South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 3 (2022), pp. 247-254

DOI: 10.56827/SEAJMMS.2022.1803.20

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

MULTIPLICATION AND TRANSLATION OF CUBIC β -IDEALS

P. Muralikrishna, R. Vinodkumar* and G. Palani**

PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomous), Vellore - 632002, Tamil Nadu, INDIA

E-mail : pmkrishna@rocketmail.com

*Department of Mathematics, Prathyusha Engineering College, Aranvoyalkuppam, Thiruvallur - 602025, INDIA

E-mail: vinodmaths85@gmail.com

**Department of Mathematics, Dr. Ambedkar Government Arts College, Chennai, INDIA

E-mail : gpalani32@yahoo.co.in

(Received: Jan. 10, 2022 Accepted: Oct. 30, 2022 Published: Dec. 30, 2022)

Abstract: Cubic set is a structure with two components which has been applied in the conditions of β -ideals. This paper presents the notion of cubic fuzzy β -ideal of a β -algebra. In addition that, the notion of cubic (\overline{a}, b) -translation, cubic μ -multiplication were presented. Further, some engrossing results of cubic β -ideals with the combination of multiplication and translation were investigated.

Keywords and Phrases: β -algebra, β -ideals, Cubic β -ideal, cubic ideals, Cubic translation, Cubic multiplication.

2020 Mathematics Subject Classification: 06F35, 03G25, 08A72, 03E72.

1. Introduction

The concept of fuzzy sets, a generalisation of the classical notion of set and its characteristic functions, was first developed by Zadeh [13] in 1965. The thought of

 β -algebras has been initiated by Neggers and Kim [12] which is a generalization of BCK-algebras and BCI-algebras. Atanassov [2] proposed the idea of intuitionistic fuzzy sets as an extension of fuzzy set which incorporate the degrees of membership and non-membership. Abu Ayub Ansari et al. [1] presented the notion of fuzzy β -ideals of β -algebras. Hemavathi et al. [5] discussed about β -ideals which is applied in interval valued fuzzy set. The notion of cubic sets have been introduced by Jun et al. [8]. Different kinds of union and intersection of cubic sets have been explored. The notion of cubic subalgebras and ideals of BCK/BCIalgebras has been depicted by Jun et al. [6, 7]. Also the authors applied the cubic structures in to ideals of BCI-algebras. Furthermore, they have discussed about the characterizations of cubic a-ideal and the relations between cubic a-ideal and cubic p-ideal.

Lee et al. [10] presented the concept of fuzzy translations and fuzzy multiplications of BCK/BCI algebras, where the relationships between fuzzy translations, fuzzy extensions, and fuzzy multiplications were explored. Chandramouleeswaran et al. [3] depicted some interesting results on fuzzy translations and fuzzy multiplications in BF/BG-algebras. The notion of translation and multiplication of cubic subalgebras and cubic ideals of BCK/BCI-algebras introduced by Dutta et al. [4] and few of their properties were examined. A number of related features are examined along with the concept of cubic extension of cubic subalgebras and cubic extension cubic ideals. Khalid et al [9] initiated the perception on translation and multiplication of a neutrosophic cubic set. Recently, Muralikrishna et al. [11] exhibited some aspects on cubic fuzzy β -subalgebra of β -algebra. With all these inspiration and motivation, this work presents the notion of μ -multiplication and (\bar{a}, b) -translation of cubic β -ideal and few of its associated results have been studied.

2. Preliminaries

This section reveals the necessary definitions required for the work.

Definition 2.1. [12] $A \beta$ - algebra is a non-empty set X with a constant 0 and two binary operations + and - are satisfying the following axioms: (i) x - 0 = x

Definition 2.2. [1] A non-empty subset I of a β -algebra (X, +, -, 0) is called a β -ideal of X, if (i) $0 \in I$ (ii) $x + y \in I$ (iii) $x - y \ \mathcal{E} \ y \in I$ then $x \in I \quad \forall x, y \in X$.

Example 2.3. The following Cayley table shows $(X = \{0, 1, 2, 3\}, +, -, 0)$ is a β -algebra.

+	0	1	2	3		_	0	1	2	
0	0	1	2	3	1	0	0	1	3	1
1	1	0	3	2]	1	1	0	2	
2	2	3	1	0		2	2	3	0	
3	3	2	0	1]	3	3	2	1	1

Definition 2.4. [8] Let X be a non empty set. By a cubic set in X we mean a structure $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ in which $\overline{\zeta}_C$ is an interval valued fuzzy set in X and η_C is a fuzzy set in X.

Definition 2.5. [1] Let $C = \{x, \overline{\zeta}_C(x), \eta_C(x) : x \in X\}$ be a cubic fuzzy set in a β -algebra of X. C is called a cubic fuzzy β -ideal of X, if $\forall x, y \in X$ (i) $\overline{\zeta}_C(0) \ge \overline{\zeta}_C(x) \& \eta_C(0) \le \eta_C(x)$ (ii) $\overline{\zeta}_C(x+y) \ge rmin\{\overline{\zeta}_C(x), \overline{\zeta}_C(y)\} \& \eta_C(x+y) \le max\{\eta_C(x), \eta_C(y)\}$ (iii) $\overline{\zeta}_C(x) \ge rmin\{\overline{\zeta}_C(x-y), \overline{\zeta}_C(y)\} \& \eta_C(x) \le max\{\eta_C(x-y), \eta_C(y)\}$

Definition 2.6. [10] Let μ be a fuzzy subset of X and $\alpha \in [0, T]$ where $T = 1 - \sup\{\mu(x)/x \in X\}$. A mapping $\mu_{\alpha}^T : X \to [0, 1]$ is said to be a fuzzy α -translation of μ if it satisfies $\mu_{\alpha}^T(x) = \mu(x) + \alpha \quad \forall x \in X$

Definition 2.7. [10] Let μ be a fuzzy subset of X and $\alpha \in [0,1]$. A mapping $\mu_{\alpha}^{M}: X \to [0,1]$ is said to be a fuzzy α -multiplication of μ if it satisfies $\mu_{\alpha}^{M}(x) = \alpha.\mu(x)$, $\forall x \in X$.

3. Multiplications of Cubic β -ideals

This section gives the notion of multiplications of cubic fuzzy β -ideal and some of its results are investigated.

Definition 3.1. Let $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ be a cubic fuzzy set of Xand $\mu \in (0, 1]$. An object having the form $C^M_\mu = \{(\overline{\zeta}_C)^M_\mu, (\eta_C)^M_\mu\}$ is said to be cubic μ -multiplication of C if it satisfies $(\overline{\zeta}_C)^M_\mu(x) = \mu.\overline{\zeta}_C(x)$ and $(\eta_C)^M_\mu(x) = \mu.\eta_C(x)$, for all $x \in X$.

Example 3.2. For the cubic β -ideal given in example 3.4, consider $\mu = 0.6 \in (0, 1]$. Then the μ -multiplication $((\overline{\zeta}_C)_{0.6}^T, (\eta_C)_{0.6}^T)$ of cubic set C is given by

$$\left(\overline{\zeta}_{C}\right)_{0.6}^{T} = \begin{cases} \begin{bmatrix} 0.24, 0.3 \end{bmatrix}, & x = 0\\ \begin{bmatrix} 0.18, 0.24 \end{bmatrix}, & x = b\\ \begin{bmatrix} 0.12, 0.18 \end{bmatrix}, & x = a, c \end{cases} \text{ and } \left(\eta_{C}\right)_{0.6}^{T} = \begin{cases} 0.3, & x = 0\\ 0.24, & x = b\\ 0.18, & x = a, c \end{cases}$$

Theorem 3.3. If $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ is a cubic β -ideal of X and let $\mu \in [0, 1]$.

Then the cubic μ -multiplication C^{M}_{μ} of C is cubic β -ideal of X. **Proof.** Suppose $C = \{ \langle x, \overline{\zeta}_{C}(x), \eta_{C}(x) \rangle : x \in X \}$ is a cubic β -ideal of X. Then

$$\begin{split} \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(0) &= \mu.\overline{\zeta}_{C}(0) \\ &\geq \mu.\overline{\zeta}_{C}(x) \\ &= (\overline{\zeta}_{C})_{\mu}^{M}(x) \\ (\eta_{C})_{\mu}^{M}(0) &= \mu.\eta_{C}(0) \\ &\leq \mu.\eta_{C}(x) \\ &= (\eta_{C})_{\mu}^{M}(x) \\ \left(\overline{\zeta}_{C}\right)_{\mu}^{MT}(x+y) &= \mu.\overline{\zeta}_{C}(x+y) \\ &\geq \mu.rmin\{\overline{\zeta}_{C}(x), \overline{\zeta}_{C}(y)\} \\ &= rmin\{\mu.\overline{\zeta}_{C}(x), \mu.\overline{\zeta}_{C}(y)\} \\ &= rmin\{(\overline{\zeta}_{C})_{\mu}^{M}(x), (\overline{\zeta}_{C})_{\mu}^{M}(y)\} \\ (\eta_{C})_{\mu}^{M}(x+y) &= \mu.\eta_{C}(x+y) \\ &\leq \mu.max\{\eta_{C}(x), \eta_{C}(y)\} \\ &= max\{(\eta_{C})_{\mu}^{M}(x), (\eta_{C})_{\mu}^{M}(y)\} \\ \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x) &= \mu.\overline{\zeta}_{C}(x) \\ &\geq \mu.rmin\{\overline{\zeta}_{C}(x-y), \mu.\overline{\zeta}_{C}(y)\} \\ &= rmin\{\mu.\overline{\zeta}_{C}(x-y), \mu.\overline{\zeta}_{C}(y)\} \\ &= rmin\{\mu.\overline{\zeta}_{C}(x-y), \mu.\overline{\zeta}_{C}(y)\} \\ &= rmin\{(\overline{\zeta}_{C})_{\mu}^{M}(x), (\eta_{C})_{\mu}^{M}(y), (\eta_{C})_{\mu}^{M}(y)\} \\ \left(\eta_{C}\right)_{\mu}^{M}(x) &= \mu.\eta_{C}(x) \\ &\leq \mu.max\{\eta_{C}(x-y), \eta_{C}(y)\} \\ &= max\{\eta.\eta_{C}(x-y), \eta.\eta_{C}(y)\} \\ &= max\{\eta.\eta_{C}(x-y), \eta.\eta_{C}(y)\} \\ &= max\{(\eta_{C})_{\mu}^{M}(x-y), (\eta_{C})_{\mu}^{M}(y)\} \end{split}$$

For all $x, y \in X$ and $\mu \in (0, 1]$. Hence C^M_{μ} of C is cubic β -ideal of X. **Theorem 3.4.** If C is a cubic set of X such that cubic μ -multiplication C^M_{μ} of C is cubic β -ideal of X and $\mu \in [0, 1]$ then C is cubic β -ideal of X. **Proof.** Assume that $C^M_{\mu}(x)$ of C be a cubic β -ideal of X, $\mu \in (0, 1]$. Then

$$\mu.\overline{\zeta}_{C}(0) = \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(0)$$
$$\geq \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x)$$
$$= \mu.\overline{\zeta}_{C}(x)$$

In the same manner, we have $\mu.\eta_C(0) \leq \mu.\eta_C(x)$

$$\mu.\overline{\zeta}_{C}(x+y) = \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x+y)$$

$$\geq rmin\{\left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x), \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(y)\}$$

$$= rmin\{\mu.\overline{\zeta}_{C}(x), \mu.\overline{\zeta}_{C}(y)\}$$

$$= \mu.rmin\{\overline{\zeta}_{C}(x), \overline{\zeta}_{C}(y)\}$$

Likewise we get $\mu.\eta_{C}(x+y) \leq \mu.max \{\eta_{C}(x), \eta_{C}(y)\}$

$$\mu.\overline{\zeta}_{C}(x) = \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x)$$

$$\geq rmin\{\left(\overline{\zeta}_{C}\right)_{\mu}^{M}(x-y), \left(\overline{\zeta}_{C}\right)_{\mu}^{M}(y)\}$$

$$= rmin\{\mu.\overline{\zeta}_{C}(x-y), \mu.\overline{\zeta}_{C}(y)\}$$

$$= \mu.rmin\{\overline{\zeta}_{C}(x-y), \overline{\zeta}_{C}(y)\}$$

In a similar way we may have $\mu.\eta_C(x) \leq \mu.max \{\eta_C(x-y), \eta_C(y)\}\$ For all $x, y \in X$ and $\mu \in (0, 1]$. Hence C is cubic β -ideal of X.

4. Translation of Cubic β -ideals

In this section, the notion of translation of Cubic β -ideals is presented and examined some delightful results based on union and intersection. We use $\mathfrak{B} = \inf\{\eta_C(x) | x \in X\}$ and $\tilde{\sigma} = (\sigma^L, \sigma^U)$ where $\sigma^U = 1 - \sup\{\zeta_C^U(x) | x \in X\}$ for any cubic set $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$.

Definition 4.1. Let $C = \{\langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X\}$ be a cubic fuzzy set of Xand $0 \leq a^U \leq \sigma^U$ where $\overline{a} = (a^L, a^U) \in D[0, \sigma^U]$ and $b \in [0, \mathfrak{B}]$. An object having the form $C_{\overline{a},b}^T = \{(\overline{\zeta}_C)_{\overline{a}}^T, (\eta_C)_b^T\}$ is said to be cubic (\overline{a}, b) -translation of C if it satisfies $(\overline{\zeta}_C)_{\overline{a}}^T(x) = \overline{\zeta}_C(x) + \overline{a}$, $(\eta_C)_b^T(x) = \eta_C(x) - b$, for all $x \in X$. **Example 4.2.** For the cubic β -ideal given in example 3.2, consider $\sigma^U = 1 - \sup \{\zeta_C^U(x) | x \in X\} = 1-0.5 = 0.5$ and $\mathfrak{B} = \inf \{\eta_C(x) | x \in X\} = 0.3$. Let $\overline{a} = [0.15, 0.25] \in D[0, \sigma^U]$ and $b = 0.2 \in [0, \mathfrak{B}]$. Then the (\overline{a}, b) -translation $((\overline{\zeta}_C)_{[0.15, 0.25]}^T, (\eta_C)_{0.2}^T)$ of cubic set C is given by

$$\left(\overline{\zeta}_{C}\right)_{[0.15,0.25]}^{T} = \begin{cases} [0.55,0.75], & x = 0\\ [0.45,0.65], & x = b\\ [0.35,0.55], & x = a,c \end{cases} \text{ and } \left(\eta_{C}\right)_{0.2}^{T} = \begin{cases} 0.3, & x = 0\\ 0.2, & x = b\\ 0.1, & x = a,c \end{cases}$$

Theorem 4.3. Let $C = \{ \langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X \}$ be a cubic β -ideal of X and let $\overline{a} \in D[0, \sigma^U]$, $b \in [o, \mathfrak{B}]$ if and only if the cubic (\overline{a}, b) -translation $C_{\overline{a}, b}^T$ of C is cubic β -ideal of X.

Proof. Suppose $C = \{ \langle x, \overline{\zeta}_C(x), \eta_C(x) \rangle : x \in X \}$ is a cubic β -ideal of X. Then

$$\begin{split} & \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}\left(0\right) = \overline{\zeta}_{C}\left(0\right) + \overline{a} \\ & \geq \overline{\zeta}_{C}\left(x\right) + \overline{a} \\ & = \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}\left(x\right) \\ & \left(\eta_{C}\right)_{b}^{T}\left(0\right) = \eta_{C}\left(0\right) - b \\ & \leq \eta_{C}\left(x\right) - b \\ & = \left(\eta_{C}\right)_{b}^{T}\left(x\right) \\ & \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}\left(x+y\right) = \overline{\zeta}_{C}\left(x+y\right) + \overline{a} \\ & \geq rmin\{\overline{\zeta}_{C}\left(x\right), \overline{\zeta}_{C}\left(y\right)\} + \overline{a} \\ & = rmin\{\overline{\zeta}_{C}\left(x\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \\ & = rmin\{\overline{\zeta}_{C}\left(x\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \\ & = rmin\{\overline{\zeta}_{C}\left(x\right), \eta_{C}\left(y\right)\} - b \\ & \leq max\{\eta_{C}\left(x\right), \eta_{C}\left(y\right)\} - b \\ & = max\{\eta_{C}\left(x\right) - b, \eta_{C}\left(y\right) - b\} \\ & = max\{\eta_{C}\left(x\right) - b, \eta_{C}\left(y\right) - b\} \\ & = max\{\eta_{C}\left(x\right) - b, \eta_{C}\left(y\right) - b\} \\ & = max\{\overline{\zeta}_{C}\left(x-y\right), \overline{\zeta}_{C}\left(y\right)\} + \overline{a} \\ & \geq rmin\{\overline{\zeta}_{C}\left(x-y\right), \overline{\zeta}_{C}\left(y\right)\} + \overline{a} \\ & = rmin\{\overline{\zeta}_{C}\left(x-y\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \\ & = rmin\{\overline{\zeta}_{C}\left(x-y\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \\ & = rmin\{\overline{\zeta}_{C}\left(x-y\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \\ & = rmin\{\overline{\zeta}_{C}\left(x-y\right) + \overline{a}, \overline{\zeta}_{C}\left(y\right) + \overline{a}\} \end{split}$$

$$(\eta_C)_b^T (x) = \eta_C (x) - b \leq \max \{ \eta_C (x - y), \eta_C (y) \} - b = \max \{ \eta_C (x - y) - b, \eta_C (y) - b \} = \max \{ (\eta_C)_b^T (x - y), (\eta_C)_b^T (y) \}$$

Hence $C_{\overline{a},b}^T$ of C is cubic β -ideal of X. Conversely, assume that $C_{\overline{a},b}^T$ be a cubic β -ideal of X. Then

$$\overline{\zeta}_C(0) + \overline{a} = \left(\overline{\zeta}_C\right)_{\overline{a}}^T(0) \qquad \geq \left(\overline{\zeta}_C\right)_{\overline{a}}^T(x) = \overline{\zeta}_C(x) + \overline{a}$$

Similarly we have $\eta_C(0) - b \leq \eta_C(x) - b$

$$\overline{\zeta}_{C}(x+y) + \overline{a} = \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(x+y)$$

$$\geq rmin\{\left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(x), \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(y)\}$$

$$= rmin\{\overline{\zeta}_{C}(x) + \overline{a}, \overline{\zeta}_{C}(y) + \overline{a}\}$$

$$= rmin\{\overline{\zeta}_{C}(x), \overline{\zeta}_{C}(y)\} + \overline{a}$$

In a same manner, we may have $\eta_C(x+y) - b \leq max \{\eta_C(x), \eta_C(y)\} - b$

$$\overline{\zeta}_{C}(x) + \overline{a} = \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(x)$$

$$\geq rmin\{\left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(x-y), \left(\overline{\zeta}_{C}\right)_{\overline{a}}^{T}(y)\}$$

$$= rmin\{\overline{\zeta}_{C}(x-y) + \overline{a}, \overline{\zeta}_{C}(y) + \overline{a}\}$$

$$= rmin\{\overline{\zeta}_{C}(x-y), \overline{\zeta}_{C}(y)\} + \overline{a}$$

Likewise we get $\eta_C(x) - b \leq \max \{\eta_C(x-y), \eta_C(y)\} - b$ For all $x, y \in X$ and $\overline{a} \in D[0, \sigma^U], b \in [o, \mathfrak{B}]$. Hence C is cubic β -ideal of X.

5. Conclusion

This study depicts the enhancement of μ -multiplication and (\overline{a}, b) -translation incorporated with cubic β -ideals. Some of the astonishing outcomes of the same has been established. In future, this can be applied into various algebraic substructures.

References

[1] Aub Ayub Anasri, M. and Chandramouleeswaran, M., Fuzzy β -ideals of β -algebras, International Journal of Mathematical Science and Engineering applications, 5, (1) (2014), 1-10.

- [2] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy sets and systems, 20, (1) (1986), 87-96.
- [3] Chandramouleeswaran, M., Muralikrishna, P. and Srinivasan, S., Fuzzy translation and fuzzy multiplication in BF/BG-algebras, Indian Journal of Science and Technology, 6, (2013) (9), 5216-5219.
- [4] Dutta, A. K. Barbhuiya, S. R. and Dutta Choudhury, K., Translations and multiplications of cubic subalgebras and cubic ideals of BCK/BCI-algebras, Sohag Journal of Mathematics, 4, (3) (2017), 75-86.
- [5] Hemavathi, P., Muralikrishna, P. and Palanivel, K., i-v-f beta-ideals of beta-Algebras, Materials Science and Engineering Conference Series, 263, (4) (2017), 1-10.
- [6] Jun, Y. B., Kim, C. S. and Kang, M. S., Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences, 44, (2) (2010), 239-250.
- [7] Jun, Y. B., Kyoung Ja Lee. and Kang, M. S., Cubic structures applied to ideals of BCI-algebras, Computers & Mathematics with Applications, 62, (9) (2011), 3334-3342.
- [8] Jun, Y. B., Kim, C. S., & Yang, K. O., Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4, (1) (2012), 83-98.
- [9] Khalid, M., Smarandache, F., Khalid, N. A. and Broumi, S., Translative and Multiplicative Interpretation of Neutrosophic Cubic Set, Infinite Study, (2020).
- [10] Lee, K. J., Jun, Y. B. and Doh, M. I., Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean Math. Soc, 24, (3) (2009), 353-360.
- [11] Muralikrishna, P., Vinodkumar, R. and Palani, G., Some aspects on cubic fuzzy β -subalgebra of β -algebra, Journal of Physics: Conference Series, 1597, (1) (2020), 012-018.
- [12] Neggers, J. Kim Hee Sik, On β -algebras, Mathematica Slovaca, 52, (5) (2002), 517-530.
- [13] Zadeh, L. A., Fuzzy sets, Information Control, 8, (3) (1965), 338-353.