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Abstract: Let G = (V(G), E(G)) be a finite (p, q) graph and let (A, %) be a finite
non-abelain group with identity element 1. Let f : E(G) - N, = {1,2,...,q}
and let g : E(G) — A\ {1} be two edge labelings of G such that f is bijective.
Using these two labelings f and g we can define another edge labeling ¢ : E(G) —
N, x A\ {1} by

le):=(f(e),g(e)) forall e e E(G).

Define a relation < on the range of ¢ by:

(f(e),g(e)) < (f(€),9(€)) if and only if ~ f(e) < f(€).

This relation < is a partial order on the range of ¢. Let

{(f(er), gler)), (f(e2), g(e2)), -, (f(ex), gler))}

be a chain in the range of /. We define a product of the elements of this chain as
follows:

k

[I(f (e gle) := ((((gler) * glez)) = glez)) * - -) * gle)-

i=1
Let u € V and let N*(u) be the set of all edges incident with u. Note that the
restriction of ¢ on N*(u) is a chain, say (f(e1),g(e1)) < (f(e2),g(es)) < -+ <
(f(en),g(en)). We define
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If ¢*(u) is a constant, say a for all u € V(G), we say that the graph G is A - magic.
The map ¢* is called an A -magic labeling of G and the corresponding constant a
is called the magic constant. In this paper, we consider the permutation group Ss
and investigate graphs that are S3-magic.

Keywords and Phrases: A-magic labeling, non-abelian group, symmetric group
S3, S3-magic labeling.
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1. Introduction

A graph G is an ordered pair (V(G), E(G)), where V(G) is a finite nonempty
set whose elements are vertices and E(G) is a binary irreflexive and symmetric
relation on V' (G) whose elements are called edges. For any abelian group A, written
additively, any mapping ¢ : F(G) — A\ {0} is called a labeling. Given a labeling
on the edge set of G, one can introduce a vertex set labeling ¢* : V(G) — A as

follows:
F)y=Y_ lw)

weE(G)

A graph G is said to be A-magic if there is a labeling ¢ : E(G) — A\ {0} such that
for each vertex v, the sum of the labels of the edges incident with v are all equal
to the same constant;that is, £ (v) = a for some fixed a € A. The original concept
of A-magic graph was introduced by Sedlacek [5]. According to him, a graph G is
A magic if there exists an edge labeling on G such that

(i) distinct edges have distinct nonnegative labels; and

(ii) the sum of the labels of the edges incident to a particular vertex is the same
for all vertices

A natural question arises: given a nonabelian group A. Does there exist graphs
that admit A magic labelings? In this paper, we discuss this question.
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2. Main Results

Definition 1. [2] Let G = (V(G), E(QG)) be a finite (p,q) graph and A be a finite
non-abelian group with identity element 1. Let f : E(G) — N, = {1,2,...,q} and
let g: E(G) — A\ {1} be two edge labelings of G such that f is bijective. Define
an edge labeling £ : E(G) — N, x A\ {1} by

l(e) := (f(e), g(e)), e € E(G).

Define a relation < on the range of £ by:

(f(e) g(e)) < (fle),g(e")) if and only if ~ f(e) < f(€').

Then obviously the relation < is a partial order on the range of €. Let {(f(e1), g(e1)),
(f(e2),g(e2)), ..., (f(ex), g(er))} be a chain in the range of €. We define the product
of the elements of this chain as follows:

k

[I(r (e glen) = ((((g(er) * glea)) * gles))  glea)) = ...) * glew).

=1

Letw € V and let N*(u) be the set of all edges incident with w. Note that the range

fol; N-() 15 @ chain, say (f(e1),g(e1)) < (f(e2),g(e2)) < -+ < (flen) glen)). We
(u) = H(f(ei),g(ei)) (2.1)

If *(u) is a constant, say a for allu € V(G), we say that the graph G is A - magic.
The map ¢* is called an A -magic labeling of G and the corresponding constant a
1s called the magic constant.

Example 2. Consider the cycle graph C5 = (uv,vw,wu) and the permutation
group S3. Note the group S5 is a nonabelian group of order 6 and its elements are

given by
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Define f : E(G) — N, = {1,2,3} as f(uv) = 1, f(vw) = 2, f(uw) = 3 and
g: E(G) — S3\{po} as g(e) = p1,Ve € E(G). Thus
C(u) = (1, p1)(3, p1) = p1p1 = po.

Similarly ¢*(v) = p1p1 = p2 and £*(w) = p1p1 = po. Thus C5 is S3 - magic with
magic constant ps.

In this paper, we consider the symmetric group S5 and investigate graphs that
are S3 — magic.

Theorem 3. Any regular graph is S3-magic.

Proof. Let G = (V(G), E(G)) be a regular graph with |E(G)| = ¢. Let g :
E(G) — S5\ {po} be any constant map and let f : E(G) - N, = {1,2,...,q} be
any bijective map. Then obviously, ¢* is a constant map. This completes the proof
of the theorem.

Corollary 4. For any n > 3, the cycle graph C,, is Ss-magic.
Corollary 5. For any n > 2, the complete graph K,, is S3-magic.

Theorem 6. If the degrees of the vertices of graph G are either all even or odd,
then it is Ss-magic.
Proof. Let G be a (p,q) graph. We consider two cases:

Case(i) Assume that all the vertices of G are of even degree. Define a map
g: E(G) = S3\ {po} by gle) = 1, Ve € E(G) and let f : E(G) — N, be
any bijective map. Then obviously, G is Ss-magic with ¢*(u) = po, for all
u € V(Q).

Case(ii) Assume that all vertices are of odd degree. The proof is exactly similar
to case (i) and the magic constant is .

Corollary 7. All Fulerian graphs are Sz-magic.
The graph obtained by joining a single pendant edge to each vertex of a cycle
is called a crown graph.

Corollary 8. A crown graph is S3-magic.
Proof. Since all the vertices of crown graph has odd degree (1 or 3), the proof
follows from Theorem 6.

Theorem 9. For any n > 3, the path of order n is not S3-magic.

Proof. Let P, = (u1,us,...,u,) be a path of order n. Assume to the contrary
that P, admits a Ss-magic labeling. This implies that, there exist two maps f and
g such that £*(uy) = (*(ug) = --- = *(u,) = a, for some a € S5\ {po}. Since uy
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and u,, are vertices of degree 1, g(ujus) = g(un_1u,) = a. Let g(uguz) = b, b €
Sz \ {po} and let f(ujus) = my, f(uguz) = my for some my,my € N, ;. Now
0+ () = (mq,a)(ms,b), %f my < Ma,
(mag,b)(mq,a), if mo < my.

This implies that ¢*(ug) = ab, if my < my and ¢*(up) = ba, if mg < my. This
implies that either a = py or b = py, which is a contradiction. Hence the path P,
is not S3-magic.

Comb graph is a graph obtained by joining a single pendant edge to each vertex
of a path P,.

Theorem 10. Comb graphs are not Ss-magic.
Proof. Let the vertices of P, be uy,us, ..., u, and the end vertex of each pendent
edge at u; be u,;. Suppose to the contrary that comb graph G is S3 magic. Then
by the definition, there exist functions f : E(G) — Na,—1 and g : E(G) — S5\ {po}
such that I*(uy) = {*(ug) = - -+ = [*(ug,) = a, for some a € S3\ {po}. Since each
Unti, 0 < i < n are of degree 1, it follows that g(u;u,4;) = a,0 < i < n. This
implies that there exists b € S5\ {po} such that g(ujus) = b and I*(uy) = a*b or
I*(u1) = b* a according to the value of f(ujus) and f(uit,41). Since I*(uy) = a,
it follows that ab = a or ba = a which implies either a = py or b = py. This
contradiction shows that G is not S;-magic.

A splitting graph S(G) of a graph G is that graph obtained from G by adding
to G a new vertex 2’ for each vertex z of G and joining 2z’ to the neighbors of z in

G.

Theorem 11. Splitting graph of a path P,, where n > 3 is S3-magic.

Proof. Let P, be a path of order n, where n > 3. Let uq, us, ..., u, be the vertices
of P,. Then S(P,) has 2n vertices and 3n — 3 edges. Let u,4; be the vertex
corresponding to the i*" vertex in S(P,). Observe that there are two pendant
edges in S(P,), one with end points us and u,; and the other with end points
Up—1 and ug,. Here we consider 2 cases.

Case (i) n = 3.
Define f : E(S(Ps)) — No as f(uiug) = 1, flugus) = 2, fluguz) =
3, fluius) =4, f(uguy) =5, f(ugug) =6and g: E(S(P3)) — S3\{po} as

g(urug) = (U3U5) = p1, g(usus) = g(uoue) = pui1,
1Us U2U

g
g(urus) = g(uguz) = ps.

Note that ¢*(u) = py,Vu € V(S(Ps)). Hence the graph S(Ps) is Ss-magic.
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Case(ii) n > 3.
Define f : E(S(F,)) — N3n—3 as

flurug) =1, f(ugtingr) = 2n, f(up-1u,) = n,
fuitpgiz) =n+i, 1<i<n—=2, f(uupig-1)) =i—1, 3<i<n,
fluuipr) =2n+ (i —1), 2<i<n—2,f(up_1u2,) =2n — 1.

Now define g : E(S(P,)) — S5\ {po} as

g(uruz) = p1, g(ugtni1) = p1 = g(Un—1U2),
g(uittig1) = p1, 2 <8 <n—2, g(Uillpy(ir1)) = M2, 1 <0 <n—2,
9(Un_1tp) = pi2, g(Uitlpii-1)) = p1, 3 <0 < n.

Obviously, S(P,) is S3-magic with magic constant j.

This completes the proof of the theorem.

Theorem 12. The star graph K, is Ss-magic if and only if either n is odd or
n = 1(mod 3).

Proof. Let G = K;,. First, assume that n is odd. Define g : E(G) — S3\ {po}
by g(e) = p1,Ve € E(G). Let f: E(G) - N, = {1,2,...,n} be any bijection.
Obviously ¢*(u) = pu1, Yu € V(G). Similarly, we can prove that if n = 1(mod 3)
then K, is Ss-magic.

Conversely, assume that K, is Ss-magic. Thus, each pendant edge should be
labeled by the same element of S3 under the map g. Hence g : E(G) — S5\ {po}
must be a constant map. Let wuy,us,...,u, be the vertices of K, having degree
1 and let v be the vertex of K, having degree n. Let f : E(G) — {1,2,3,...,n}
be a bijection which make K, Ss-magic. By our assumption ¢*(u;) = a, for
some a € S3 \ {po}, i = 1,2,...,n. Thus ¢*(v) = ¢*(u;) = a. This implies that
aa---a = a. Since the maximum order of an element in S5 is 3 this implies that

n times
n = 1(mod 3) or n is odd. Hence the proof.

Theorem 13. For m,n > 2, the complete bipartite graph K,,, is Ss-magic.
Proof. Let G be the graph K,,,. Here we consider four cases.

Case (i) Assume that m and n have the same parity. We can define g : E(G) —
Ss\ {po} as g(e) = u1,Ve € E(G) and f: E(G) — {1,2,...,m + n} be any
bijection. Then obviously ¢*(u) is either py or pi,Vu € V(G).
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Case(ii) Suppose m = 0(mod 2) and n = 0(mod 3). Then m = 2k for some k
and n = 3l for some [. Let U := {uy,ug,...,ug} and V := {vy,v9,...,v3}
be the two partite sets of K,,,. Define g : E(G) — S5\ {po} by

p1, if 7 is odd,
g(u;) =

p2, if 7 iseven.

Now define f: F(G) — {1,2,...,m +n} by
fluw;) =G —1)m+j, 1 <i <2k, 1<j <3l Obviously, £*(u) = py, Yu €
V(G).

Case (iii) Assume that m = 0(mod 2) , n = 2(mod 3) and n odd. Note that
in this case n = 5+ (k. — 1)6, k € N. Let U = {uy,uz,...,uy} and V =
{vi1,v9,...,v,}, where 21 = m be the two partite sets of K,,,. Define g :
E(G) = S5\ {po} by:

p1, if iisodd and j <n — 2,
g(uvj) = < po, if i iseven and j < n — 2,

wi, if j=n—1,n.

Now define f : E(G) = Npyn = {1,2,...,m+n} by
fluwj)) =G —1)m+j,i=1,2,....m;j=1,2,...,n.
Then 0*(u) = py, Yu € V(G).

Case(iv) Assume that m = 0(mod 2), n = 1(mod 3) and n is odd. Here the
number 7 is of the form 74 (k—1)6, where & € N. Define g : E(G) — S3\{po}
by

(p1, if @ and j odd,j #3,j <6,

p2, if 4 isodd and j =3,

w1, if j is even,

p, it j > 6,

p2, if 7 iseven j isodd, j# 3, 7 <6,

g(uvy) =

p1, if ¢ iseven and j = 3.

Now define the map f : E(G) = Npyin = {1,2,...,m + n} by f(uv;) =
(t—1)m+j, wherei =1,2,...,mand j =1,2,...,n. Then £*(u) = po, Yu €
V(G).
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This completes the proof.

A wheel graph W, of order n + 1, is a graph that contains a cycle of order n
and for which every vertex in the cycle is connected to one other vertex (which is
known as the hub). The edges of a wheel which include the hub are called spokes.
Equivalently, W,, = Ky 4+ C,.

Theorem 14. If n > 3, the wheel W,, is S3-magic.

Proof. Let GG be the wheel W,, and let the vertices of C), be uy, us, ..., u, and the
vertex of K7 be k. Here we consider two cases:

Case(i) Assume that n is odd. Define g : E(G) — S5\ {po} as follows:
Label each spokes by 1 and all the outer edges by us and define f : E(G) —
Ny, ={1,2,...,2n} as:

f(kuz) = iv 1= 1,2,...,7’L, f(uiui+1) = 7’L+Z, 1 < n, f(unul) = 2n.
Then obviously, £*(e) = u1, for all e € E(W,,).

Case(ii) Suppose n is even. Define g : E(G) — S5\ {po} by labeling each spokes
by @1 and all the outer edges by ps and ps alternatively such that

Wo, if 4 is odd,
g(uitliy1) = e » 9(upur) = po.
po, if i is even.

Now for i =1,2,...,n, define f: E(G) — N, as:

) 4 o if 4 is odd,

f(k'ul) = 7;, f(ulun) = 27’L, f(uiui+1> — { 2

7 3 . . .
5+ 5, if 4 is even.
Hence the wheel W,, becomes S3-magic with magic constant p,.

A shell S,, ,—3 of width n is a graph obtained by taking n — 3 concurrent chords
in a cycle C), of n vertices. The vertex at which all chords are concurrent is called
apex. The two vertices adjacent to the aper have degree 2, apex has degree n — 1
and all other vertices have degree 3.

Theorem 15. Shell graphs S, ,—3 are Ss-magic.

Proof. Let G be the shell graph S, ,_3 and denote the vertices of S, ,,_3 by
Uy, Ug, ..., U,. There are n vertices and 2n — 3 edges in 5, ,,—3. Without loss of
generality let the apex be u;. Here we consider two cases:
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Case(i) n is even.
We define f : E(G) — Na,_3 as follows:

flugug) =1, f(upuy) = g + 1, f(up_1u,) = 2n — 3,

£ ) %+1, if © isevenand 2<i<n—2,
U 2L i i s odd and 3< i <n—3.
furun—1) =n and f(ugu;) =n+ (i — 2) where i £ n —1,2.

)

and now define g : E(G) — S5\ {po} as

g(uruz) = p1, glwrun) = p2, g(un—1un) = p1, g(urtp—1) = pa,

g(uiw;) = py, where i # 2,n — 1,n.

o, if ¢ isodd and 3 <i<n—3,

pg, if 7 isevenand 2 < i <n—1.

Under these maps, shell graphs S, ,,_3 with even number of vertices are Ss-
magic with magic constant .

Q(Uiuiﬂ) =

Case(ii) n is odd.
[T
Define f(u;tii1) = < 2’ if 7 is even,

o if i s odd.

7f(U1Un) =n and f(uluz) =n-+ (l—

2), where i # 2, n.

Now define g(ujug) = g(unur) = gluguz) = g(un—1un) = p1, gluaw;) = pu,

where i # 2,n and g(usu;11) = H3; .lf Z .1s odd,
p1, if 7 is even.

Thus the shell graph 5, ,,—3 with odd number of vertices becomes S3-magic

with magic constant p,.

Hence the proof.
When k£ copies of C,, share a common edge it will form the n — gon book of k
pages and is denoted by B(n, k).

Theorem 16. For anyn > 3 and k > 1, the n— gon book of k pages are S3-magic.
Proof. Here we consider two cases:

Case(i) Suppose k is odd. Then all the vertices of B(n,k) will be even. De-
fine g(e) = w1, Ve € E(B(n,k)) and f as any bijection from E(G) to
{1, 2,..., k(n — 1) + 1}. Then the graph B(n,k) becomes S3-magic with
magic constant pg.
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Case(ii) Suppose k is even. We denote the common edge of B(n,k) by c¢. Now
define the labeling g : E(B(n,k)) — S5\ {po} as follows:
Let g(c) = p; also label the outer edges of the first page by u; and all
other edges by u3. Denote the edges in the first page by ¢, ay, as,..., an_1.
Now define f(¢) = 1 and f(a;) = i + 1 and map other edges to the set
{n+1,...,k(n—1)+ 1} such that f(e;) # f(e;), ei,e; € E(B(n,k)). Then
obviously, ¢*(v) = po, Vv € V(B(n, k)).

This completes the proof of the theorem.
Theorem 17. The cycle graph C, with a pendant edge is Ss-magic.

Proof. Let us denote the vertices of C, by uy, us, ..., u,. Without loss of generality
assume that the pendant edge e is on the vertex u; and let its other end vertex be

Up+1-
Case(i) Suppose n is odd. Define g : E(G) — S3\ {po} as

w1, if 4 is odd and i < n,
g(Uitiy1) = e .
ps, if ¢ is even and 7 < n.
g(unul) = py and 9(U1Un+1) = pP2.
Now define

2L if ¢ isodd and i < n,
fluiuisr) = ntl i '
"= +3, if i iseven and i <n.
n+1
f(unu1> = 2

Hence the graph is S3-magic with magic constant ps.

, flugups) =n+ 1

Case(ii) Suppose n is even. Here we define

w3, if ¢ isodd and i <n,i# 1

g(uitip) = {

g(urug) = py = g(upuy) and g(uitny1) = p1.

lo, if 7 is even and ¢ # n.

Moreover, define f as:

flurug) = 1, f(upur) = n, f(urtp1) =n+ 1,

L+1,if ¢ evenand i <n,
fluiin) =95 0 ; ;
5+ 5, ifiisoddi#1andi <n.

Hence the magic constant is p;.
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This completes the proof of the theorem.
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