joining z′ to the neighbors of z in
G.

Theorem 11. Splitting graph of a path Pn, where n ≥ 3 is S3-magic.
Proof. Let Pn be a path of order n, where n ≥ 3. Let u1, u2, . . . , un be the vertices
of Pn. Then S(Pn) has 2n vertices and 3n − 3 edges. Let un+i be the vertex
corresponding to the ith vertex in S(Pn). Observe that there are two pendant
edges in S(Pn), one with end points u2 and un+1 and the other with end points
un−1 and u2n. Here we consider 2 cases.

Case (i) n = 3.
Define f : E(S(P3)) → N6 as f(u1u2) = 1, f(u3u5) = 2, f(u2u3) =
3, f(u1u5) = 4, f(u2u4) = 5, f(u2u6) = 6 and g : E(S(P3))→ S3 \{ρ0} as

g(u1u2) = g(u3u5) = ρ1, g(u2u4) = g(u2u6) = µ1,

g(u1u5) = g(u2u3) = µ2.

Note that `∗(u) = µ1,∀u ∈ V (S(P3)). Hence the graph S(P3) is S3-magic.
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Case(ii) n > 3.
Define f : E(S(Pn))→ N3n−3 as

f(u1u2) = 1, f(u2un+1) = 2n, f(un−1un) = n,

f(uiun+i+1) = n+ i, 1 ≤ i ≤ n− 2, f(uiun+(i−1)) = i− 1, 3 ≤ i ≤ n,

f(uiui+1) = 2n+ (i− 1), 2 ≤ i ≤ n− 2, f(un−1u2n) = 2n− 1.

Now define g : E(S(Pn))→ S3 \ {ρ0} as

g(u1u2) = ρ1, g(u2un+1) = µ1 = g(un−1u2n),

g(uiui+1) = µ1, 2 ≤ i ≤ n− 2, g(uiun+(i+1)) = µ2, 1 ≤ i ≤ n− 2,

g(un−1un) = µ2, g(uiun+(i−1)) = ρ1, 3 ≤ i ≤ n.

Obviously, S(Pn) is S3-magic with magic constant µ1.

This completes the proof of the theorem.

Theorem 12. The star graph K1,n is S3-magic if and only if either n is odd or
n ≡ 1(mod 3).
Proof. Let G = K1,n. First, assume that n is odd. Define g : E(G) → S3 \ {ρ0}
by g(e) = µ1 ,∀e ∈ E(G). Let f : E(G) → Nn = {1, 2, . . . , n} be any bijection.
Obviously `∗(u) = µ1, ∀u ∈ V (G). Similarly, we can prove that if n ≡ 1(mod 3)
then K1,n is S3-magic.

Conversely, assume that K1,n is S3-magic. Thus, each pendant edge should be
labeled by the same element of S3 under the map g. Hence g : E(G) → S3 \ {ρ0}
must be a constant map. Let u1, u2, . . . , un be the vertices of K1,n having degree
1 and let v be the vertex of K1,n having degree n. Let f : E(G) → {1, 2, 3, . . . , n}
be a bijection which make K1,n S3-magic. By our assumption `∗(ui) = a, for
some a ∈ S3 \ {ρ0}, i = 1, 2, . . . , n. Thus `∗(v) = `∗(ui) = a. This implies that
aa · · · a︸ ︷︷ ︸
n times

= a. Since the maximum order of an element in S3 is 3 this implies that

n ≡ 1 (mod 3) or n is odd. Hence the proof.

Theorem 13. For m,n ≥ 2, the complete bipartite graph Km,n is S3-magic.
Proof. Let G be the graph Km,n. Here we consider four cases.

Case (i) Assume that m and n have the same parity. We can define g : E(G)→
S3 \ {ρ0} as g(e) = µ1,∀e ∈ E(G) and f : E(G) → {1, 2, . . . ,m + n} be any
bijection. Then obviously `∗(u) is either ρ0 or µ1,∀u ∈ V (G).
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Case(ii) Suppose m ≡ 0(mod 2) and n ≡ 0(mod 3). Then m = 2k for some k
and n = 3l for some l. Let U := {u1, u2, . . . , u2k} and V := {v1, v2, . . . , v3l}
be the two partite sets of Km,n. Define g : E(G)→ S3 \ {ρ0} by

g(uivj) =

{
ρ1, if i is odd,

ρ2, if i is even.

Now define f : E(G)→ {1, 2, . . . ,m+ n} by
f(uivj) = (i− 1)m+ j, 1 ≤ i ≤ 2k, 1 ≤ j ≤ 3l. Obviously, `∗(u) = ρ0, ∀u ∈
V (G).

Case (iii) Assume that m ≡ 0(mod 2) , n ≡ 2(mod 3) and n odd. Note that
in this case n = 5 + (k − 1)6, k ∈ N. Let U = {u1, u2, . . . , u2l} and V =
{v1, v2, . . . , vn}, where 2l = m be the two partite sets of Km,n. Define g :
E(G)→ S3 \ {ρ0} by:

g(uivj) =


ρ1, if i is odd and j ≤ n− 2,

ρ2, if i is even and j ≤ n− 2,

µ1, if j = n− 1, n.

Now define f : E(G)→ Nm+n = {1, 2, . . . ,m+ n} by
f(uivj) = (i− 1)m+ j, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
Then `∗(u) = ρ0, ∀u ∈ V (G).

Case(iv) Assume that m ≡ 0(mod 2), n ≡ 1(mod 3) and n is odd. Here the
number n is of the form 7+(k−1)6, where k ∈ N. Define g : E(G)→ S3\{ρ0}
by

g(uivj) =



ρ1, if i and j odd, j 6= 3, j ≤ 6,

ρ2, if i is odd and j = 3,

µ1, if j is even,

µ1, if j ≥ 6,

ρ2, if i is even j is odd, j 6= 3, j ≤ 6,

ρ1, if i is even and j = 3.

Now define the map f : E(G) → Nm+n = {1, 2, . . . ,m + n} by f(uivj) =
(i−1)m+ j, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then `∗(u) = ρ0, ∀u ∈
V (G).
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This completes the proof.
A wheel graph Wn of order n + 1, is a graph that contains a cycle of order n

and for which every vertex in the cycle is connected to one other vertex (which is
known as the hub). The edges of a wheel which include the hub are called spokes.
Equivalently, Wn = K1 + Cn.

Theorem 14. If n ≥ 3, the wheel Wn is S3-magic.
Proof. Let G be the wheel Wn and let the vertices of Cn be u1, u2, . . . , un and the
vertex of K1 be k. Here we consider two cases:

Case(i) Assume that n is odd. Define g : E(G)→ S3 \ {ρ0} as follows:
Label each spokes by µ1 and all the outer edges by µ2 and define f : E(G)→
N2n = {1, 2, . . . , 2n} as:

f(kui) = i, i = 1, 2, . . . , n, f(uiui+1) = n+ i, i < n, f(unu1) = 2n.

Then obviously, `∗(e) = µ1, for all e ∈ E(Wn).

Case(ii) Suppose n is even. Define g : E(G)→ S3 \ {ρ0} by labeling each spokes
by µ1 and all the outer edges by µ2 and ρ2 alternatively such that

g(uiui+1) =

{
µ2, if i is odd,

ρ2, if i is even.
, g(unu1) = ρ2.

Now for i = 1, 2, . . . , n, define f : E(G)→ N2n as:

f(kui) = i, f(u1un) = 2n, f(uiui+1) =

{
(i+1)

2
+ n, if i is odd,

i
2

+ 3n
2
, if i is even.

Hence the wheel Wn becomes S3-magic with magic constant ρ0.

A shell Sn,n−3 of width n is a graph obtained by taking n− 3 concurrent chords
in a cycle Cn of n vertices. The vertex at which all chords are concurrent is called
apex. The two vertices adjacent to the apex have degree 2, apex has degree n− 1
and all other vertices have degree 3.

Theorem 15. Shell graphs Sn,n−3 are S3-magic.
Proof. Let G be the shell graph Sn,n−3 and denote the vertices of Sn,n−3 by
u1, u2, . . . , un. There are n vertices and 2n − 3 edges in Sn,n−3. Without loss of
generality let the apex be u1. Here we consider two cases:
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Case(i) n is even.
We define f : E(G)→ N2n−3 as follows:

f(u1u2) = 1, f(unu1) =
n

2
+ 1, f(un−1un) = 2n− 3,

f(uiui+1) =

{
i
2

+ 1, if i is even and 2 ≤ i ≤ n− 2,
n+i+1

2
, if i is odd and 3 ≤ i ≤ n− 3.

f(u1un−1) = n and f(u1ui) = n+ (i− 2) where i 6= n− 1, 2.

and now define g : E(G)→ S3 \ {ρ0} as
g(u1u2) = ρ1, g(u1un) = ρ2, g(un−1un) = µ1, g(u1un−1) = µ2,
g(u1ui) = µ1, where i 6= 2, n− 1, n.

g(uiui+1) =

{
µ2, if i is odd and 3 ≤ i ≤ n− 3,

µ3, if i is even and 2 ≤ i ≤ n− 1.

Under these maps, shell graphs Sn,n−3 with even number of vertices are S3-
magic with magic constant µ2.

Case(ii) n is odd.

Define f(uiui+1) =

{
i
2
, if i is even,

n+i
2
, if i is odd.

,f(u1un) = n and f(u1ui) = n+(i−

2), where i 6= 2, n.
Now define g(u1u2) = g(unu1) = g(u2u3) = g(un−1un) = ρ1, g(u1ui) = µ1,

where i 6= 2, n and g(uiui+1) =

{
µ3, if i is odd,

ρ1, if i is even.

Thus the shell graph Sn,n−3 with odd number of vertices becomes S3-magic
with magic constant ρ2.

Hence the proof.
When k copies of Cn share a common edge it will form the n − gon book of k

pages and is denoted by B(n, k).

Theorem 16. For any n ≥ 3 and k ≥ 1, the n−gon book of k pages are S3-magic.
Proof. Here we consider two cases:

Case(i) Suppose k is odd. Then all the vertices of B(n, k) will be even. De-
fine g(e) = µ1, ∀e ∈ E(B(n, k)) and f as any bijection from E(G) to
{1, 2, . . . , k(n − 1) + 1}. Then the graph B(n, k) becomes S3-magic with
magic constant ρ0.
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Case(ii) Suppose k is even. We denote the common edge of B(n, k) by c. Now
define the labeling g : E(B(n, k))→ S3 \ {ρ0} as follows:
Let g(c) = ρ1 also label the outer edges of the first page by µ1 and all
other edges by µ3. Denote the edges in the first page by c, a1, a2, . . . , an−1.
Now define f(c) = 1 and f(ai) = i + 1 and map other edges to the set
{n+ 1, . . . , k(n− 1) + 1} such that f(ei) 6= f(ej), ei, ej ∈ E(B(n, k)). Then
obviously, `∗(v) = ρ0, ∀v ∈ V (B(n, k)).

This completes the proof of the theorem.

Theorem 17. The cycle graph Cn with a pendant edge is S3-magic.
Proof. Let us denote the vertices of Cn by u1, u2, . . . , un. Without loss of generality
assume that the pendant edge e is on the vertex u1 and let its other end vertex be
un+1.

Case(i) Suppose n is odd. Define g : E(G)→ S3 \ {ρ0} as

g(uiui+1) =

{
µ1, if i is odd and i < n,

µ3, if i is even and i < n.
,

g(unu1) = µ1 and g(u1un+1) = ρ2.

Now define

f(uiui+1) =

{
i+1
2
, if i is odd and i < n,

n+1
2

+ i
2
, if i is even and i < n.

,

f(unu1) =
n+ 1

2
, f(u1un+1) = n+ 1.

Hence the graph is S3-magic with magic constant ρ2.

Case(ii) Suppose n is even. Here we define

g(uiui+1) =

{
µ3, if i is odd and i < n, i 6= 1

µ2, if i is even and i 6= n.
,

g(u1u2) = µ1 = g(unu1) and g(u1un+1) = ρ1.

Moreover, define f as:

f(u1u2) = 1, f(unu1) = n, f(u1un+1) = n+ 1,

f(uiui+1) =

{
i
2

+ 1, if i even and i < n,
n
2

+ i−1
2
, if i is odd i 6= 1 and i < n.

Hence the magic constant is ρ1.
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This completes the proof of the theorem.
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