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Abstract: Having defined and studied, the transit index and transit decomposi-
tion of a connected graph, we introduce the concept of transit isomorphism. In
this paper we discuss the transit isomorphism between certain graphs and its line
graphs. Construction of transit isomorphic graphs is also dealt with. Finally we
discuss how transit isomorphism relates to chemical properties of octane isomers.
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1. Introduction
In mathematical chemistry, a molecule’s properties are predicted based on its

structure. Molecules are modeled as graphs, and their properties are studied using
graph invariants. A graph invariant can be a polynomial, a set of values or a single
value. A single value characterising the topology of a molecular graph has been
termed a topological index by Hosoya. In the literature we come across many such
topological indices.
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In paper [3], a novel index called the transit index of a graph was introduced.
This index has an effect on both the degree and the distance of the graph. The
transit index of the molecular graph displayed a strong negative correlation with
the MON of octane isomers. Hence some theoretical study of this index was carried
out.

The study of graphs with similar properties has attracted the attention of graph
theorists forever. Graph isomorphism is one such concept. It is a phenomenon in
which the same graph appears in more than one form. A graph of this type is
called an isomorphic graph. In this paper, the concept of transit isomorphism is
introduced. Relevance of transit isomorphism in octane isomers was investigated.

Throughout this paper G denotes a simple, connected, finite, undirected graph
with vertex set V and edge set E. For undefined terms we refer [1].

2. Preliminaries

Definition 2.1. [3] Let G(V,E) be a graph with vertex set V and edge set E. For
v ∈ V , the transit of v denoted by T (v) is defined as “the sum of the lengths of all
shortest path with v as an internal vertex” and the transit index of G denoted by
TI(G) is

TI(G) =
∑
v∈V

T (v)

Lemma 2.2. [3] In G(V,E), T (v) = 0 iff 〈N [v]〉 is a clique.

Theorem 2.3. [3] For a path Pn, Transit index is

TI(Pn) =
n(n+ 1)(n2 − 3n+ 2)

12

Theorem 2.4. [4] For a cycle, the transit index

i) TI(Cn) = n2(n2−4)
24

, n even.

ii) TI(Cn) = n(n2−1)(n−3)
24

, n odd

Definition 2.5. [5] Let G(V,E) be a graph. A path M through v ∈ V is called a
majorized shortest path of v, abbreviated as msp(v) or normally msp, if it satisfies
the following conditions.
1. M is a shortest path in G with v as an internal vertex.
2. There exist no path M ′ such that, M ′ is a shortest path in G with v as an
internal vertex and M as a sub-path of it.

We denote the collection of all msp(v) by Mv and
⋃
v∈V

Mv by MG.
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Proposition 2.6. [5] In a tree T , Msp(v) connects pendant vertices of T,∀v ∈ V .
Conversely every path connecting two pendant vertex is a msp for every internal
vertex of it.

Definition 2.7. [2] A decomposition of a graph G into a collection of subgraphs
τ = {T1, T2, . . . , Tr}, where each Ti is either an induced cycle of G with atleast
two of its subpath in MG or a majorized shortest path of G such that, TI(G) =∑
i

TI(Ti) −
∑
i 6=j

TI(Ti ∩ Tj) + . . . + (−1)r+1
∑

TI(T1 ∩ T2 ∩ . . . ∩ Tr) is called

a Transit Decomposition of G. We denote a transit decomposition of minimum
cardinality by τmin.
For a graph G, the transit decomposition need not be unique. Of these we choose
the one with minimum cardinality and such that the msp/induced cycles in it are
of least length. Such a transit decomposition will be unique for a graph G and we
denote it by τmin.

3. Transit Isomorphism

Definition 3.1. Let G1 and G2 be two graphs. We say that G1 is transit isomor-
phic to G2, if there exists a bijection, say Ψ from τmin(G1) = {Hi, i = 1, 2, . . . , k}
to τmin(G2) = {H ′i , i = 1, 2, . . . , k} such that Ψ(Hi) = Ψ(H ′i), i = 1, 2, . . . , k
whenever Hi ' H ′i. We write G1 'T G2.

Remark 3.2. The graphs may be transit isomorphic without being isomorphic.
Consider the graphs in Figure 1. Clearly they are non isomorphic.
Here τmin(G1) = {T1, T2, T3}, where T1 = 1234, T2 = 1265, T3 = 234562
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Figure 1: Non isomorphic graphs that are transit isomorphic.

τmin(G2) = {H1, H2, H3}, where H1 = abcd,H2 = afed,H3 = bcdefb
Define Ψ : τmin(G1) → τmin(G2) by Ψ(Ti) = Hi, i = 1, 2, 3. Then Ψ is a transit
isomorphism.

Remark 3.3. The graphs G1 and G2 are transit isomorphic need not imply that
TI(G1) and TI(G2) are equal.
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Consider the graphs in Figure 2. They are transit isomorphic, but their transit
indices differ. For the graph G1, τmin(G1) = {T1, T2, T3}, where T1 = 123457, T2 =
123657, T3 = 34563
And for the graph G2, τmin(G2) = {H1, H2, H3}, where H1 = abcegh,H2 = abdfgh,H3 =
cdfec
Define Ψ : τmin(G1) → τmin(G2) by Ψ(Ti) = Hi, i = 1, 2, 3. Then Ψ is a transit
isomorphism. But, TI(G1) = 142 and TI(G2) = 148
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Figure 2: Transit isomorphic graphs with different transit index

4. Graphs G that are Transit Isomorphic to L(G)
In trees transit isomorphism and isomorphism are the same. Hence the study

of transit isomorphism will be fruitful if the graph contains atleast one cycle. In
this section we investigate the occurrence of transit isomorphism between a graph
and its line graph.

Theorem 4.1. Let G be a unicyclic graph formed by identifying the center vertex
of a star graph Sp with one of the vertices of the odd cycle Cr. Then G and L(G)
are transit isomorphic.
Proof. We know that the line graph of a star is a complete graph and that of a cycle
is isomorphic to itself. In the case of the graph G under our consideration L(G)
can be viewed as the graph got by identifying an edge of the complete graph Kp+1

with any one of the edges of Cr. Let τ1 and τ2 denote the transit decompositions
of G and L(G) of minimum cardinality. Clearly, there is only one induced cycle in
τ1 and τ2 and it is isomorphic to Cr, when r > 3. (When r=3, no cycles are there
in τ1 and τ2). Let it be T1 and H1 respectively.
Let v be the vertex common to Cr and Sp in G. If ev and e′v are the edges of Cr
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incident to v in G, then they will form the end vertices of the edge common to
Kp+1 and Cr in L(G). Let u1 and u2 be the vertices of Cr at a distance b r

2
c from

v in G. Then e = u1u2 will be the vertex at a distance b r
2
c from ev and e′v in

L(G). Let e1 = vw1, e2 = vw2, . . . , ep−1 = vwp−1 be the pendant edges of G. Then
e1, e2, . . . , ep−1, ev and e′v will be the vertices of Kp+1 in L(G).
The majorized shortest paths in τ1 are those connecting wi to v1, say Ti,1 and
those connecting wi to v2, say Ti,2 of length b r

2
c + 1 each and 2p − 2 in number.

When we consider τ2, the majorized shortest paths are those connecting the vertices
e1, e2, . . . , ep−1 to e along ev, say Hi,1 and along e′v, say Hi,2. Again they are also
of length b r

2
c+ 1 each and 2p− 2 in number. Also |τ1| = |τ2|

Define Ψ : τ1 → τ2 by Ψ(T1) = H1,Ψ(Ti,1) = Hi,1 and Ψ(Ti,2) = Hi,2 for i =
1, 2, . . . , p− 1. Then Ψ is a transit isomorphism.

Remark 4.2. Note that in Theorem 4.1 when r is even, G and L(G) are not
transit isomorphic. The cardinalities of the transit decompositions are equal, but
the lengths of majorized shortest paths in τ1 will be one more than those in τ2.

Theorem 4.3. Let G be the unicyclic graph formed by identifying one of the
pendant vertex of the path Pp with a vertex of the odd cycle Cr. Then G and L(G)
are transit isomorphic.
Proof. Consider the given graph G. Let us denote the common vertex of Pp and
Cr by v. Name the edges of Cr that are incident to v by ev and e′v. Call the edge
in Pp incident to v as e. Note that two vertices of Cr are at a distance b r

2
c from v.

Call them u1 and u2. Let eu = u1u2

In L(G), ev , e′v and e forms a copy of C3. We can view L(G) as the graph got
by identifying two of the vertices of this C3 with two adjacent vertices of Cr and
the third vertex with one of the pendant vertex of the path Pp−1. Then eu will be
at a distance b r

2
c from ev and e′v.

Let τ1 and τ2 denote the transit decompositions of G and L(G) of minimum
cardinality. Since both G and L(G) have a copy Cr as an induced cycle, Cr ∈ τ1, τ2.
We name these respectively as T and H. The majorized shortest paths in τ1 are
the two paths T1, T2 connecting u1 and u2 respectively to the pendant vertex of
G. They are of length b r

2
c + p − 1. When we consider the majorized paths in τ2,

they are the ones connecting the pendant vertex (if p 6= 2) to eu via ev and e′v
respectively. They also have length b r

2
c+ 1 + p− 2. Call them H1 and H2.

Define Ψ : τ1 → τ2 by Ψ(T1) = H1 , Ψ(T2) = H2 and Ψ(T ) = H. Then Ψ is a
transit isomorphism.

Remark 4.4. The replacement of the odd cycle in Theorem 4.3 by an even cycle
makes G and L(G) non transit isomorphic. This leads to transit decompositions
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with same cardinalities, but the lengths of majorized shortest paths in τ1 will be one
more than those in τ2.

Theorem 4.5. Let G be the bicyclic graph got by joining Cm with Cn by a path
Pk, k ≥ 1, where m and n are of different parities. Then G 'T L(G).
Proof. Without loss of generality, assume m is odd and n is even. Consider two
cases.
Case (i) when k > 1. Let Pk : w1w2 . . . wk, with w1 a vertex of Cm and wk that of
Cn. Let u1 and u2 be the vertices on Cm which are farthest from w1, with eu = u1u2.
Let v1 be the vertex on Cn farthest from wk, with edges ev and e′v incident to v1.
Also denote ew = w1w2 and ew′ = wk−1wk

Now consider L(G). The edges incident with w1 and wk will form C3 in L(G),
which will be connected by a path of length k − 2 with ew and ew′ as its end
vertices. [Note that when k = 2, the path will reduce to a vertex, in which case
ew and ew′ coincides.] Thus L(G) will be a graph with 4 cycles, isomorphic to
Cm, C3, C3, Cn. For convenience let us name them Cm, C3, C3, Cn, itself. The edge
of C3 non incident to ew and ew′ in each of the C3 will be part of Cm and Cn

respectively.

v1

v2

uv

Cm

G

Cn L(G)

ev

eu

e′u

CnCm

Figure 3: G and L(G)

Case(ii) k = 1. Here the line graph L(G) of G can be viewed as the graph got by
identifying an edge e1 of K4 with one of the edges of a copy of Cm and another edge
e2, non adjacent to e1 with a copy of Cn, as shown in the Figure 3. For convenience,
let us denote the copies of Cm and Cn by Cm and Cn itself.

Let τ1 and τ2 denote the transit decompositions of G and L(G) of minimum
cardinality. If m 6= 3, Cm and Cn will be in τ1 and τ2. (Otherwise only Cn ∈ τ1, τ2).
The majorized paths in τ1 are those connecting v1 to u1 and v1 to u2. There are two
shortest paths in each case, each of length n

2
+k− 1 + bm

2
c. When we look at L(G)
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the majorized paths are those connecting eu to ev and eu to e′v. Altogether they are
4 in number and of lengths n

2
+ k − 1 + bm

2
c. Thus we can define a bijection from

τ1 → τ2, which can have the properties of a transit isomorphism. Thus G 'T L(G).

Remark 4.6. In Theorem 4.5, when n and m are of same parities, it can easily
be shown that G and L(G) are not transit isomorphic.

5. Constructing Transit Isomorphic Graphs

Example 1. Consider Figure 4. Here G and L(G) are not transit isomorphic. But
by a suitable manipulation in L(G) we can create a new graph G′, which is transit
isomorphic to G. Form L(G), then attach a pendant edge to the apex vertex of
one of the C3 to construct G′. Then G 'T G

′. The idea used here can be carried
to a class of graphs, to form transit isomorphic graphs as discussed below.

L(G) G’

e1

G

e2

Figure 4: G 'T G
′

We form G by taking an even cycle and attaching paths Pn and Pm to its
diametrically opposite vertices. From this G, form L(G). If n or m is greater than
two, L(G) will have atleast one pendant vertex. Attaching an edge to one of these
pendant vertex we get G′ with G 'T G

′. If n = m = 2, L(G) will have two copies
of C3. In this case attach an edge to the apex vertex of one of the C3 to form G′

transit isomorphic to G.
Example 2. Consider G in the Figure 5. It is formed by joining any two non-
adjacent vertices of C4 and by attaching an edge to a vertex of degree 3. G′ is the
graph got by attaching two pendant edges to any one of the vertices of C3. From
the figure we understand that G 'T G

′.
The same construction can be done using any even cycles C2n. Join a vertex of

C2n to every non adjacent vertices of it, so that a C3 is formed in every step. Now
attach a pendant edge to the same vertex, thus increasing its degree to 2n. This
forms G. To construct the transit isomorphic graph of G, add as many pendant
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edges to one of the vertex of C3, so that its degree is 2n.

G’G

G G’

Figure 5: The case when n = 2, 3

6. Analysing Octane Isomers
In this section we give a summary of the study done in the structural graphs of

octane isomers. As we know there are 18 octane isomers. Obviously, none of them
are transit isomorphic. But a few of them shows some similarity in their transit
decomposition. This similarity was also reflected in the values of their motor octane
number. The significant observations are tabulated in Table 1 and Table 2

Sl.No Octane Isomer |τi| Paths isomorphic to the majorised MON
shortest paths in τi

1 2,2 dimethyl hexane 6 P3, P3, P6, P3, P6, P6 77.4
2 2,3 dimethyl hexane 6 P3, P4, P6, P4, P6, P5 78.9
3 2 methyl,3 ethyl pentane 6 P5, P5, P5, P5, P5, P5 88.1
4 3 methyl,3 ethyl pentane 6 P4, P5, P6, P4, P5, P4 88.7
5 2,2,3 trimethyl pentane 10 P3, P3, P4, P5, P3, P4, P5, P4, P5, P4 99.9
6 2,2,4 trimethyl pentane 10 P3, P3, P5, P5, P3, P5, P5, P5, P5, P3 100
7 2,3,3 trimethyl pentane 10 P4, P4, P5, P5, P3, P4, P4, P4, P4, P3 99.4

Table 1: Majorized shortest paths

In table 2 the (i,j)th entry is Y if τi and τj are of same cardinality and if there
is a 1-1 correspondence between majorised shortest paths of them, whenever their
length differs at most by one. Observing Table 1 and Table 2 the 7 isomers may
be grouped into three. Group A: 1 and 2 ; Group B: 3 and 4 ; Group C: 5,6 and 7
Transit decomposition has the same cardinality in each group. In other words,
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↓i,j→ 1 2 3 4 5 6 7
1 Y Y N N N N N
2 Y Y N N N N N
3 N N Y Y N N N
4 N N Y Y N N N
5 N N N N Y Y Y
6 N N N N Y Y Y
7 N N N N Y Y Y

Table 2: Majorized shortest paths τi ←→ τj

there is a bijection. Majorised shortest paths agree in most cases, and when they
don’t, they differ by at most one edge.

Observing the corresponding values of MON, we can see that this grouping
makes sense.

It is easier and simpler to find τmin for a molecular graph than to calculate the
transit index for it. Thus, transit isomorphism facilitates a means of classifying
chemical isomers according to their motor octane number.
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