MULTIPLICATION AND TRANSLATION OF CUBIC β-IDEALS

P. Muralikrishna, R. Vinodkumar* and G. Palani**
PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomous), Vellore - 632002, Tamil Nadu, INDIA
E-mail : pmkrishna@rocketmail.com
*Department of Mathematics, Prathyusha Engineering College, Aranvoyalkuppam, Thiruvallur - 602025, INDIA
E-mail : vinodmaths85@gmail.com
**Department of Mathematics, Dr. Ambedkar Government Arts College, Chennai, INDIA
E-mail : gpalani32@yahoo.co.in

(Received: Jan. 10, 2022 Accepted: Oct. 30, 2022 Published: Dec. 30, 2022)

Abstract: Cubic set is a structure with two components which has been applied in the conditions of β-ideals. This paper presents the notion of cubic fuzzy β-ideal of a β-algebra. In addition that, the notion of cubic (\bar{a}, b)-translation, cubic μ multiplication were presented. Further, some engrossing results of cubic β-ideals with the combination of multiplication and translation were investigated.
Keywords and Phrases: β-algebra, β-ideals, Cubic β-ideal, cubic ideals, Cubic translation, Cubic multiplication.
2020 Mathematics Subject Classification: 06F35, 03G25, 08A72, 03 E 72.

1. Introduction

The concept of fuzzy sets, a generalisation of the classical notion of set and its characteristic functions, was first developed by Zadeh [13] in 1965. The thought of
β-algebras has been initiated by Neggers and Kim [12] which is a generalization of $B C K$-algebras and $B C I$-algebras. Atanassov [2] proposed the idea of intuitionistic fuzzy sets as an extension of fuzzy set which incorporate the degrees of membership and non-membership. Abu Ayub Ansari et al. [1] presented the notion of fuzzy β-ideals of β-algebras. Hemavathi et al. [5] discussed about β-ideals which is applied in interval valued fuzzy set. The notion of cubic sets have been introduced by Jun et al. [8]. Different kinds of union and intersection of cubic sets have been explored. The notion of cubic subalgebras and ideals of $B C K / B C I-$ algebras has been depicted by Jun et al. [6, 7]. Also the authors applied the cubic structures in to ideals of $B C I$-algebras. Furthermore, they have discussed about the characterizations of cubic a-ideal and the relations between cubic a-ideal and cubic p-ideal.

Lee et al. [10] presented the concept of fuzzy translations and fuzzy multiplications of BCK/BCI algebras, where the relationships between fuzzy translations, fuzzy extensions, and fuzzy multiplications were explored. Chandramouleeswaran et al. [3] depicted some interesting results on fuzzy translations and fuzzy multiplications in BF/BG-algebras. The notion of translation and multiplication of cubic subalgebras and cubic ideals of BCK/BCI-algebras introduced by Dutta et al. [4] and few of their properties were examined. A number of related features are examined along with the concept of cubic extension of cubic subalgebras and cubic extension cubic ideals. Khalid et al [9] initiated the perception on translation and multiplication of a neutrosophic cubic set. Recently, Muralikrishna et al. [11] exhibited some aspects on cubic fuzzy β-subalgebra of β-algebra. With all these inspiration and motivation, this work presents the notion of μ-multiplication and (\bar{a}, b)-translation of cubic β-ideal and few of its associated results have been studied.

2. Preliminaries

This section reveals the necessary definitions required for the work.
Definition 2.1. [12] $A \beta$ - algebra is a non-empty set X with a constant 0 and two binary operations + and - are satisfying the following axioms:
(i) $x-0=x$
(ii) $(0-x)+x=0$
(iii) $(x-y)-z=x-(z+y) \quad \forall x, y, z \in X$.

Definition 2.2. [1] A non-empty subset I of a β-algebra $(X,+,-, 0)$ is called a β-ideal of X, if
(i) $0 \in I$
(ii) $x+y \in I$
(iii) $x-y \forall \xi \in I$ then $x \in I \quad \forall x, y \in X$.

Example 2.3. The following Cayley table shows ($X=\{0,1,2,3\},+,-, 0$) is a β-algebra.

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	1	0
3	3	2	0	1

-	0	1	2	3
0	0	1	3	2
1	1	0	2	3
2	2	3	0	1
3	3	2	1	0

Definition 2.4. [8] Let X be a non empty set. By a cubic set in X we mean a structure $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ in which $\bar{\zeta}_{C}$ is an interval valued fuzzy set in X and η_{C} is a fuzzy set in X.
Definition 2.5. [1] Let $C=\left\{x, \bar{\zeta}_{C}(x), \eta_{C}(x): x \in X\right\}$ be a cubic fuzzy set in a β-algebra of X. C is called a cubic fuzzy β-ideal of X, if $\forall x, y \in X$
$(i) \bar{\zeta}_{C}(0) \geq \bar{\zeta}_{C}(x) \& \eta_{C}(0) \leq \eta_{C}(x)$
(ii) $\bar{\zeta}_{C}(x+y) \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\} \& \eta_{C}(x+y) \leq \max \left\{\eta_{C}(x), \eta_{C}(y)\right\}$
(iii) $\bar{\zeta}_{C}(x) \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y), \bar{\zeta}_{C}(y)\right\} \& \eta_{C}(x) \leq \max \left\{\eta_{C}(x-y), \eta_{C}(y)\right\}$

Definition 2.6. [10] Let μ be a fuzzy subset of X and $\alpha \in[0, T]$ where $T=1$ $\sup \{\mu(x) / x \in X\}$. A mapping $\mu_{\alpha}^{T}: X \rightarrow[0,1]$ is said to be a fuzzy α-translation of μ if it satisfies $\mu_{\alpha}^{T}(x)=\mu(x)+\alpha \quad \forall x \in X$
Definition 2.7. [10] Let μ be a fuzzy subset of X and $\alpha \in[0,1]$. A mapping $\mu_{\alpha}^{M}: X \rightarrow[0,1]$ is said to be a fuzzy α-multiplication of μ if it satisfies $\mu_{\alpha}^{M}(x)=$ $\alpha . \mu(x), \quad \forall x \in X$.

3. Multiplications of Cubic β-ideals

This section gives the notion of multiplications of cubic fuzzy β-ideal and some of its results are investigated.
Definition 3.1. Let $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ be a cubic fuzzy set of X and $\mu \in(0,1]$. An object having the form $C_{\mu}^{M}=\left\{\left(\bar{\zeta}_{C}\right)_{\mu}^{M},\left(\eta_{C}\right)_{\mu}^{M}\right\}$ is said to be cubic μ-multiplication of C if it satisfies $\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x)=\mu . \bar{\zeta}_{C}(x)$ and $\left(\eta_{C}\right)_{\mu}^{M}(x)=\mu \cdot \eta_{C}(x)$, for all $x \in X$.
Example 3.2. For the cubic β-ideal given in example 3.4, consider $\mu=0.6 \in(0,1]$. Then the μ-multiplication $\left(\left(\bar{\zeta}_{C}\right)_{0.6}^{T},\left(\eta_{C}\right)_{0.6}^{T}\right)$ of cubic set C is given by

$$
\left(\bar{\zeta}_{C}\right)_{0.6}^{T}=\left\{\begin{array}{cc}
{[0.24,0.3],} & x=0 \\
{[0.18,0.24],} & x=b \\
{[0.12,0.18],} & x=a, c
\end{array} \quad \text { and }\left(\eta_{C}\right)_{0.6}^{T}=\left\{\begin{array}{cc}
0.3, & x=0 \\
0.24, & x=b \\
0.18, & x=a, c
\end{array}\right.\right.
$$

Theorem 3.3. If $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ is a cubic β-ideal of X and let $\mu \in[0,1]$.
Then the cubic μ-multiplication C_{μ}^{M} of C is cubic β-ideal of X.
Proof. Suppose $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ is a cubic β-ideal of X. Then

$$
\begin{aligned}
\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(0) & =\mu \cdot \bar{\zeta}_{C}(0) \\
& \geq \mu \cdot \bar{\zeta}_{C}(x) \\
& =\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x) \\
\left(\eta_{C}\right)_{\mu}^{M}(0) & =\mu \cdot \eta_{C}(0) \\
& \leq \mu \cdot \eta_{C}(x) \\
& =\left(\eta_{C}\right)_{\mu}^{M}(x) \\
\left(\bar{\zeta}_{C}\right)_{\mu}^{M T}(x+y) & =\mu \cdot \bar{\zeta}_{C}(x+y) \\
& \geq \mu \cdot r \min \left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\zeta}_{C}(x), \mu \cdot \bar{\zeta}_{C}(y)\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x),\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(y)\right\} \\
\left(\eta_{C}\right)_{\mu}^{M}(x+y) & =\mu \cdot \eta_{C}(x+y) \\
& \leq \mu \cdot \max \left\{\eta_{C}(x), \eta_{C}(y)\right\} \\
& =\max \left\{\mu \cdot \eta_{C}(x), \mu \cdot \eta_{C}(y)\right\} \\
& =\max \left\{\left(\eta_{C}\right)_{\mu}^{M}(x),\left(\eta_{C}\right)_{\mu}^{M}(y)\right\} \\
\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x) & =\mu \cdot \bar{\zeta}_{C}(x) \\
& \geq \mu \cdot \operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y), \bar{\zeta}_{C}(y)\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\zeta}_{C}(x-y), \mu \cdot \bar{\zeta}_{C}(y)\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\zeta}_{C}(x-y), \mu \cdot \bar{\zeta}_{C}(y)\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x-y),\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(y)\right\} \\
\left(\eta_{C}\right)_{\mu}^{M}(x) & =\mu \cdot \eta_{C}(x) \\
& \leq \mu \cdot \max \left\{\eta_{C}(x-y), \eta_{C}(y)\right\} \\
& =\max \left\{\mu \cdot \eta_{C}(x-y), \mu \cdot \eta_{C}(y)\right\} \\
& =\max \left\{\left(\eta_{C}\right)_{\mu}^{M}(x-y),\left(\eta_{C}\right)_{\mu}^{M}(y)\right\}
\end{aligned}
$$

For all $x, y \in X$ and $\mu \in(0,1]$. Hence C_{μ}^{M} of C is cubic β-ideal of X.
Theorem 3.4. If C is a cubic set of X such that cubic μ-multiplication C_{μ}^{M} of C is cubic β-ideal of X and $\mu \in[0,1]$ then C is cubic β-ideal of X.
Proof. Assume that $C_{\mu}^{M}(x)$ of C be a cubic β-ideal of $X, \mu \in(0,1]$. Then

$$
\begin{aligned}
\mu . \bar{\zeta}_{C}(0) & =\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(0) \\
& \geq\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x) \\
& =\mu . \bar{\zeta}_{C}(x)
\end{aligned}
$$

In the same manner, we have $\mu \cdot \eta_{C}(0) \leq \mu \cdot \eta_{C}(x)$

$$
\begin{aligned}
\mu \cdot \bar{\zeta}_{C}(x+y) & =\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x+y) \\
& \geq \operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x),\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(y)\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\zeta}_{C}(x), \mu \cdot \bar{\zeta}_{C}(y)\right\} \\
& =\mu \cdot \operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\}
\end{aligned}
$$

Likewise we get $\mu \cdot \eta_{C}(x+y) \leq \mu \cdot \max \left\{\eta_{C}(x), \eta_{C}(y)\right\}$

$$
\begin{aligned}
\mu \cdot \bar{\zeta}_{C}(x) & =\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x) \\
& \geq \operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(x-y),\left(\bar{\zeta}_{C}\right)_{\mu}^{M}(y)\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\zeta}_{C}(x-y), \mu \cdot \bar{\zeta}_{C}(y)\right\} \\
& =\mu \cdot \operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y), \bar{\zeta}_{C}(y)\right\}
\end{aligned}
$$

In a similar way we may have $\mu \cdot \eta_{C}(x) \leq \mu \cdot \max \left\{\eta_{C}(x-y), \eta_{C}(y)\right\}$
For all $x, y \in X$ and $\mu \in(0,1]$. Hence C is cubic β-ideal of X.

4. Translation of Cubic β-ideals

In this section, the notion of translation of Cubic β-ideals is presented and examined some delightful results based on union and intersection. We use $\mathfrak{B}=$ $\inf \left\{\eta_{C}(x) / x \in X\right\}$ and $\widetilde{\sigma}=\left(\sigma^{L}, \sigma^{U}\right)$ where $\sigma^{U}=1-\sup \left\{\zeta_{C}^{U}(x) / x \in X\right\}$ for any cubic set $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$.
Definition 4.1. Let $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ be a cubic fuzzy set of X and $0 \leq a^{U} \leq \sigma^{U}$ where $\bar{a}=\left(a^{L}, a^{U}\right) \in D\left[0, \sigma^{U}\right]$ and $b \in[0, \mathfrak{B}]$. An object having the form $C_{\bar{a}, b}^{T}=\left\{\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T},\left(\eta_{C}\right)_{b}^{T}\right\}$ is said to be cubic (\bar{a}, b)-translation of C if it satisfies $\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x)=\bar{\zeta}_{C}(x)+\bar{a},\left(\eta_{C}\right)_{b}^{T}(x)=\eta_{C}(x)-b$, for all $x \in X$.

Example 4.2. For the cubic β-ideal given in example 3.2, consider $\sigma^{U}=1-$ $\sup \left\{\zeta_{C}^{U}(x) / x \in X\right\}=1-0.5=0.5$ and $\mathfrak{B}=\inf \left\{\eta_{C}(x) / x \in X\right\}=0.3$. Let $\bar{a}=[0.15,0.25]$ $\in D\left[0, \sigma^{U}\right]$ and $b=0.2 \in[0, \mathfrak{B}]$. Then the (\bar{a}, b)-translation $\left(\left(\bar{\zeta}_{C}\right)_{[0.15,0.25]}^{T},\left(\eta_{C}\right)_{0.2}^{T}\right)$ of cubic set C is given by
$\left(\bar{\zeta}_{C}\right)_{[0.15,0.25]}^{T}=\left\{\begin{aligned} {[0.55,0.75], } & x=0 \\ {[0.45,0.65], } & x=b \\ {[0.35,0.55], } & x=a, c\end{aligned} \quad\right.$ and $\left(\eta_{C}\right)_{0.2}^{T}=\left\{\begin{array}{cc}0.3, & x=0 \\ 0.2, & x=b \\ 0.1, & x=a, c\end{array}\right.$
Theorem 4.3. Let $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ be a cubic β-ideal of X and let $\bar{a} \in D\left[0, \sigma^{U}\right], b \in[o, \mathfrak{B}]$ if and only if the cubic (\bar{a}, b)-translation $C_{\bar{a}, b}^{T}$ of C is cubic β-ideal of X.
Proof. Suppose $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ is a cubic β-ideal of X. Then

$$
\begin{aligned}
\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(0) & =\bar{\zeta}_{C}(0)+\bar{a} \\
& \geq \bar{\zeta}_{C}(x)+\bar{a} \\
& =\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x) \\
\left(\eta_{C}\right)_{b}^{T}(0) & =\eta_{C}(0)-b \\
& \leq \eta_{C}(x)-b \\
& =\left(\eta_{C}\right)_{b}^{T}(x) \\
\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x+y) & =\bar{\zeta}_{C}(x+y)+\bar{a} \\
& \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\}+\bar{a} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x)+\bar{a}, \bar{\zeta}_{C}(y)+\bar{a}\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x),\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(y)\right\} \\
\left(\eta_{C}\right)_{b}^{T}(x+y) & =\eta_{C}(x+y)-b \\
& \leq \max \left\{\eta_{C}(x), \eta_{C}(y)\right\}-b \\
& =\max \left\{\eta_{C}(x)-b, \eta_{C}(y)-b\right\} \\
& =\max \left\{\left(\eta_{C}\right)_{b}^{T}(x),\left(\eta_{C}\right)_{b}^{T}(y)\right\} \\
\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x) & =\bar{\zeta}_{C}(x)+\bar{a} \\
& \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y), \bar{\zeta}_{C}(y)\right\}+\bar{a} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y)+\bar{a}, \bar{\zeta}_{C}(y)+\bar{a}\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y)+\bar{a}, \bar{\zeta}_{C}(y)+\bar{a}\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x-y),\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\left(\eta_{C}\right)_{b}^{T}(x) & =\eta_{C}(x)-b \\
& \leq \max \left\{\eta_{C}(x-y), \eta_{C}(y)\right\}-b \\
& =\max \left\{\eta_{C}(x-y)-b, \eta_{C}(y)-b\right\} \\
& =\max \left\{\left(\eta_{C}\right)_{b}^{T}(x-y),\left(\eta_{C}\right)_{b}^{T}(y)\right\}
\end{aligned}
$$

Hence $C_{\bar{a}, b}^{T}$ of C is cubic β-ideal of X. Conversely, assume that $C_{\bar{a}, b}^{T}$ be a cubic β-ideal of X. Then

$$
\bar{\zeta}_{C}(0)+\bar{a}=\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(0) \quad \geq\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x)=\bar{\zeta}_{C}(x)+\bar{a}
$$

Similarly we have $\eta_{C}(0)-b \leq \eta_{C}(x)-b$

$$
\begin{aligned}
\bar{\zeta}_{C}(x+y)+\bar{a} & =\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x+y) \\
& \geq \operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x),\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(y)\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x)+\bar{a}, \bar{\zeta}_{C}(y)+\bar{a}\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\}+\bar{a}
\end{aligned}
$$

In a same manner, we may have $\eta_{C}(x+y)-b \leq \max \left\{\eta_{C}(x), \eta_{C}(y)\right\}-b$

$$
\begin{aligned}
\bar{\zeta}_{C}(x)+\bar{a} & =\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x) \\
& \geq \operatorname{rmin}\left\{\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(x-y),\left(\bar{\zeta}_{C}\right)_{\bar{a}}^{T}(y)\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y)+\bar{a} \bar{\zeta}_{C}(y)+\bar{a}\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{C}(x-y), \bar{\zeta}_{C}(y)\right\}+\bar{a}
\end{aligned}
$$

Likewise we get $\eta_{C}(x)-b \leq \max \left\{\eta_{C}(x-y), \eta_{C}(y)\right\}-b$
For all $x, y \in X$ and $\bar{a} \in D\left[0, \sigma^{U}\right], b \in[o, \mathfrak{B}]$. Hence C is cubic β-ideal of X.

5. Conclusion

This study depicts the enhancement of μ-multiplication and (\bar{a}, b)-translation incorporated with cubic β-ideals. Some of the astonishing outcomes of the same has been established. In future, this can be applied into various algebraic substructures.

References

[1] Aub Ayub Anasri, M. and Chandramouleeswaran, M., Fuzzy β-ideals of β-algebras, International Journal of Mathematical Science and Engineering applications, 5, (1) (2014), 1-10.
[2] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy sets and systems, 20, (1) (1986), 87-96.
[3] Chandramouleeswaran, M., Muralikrishna, P. and Srinivasan, S., Fuzzy translation and fuzzy multiplication in BF/BG-algebras, Indian Journal of Science and Technology, 6, (2013) (9), 5216-5219.
[4] Dutta, A. K. Barbhuiya, S. R. and Dutta Choudhury, K., Translations and multiplications of cubic subalgebras and cubic ideals of BCK/BCI-algebras, Sohag Journal of Mathematics, 4, (3) (2017), 75-86.
[5] Hemavathi, P., Muralikrishna, P. and Palanivel, K., i-v-f beta-ideals of betaAlgebras, Materials Science and Engineering Conference Series, 263, (4) (2017), 1-10.
[6] Jun, Y. B., Kim, C. S. and Kang, M. S., Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences, 44, (2) (2010), 239-250.
[7] Jun, Y. B., Kyoung Ja Lee. and Kang, M. S., Cubic structures applied to ideals of BCI-algebras, Computers \& Mathematics with Applications, 62, (9) (2011), 3334-3342.
[8] Jun, Y. B., Kim, C. S., \& Yang, K. O., Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4, (1) (2012), 83-98.
[9] Khalid, M., Smarandache, F., Khalid, N. A. and Broumi, S., Translative and Multiplicative Interpretation of Neutrosophic Cubic Set, Infinite Study, (2020).
[10] Lee, K. J., Jun, Y. B. and Doh, M. I., Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean Math. Soc, 24, (3) (2009), 353-360.
[11] Muralikrishna, P., Vinodkumar, R. and Palani, G., Some aspects on cubic fuzzy β-subalgebra of β-algebra, Journal of Physics: Conference Series, 1597, (1) (2020), 012-018.
[12] Neggers, J. Kim Hee Sik, On β-algebras, Mathematica Slovaca, 52, (5) (2002), 517-530.
[13] Zadeh, L. A., Fuzzy sets, Information Control, 8, (3) (1965), 338-353.

