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1. Introduction
Multiset (bag) is a well established notion both in mathematics and in com-

puter science ([8], [9], [22]). In mathematics, a multiset is considered to be the
generalization of a set. In classical set theory, a set is a well-defined collection of
distinct objects. If repeated occurrences of any object is allowed in a set, then a
mathematical structure, that is known as multiset (mset, for short), is obtained
([21], [23], [24]). In various counting arguments it is convenient to distinguish be-
tween a set like {a, b, c} and a collection like {a, a, a, b, c, c}. The latter, if viewed
as a set, will be identical to the former. However, it has some of its elements pur-
posely listed several times. We formalize it by defining a multiset as a collection
of elements, each considered with certain multiplicity. For the sake of convenience
a multiset is written as {k1/x1, k2/x2, ..., kn/xn} in which the element xi occurs ki
times. We observe that each multiplicity ki is a positive integer.
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From 1989 to 1991, Wayne D. Blizard made a through study of multiset theory,
real valued multisets and negative membership of the elements of multisets ([1],
[2], [3], [4]). K. P. Girish and S. J. John introduced and studied the concepts of
multiset topologies, multiset relations, multiset functions, chains and antichains
of partially ordered multisets ([12], [13], [14], [15], [16]). Concepts of multigroups
and soft multigroups are found in the studies of Sk. Nazmul and S. K. Samanta
([18], [19]). Many other authors like Chakrabarty et al. ([5], [6], [7]), S. P. Jena et
al. ([17]), J. L. Peterson ([20]) also studied various properties and applications of
multisets.

Classical set theory states that a given element can appear only once in a set; it
assumes that all mathematical objects occur without repetition. Thus there is only
one number four, one field of complex numbers, etc. So, the only possible relation
between two mathematical objects is either they are equal or they are different.
However in the physical world it is observed that there is enormous repetition. For
instance, there are many hydrogen atoms, many water molecules, many strands of
DNA, etc. Coins of the same denomination and year, electrons or grains of sand
appear similar, despite being obviously separate.

Functional analysis is an important branch of Mathematics and it has many ap-
plications in Mathematics and Sciences. Metric space is the beginning of functional
analysis and it has several applications in many branch of functional analysis. An
extension of metric spaces is done by using multi set and multi number instead of
crisp real set and crisp real number in ([10]). Some topological properties of multi
metric spaces are studied in ([11]). In the present paper, a notion of convergence in
multi metric space is presented for the first time and complete multi metric space
is studied. Multi set version of Cantor’s intersection theorem and Banach’s fixed
point theorem are also established.

The organization of the paper is as follows:

In Section 2, some preliminary results on multi sets, multi real points, multi
metric spaces and multi metric topologies are given. Section 3 comprises con-
vergence in multi metric space, complete multi metric space and their properties.
Cantor’s intersection theorem and Banach’s fixed point theorem are established in
multi set settings. Section 4 concludes the paper.

2. Preliminaries

Definition 2.1. [12] A multi set (or mset in short) M drawn from the set X
is represented by a function CountM or CM defined as CM : X → N where N
represents the set of non negative integers.

Here CM(x) is the number of occurrences of the element x in the mset M . We repre-
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sent the mset M drawn from the set X = {x1, x2, ..., xn} as M = {m1/x1,m2/x2, ...,
mn/xn} where mi is the number of occurrences of the element xi in the mset M
denoted by xi ∈mi M, i = 1, 2, ..., n. However those elements which are not included
in the mset M have zero count.

Example 2.2. [12] LetX = {a, b, c, d, e} be any set. ThenM = {2/a, 4/b, 5/d, 1/e}
is an mset drawn from X. Clearly, a set is a special case of a mset.

Definition 2.3. [12] Let M and N be two msets drawn from a set X. Then, the
following are defined:
(i) M = N if CM(x) = CN(x) for all x ∈ X.
(ii) M ⊂ N if CM(x) ≤ CN(x) for all x ∈ X.
(iii) P = M ∪N if CP (x) = Max{CM(x), CN(x)} for all x ∈ X.
(iv) P = M ∩N if CP (x) = Min{CM(x), CN(x)} for al x ∈ X.
(v) P = M ⊕N if CP (x) = CM(x) + CN(x) for all x ∈ X.
(vi) P = M 	N if CP (x) = Max{CM(x)−CN(x), 0} for all x ∈ X, where ⊕ and
	 represents mset addition and mset subtraction respectively.

Let M be a mset drawn from a set X. The support set of M , denoted by M∗,
is a subset of X and M∗ = {x ∈ X : CM(x) > 0}, i.e., M∗ is an ordinary set. M∗

is also called root set.

An mset M is said to be an empty mset if for all x ∈ X,CM(x) = 0. The
cardinality of an mset M drawn from a set X is denoted by Card(M) or |M | and
is given by CardM =

∑
x∈X CM(x).

Definition 2.4. [12] A domain X, is defined as a set of elements from which
msets are constructed. The mset space [X]w is the set of all msets whose elements
are in X such that no element in the mset occurs more than w times. The set
[X]+∞ is the set of all msets over a domain X such that there is no limit on
the number of occurrences of an element in an mset. If X = {x1, x2, ..., xk} then
[X]w = {{m1/x1,m2/x2, ...,mk/xk} : for i = 1, 2, ...k; mi ∈ {0, 1, 2, ...w}}.
Definition 2.5. [12] Let X be a support set and [X]w be the mset space defined
over X. Then for any mset M ∈ [X]w, the complement M c of M in [X]w is an
element of [X]w such that Cc

M(x) = w − CM(x), for all x ∈ X.

Definition 2.6. [12] The maximum mset is defined as Z where
CZ(x) = Max{CM(x) : x ∈k M,M ∈ [X]m and k ≤ m}.
Thus CZ(x) = m ∀x ∈ X.

Definition 2.7. [12] Let [X]w be an mset space and {M1,M2, ...} be a collection
of msets drawn from [X]w. Then the following operations are possible under an
arbitrary collection of msets.
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(i) The union
⋃
i∈IMi = {C∪Mi

(x)/x : C∪Mi
(x) = max{CMi

(x) : x ∈ X}.
(ii) The intersection

⋂
i∈IMi = {C∩Mi

(x)/x : C∩Mi
(x) = min{CMi

(x) : x ∈ X}.
(iii) The mset addition

⊕
i∈IMi = {C⊕

Mi
(x)/x : C⊕

Mi
(x) =

min{w,
∑

i∈I{CMi
(x) : x ∈ X}}.

(iv) The mset complement M c = Z 	M = {CMc(x)/x : CMc(x) = CZ(x) −
CM(x), x ∈ X}.
Definition 2.8. [12] The power set of an mset is denoted by P ∗(M) and it is an
ordinary set whose members are sub msets of M .

Definition 2.9. [12] Let M ∈ [X]w and τ ⊆ P ∗(M). Then τ is called a multiset
topology of M if τ satisfies the following properties.
(i) The mset M and the empty mset ∅ are in τ .
(ii) The mset union of the elements of any sub collection of τ is in τ .
(iii) The mset intersection of the elements of any finite sub collection of τ is in τ .

Mathematically a multiset topological space is an ordered pair (M, τ) consisting
of a mset M ∈ [X]w and a multiset topology τ ⊆ P ∗(M) on M . Note that τ is
an ordinary set whose elements are msets. Multiset topology is abbreviated as an
M-topology.

Definition 2.10. [10] Multi point: Let M be a multi set over a universal set
X. Then a multi point of M is defined by a mapping P k

x : X −→ N such that
P k
x (x) = k where k ≤ CM(x). x and k will be referred to as the base and the

multiplicity of the multi point P k
x respectively.

Collection of all multi points of an mset M is denoted by Mpt.

Definition 2.11. [10] The mset generated by a collection B of multi points
is denoted by MS(B) and is defined by CMS(B)(x) = Sup{k : P k

x ∈ B}.
A mset can be generated from the collection of its multi points. If Mpt denotes

the collection of all multi points of M , then obviously
CM(x) = Sup{k : P k

x ∈Mpt} and hence M = MS(Mpt).

Definition 2.12. [10] (i) The elementary union between two collections of multi
points C and D is denoted by C tD and is defined as
C tD = {P k

x : P l
x ∈ C,Pm

x ∈ D and k = max{l,m}}.
(ii) The elementary intersection between two collections of multi points C

and D is denoted by C uD and is defined as
C uD = {P k

x : P l
x ∈ C,Pm

x ∈ D and k = min{l,m}}.
(iii) For two collections of multi points C and D, C is said to be an elementary

subset of D, denoted by C @ D, iff P l
x ∈ C ⇒ ∃m ≥ l such that Pm

x ∈ D.
The following results can be easily proved:
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Theorem 2.13. [10] (i) For two collections of multi points C and D, C ⊂ D ⇒
C @ D, but the converse is not true.

(ii) For two collections of multi points C and D, C∪D ⊃ CtD and the equality
does not hold in general.

(iii) For two collections of multi points C and D, C ∩ D ⊂ C u D and the
equality does not hold in general.

(iv) For an mset M,MS(Mpt) = M .
(v) For a collection B of multi points, [MS(B)]pt ⊃ B.
(vi) For two msets F and G, F ⊂ G⇔ Fpt ⊂ Gpt .
(vii) For two collections of multi points C and D, C ⊂ D ⇒ MS(C) ⊂

MS(D).
(viii) For two collections of multi points C and D, C @ D ⇔ MS(C) ⊂

MS(D).
(ix) For two collections of multi points C and D, MS(C u D) = MS(C) ∩

MS(D).
(x) For an arbitrary collection {Bi : i ∈ ∆} of multi points, MS(ti∈∆Bi) =

∪i∈∆MS(Bi).
(xi) For an arbitrary collection {Bi : i ∈ ∆} of multi points, MS(∪i∈∆Bi) =

∪i∈∆MS(Bi).

Definition 2.14. [10] Let mR+ denotes the multi set over R+ (set of non-negative
real numbers) having multiplicity of each element equal to w, w ∈ N. The members
of (mR+)pt will be called non-negative multi real points.

Definition 2.15. [10] Let P i
a and P j

b be two multi real points of mR+. We define
P i
a > P j

b if a > b or P i
a > P j

b if i > j when a = b.

Definition 2.16. [10] (Addition of multi real points) We define P i
a + P j

b =
P k
a+b where k = Max{i, j}, P i

a, P
j
b ∈ (mR+)pt.

Definition 2.17. [10] (Multiplication of multi real points) We define mul-
tiplication of two multi real points in mR+ as follows:

P i
a × P

j
b = P 1

0 , if either P i
a or P j

b equal to P 1
0 ;

= P k
ab, otherwise; where k =Max {i, j}.

Proposition 2.18. [10] (Properties of multiplication) Multiplication of multi
real points satisfies the following properties:
(i) Multiplication is commutative.
(ii) Multiplication is associative.
(iii) Multiplication is distributive over addition.

Definition 2.19. [10] Multi Metric:
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Let d : Mpt×Mpt −→ (mR+)pt (M being a multi set over a Universal set X having
multiplicity of any element atmost equal to w) be a mapping which satisfies the
following:

(M1) d(P l
x, P

m
y ) ≥ P 1

0 , ∀P l
x, P

m
y ,∈Mpt.

(M2) d(P l
x, P

m
y ) = P 1

0 iff P l
x = Pm

y , ∀P l
x, P

m
y ∈Mpt.

(M3) d(P l
x, P

m
y ) = d(Pm

y , P
l
x), ∀P l

x, P
m
y ∈Mpt.

(M4) d(P l
x, P

m
y ) + d(Pm

y , P
n
z ) ≥ d(P l

x, P
n
z ), ∀P l

x, P
m
y , P

n
z ∈Mpt.

(M5) For l 6= m, d(P l
x, P

m
y ) = P k

0 , ⇔ x = y and k = Max{l,m}.
Then d is said to be a multi metric on M and (M,d) is called a multi metric

(or a M-metric) space.

Example 2.20. [10] Let M be a multi set over X having multiplicity of any
element atmost equal to w. We define
d : Mpt ×Mpt −→ (mR+)pt such that for all P l

x, P
m
y of Mpt,

d(P l
x, P

m
y ) = P 1

0 if P l
x = Pm

y i.e., x = y and l = m;

= P
Max{l,m}
0 if x = y and l 6= m;

= P j
1 if x 6= y. [ 1 ≤ j ≤ w is some fixed positive integer ]

Then d is a M-metric on M .

Theorem 2.21. [10] If d(P i
a, P

j
b ) = P l

r and d(P p
a , P

q
b ) = Pm

s , then r = s,
P i
a, P

j
b , P

p
a , P

q
b are elements of Mpt and P l

r, P
m
s are elements of (mR+)pt.

Definition 2.22. [10] Let (M,d) be an M-metric space and L be a non-null sub
mset of M . Then the mapping dL : Lpt × Lpt −→ (mR+)pt given by dL(P a

x , P
b
y ) =

d(P a
x , P

b
y ), ∀ P a

x , P
b
y ∈ Lpt is a M-metric on L. The metric is known as the relative

M-metric induced by d on L. The M-metric space (L, dL) is called an M-metric
subspace or simply an M-subspace of the M-metric space (M,d).

Definition 2.23. [10] Let (M,d) be a M-metric space and L be a nonempty submset
of M . Then the diameter of L, denoted by δ(L) is defined by:

δ(L) = P k
a where a = Sup{b : P j

b = d(P l
x, P

m
y ), P l

x, P
m
y ∈ Lpt},

k = 1 if a > b ∀P j
b = d(P l

x, P
m
y ), P l

x, P
m
y ∈ Lpt and

= Max{j : P j
b = d(P l

x, P
m
y ), P l

x, P
m
y ∈ Lpt} otherwise.

If supremum does not exist finitely, we call L a set of infinite diameter.

Theorem 2.24. [10] For a sub mset L of M in a M-metric space (M,d), δ(L) =
P 1

0 iff L = {1/a} ie. L consists of a single element of the universal set X with
multiplicity 1.

Theorem 2.25. [10] P ⊂ Q⇒ δ(P ) ≤ δ(Q).

Definition 2.26. [10] Let A and B be two sub msets of M in a M-metric space
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(M,d). Then the distance between A and B, denoted by δ(A,B), is defined by

δ(A,B) = P k
a where a = Inf {b : P j

b = d(P l
x, P

m
y ), P l

x ∈ Apt, Pm
y ∈ Bpt} and

k = w if a < b ∀P j
b = d(P l

x, P
m
y ), P l

x ∈ Apt, Pm
y ∈ Bpt;

k = Min {j : P j
a = d(P l

x, P
m
y ), P l

x ∈ Apt, Pm
y ∈ Bpt}; otherwise.

Definition 2.27. [11] Let (M,d) be a M-metric space, r > 0 and P k
a ∈Mpt. Then

the open ball with centre P k
a and radius P 1

r [r > 0] is denoted by B(P k
a , P

1
r ) and

is defined by B(P k
a , P

1
r ) = {P l

x : d(P l
x, P

k
a ) < P 1

r }.
MS[B(P k

a , P
1
r )] will be called a multi open ball with centre P k

a and radius
P 1
r > P 1

0 .

Definition 2.28. [11] B[P k
a , P

1
r ] = {P l

x : d(P l
x, P

k
a ) ≤ P 1

r } is called the closed
ball with centre P k

a and radius P 1
r [r > 0]. MS[B[P k

a , P
1
r ]] will be called a multi

closed ball with centre P k
a and radius P 1

r [r > 0].

Theorem 2.29. [11] (Hausdorff Property)
Let (M,d) be a M-metric space and P k

a , P
l
b ∈Mpt such that a 6= b.Then ∃ r > 0 such

that MS[B(P k
a , P

1
r )∩B(P l

b , P
1
r )] = ∅ which is equivalent to B(P k

a , P
1
r )∩B(P l

b , P
1
r ) =

φ.

Definition 2.30. [11] Let (M,d) be a M-metric space and P k
a ∈Mpt. A collection

N(P k
a ) of multi points of M is said to be a nbd of the multi point P k

a if ∃r > 0
such that P k

a ∈ B(P k
a , P

1
r ) ⊂ N(P k

a ). MS[N(P k
a )] will be called a multi nbd of the

multi point P k
a .

Theorem 2.31. [11] Let N1 and N2 are two nbds of a multi point P i
a in a M-metric

space (M,d). Then N1 ∩N2 is a nbd of P i
a and hence MS(N1 ∩N2) is a multi nbd

of P i
a.

Definition 2.32. [11] Let B be a collection of multi points of M in a M-metric
space (M,d). Then a multi point P k

a is said to be an interior point of B if ∃ an
open ball B(P k

a , P
1
r ) with centre at P k

a and r > 0 such that B(P k
a , P

1
r ) ⊂ B.

Definition 2.33. [11] Let N be a sub multiset of a M-metric space (M,d). Then
a multi point P k

a is said to be an interior point of N if it is an interior point
of Npt, ie. ∃ an open ball B(P k

a , P
1
r ) with centre at P k

a , and r > 0 such that
B(P k

a , P
1
r ) ⊂ Npt.

Definition 2.34. [11] Let N be a sub mset of a M-metric space (M,d). Then the
interior of N is defined to be the set consisting of all interior points of N .

The interior of the multi set N is denoted by N o or Int(N).

MS[Int(N)] is said to be the multi interior of N denoted by Mint(N).
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Theorem 2.35. [11] Let A and B be two non-null sub msets of a M-metric space
(M,d). Then
(i) Mint(A) ⊂ A.
(ii) A ⊂ B ⇒ Int(A) ⊂ Int(B) and hence Mint(A)⊂ Mint(B).
(iii) Int(A) ∩ Int(B) = Int(A ∩B).
(iv) (a)Int(A ∩ B) ⊂ Int(A) u Int(B) (b)Int(A ∩ B) @ Int(A) u Int(B) (c)
Int(A ∩B) @ Int(A) ∩ Int(B).
(v) Mint(A ∩B) ⊂Mint(A) ∩Mint(B).
(vi) Int(A ∪B) ⊃ Int(A) ∪ Int(B).

Definition 2.36. [11] Let (M,d) be a M-metric space. Then a collection B of
multi points of M is said to be open if every multi point of B is an interior point
of B i.e., for each P k

a ∈ B, ∃ an open ball B(P k
a , P

1
r ) with centre at P k

a , and r > 0
such that B(P k

a , P
1
r ) ⊂ B.

φ is separately considered as an open set.

Definition 2.37. [11] Let (M,d) be a M-metric space. Then N ⊂ M is said to
be multi open in (M,d) iff ∃ a collection B of multi points of N such that B is
open and MS(B) = N .

The null multiset Φ separately considered as multi open in (M,d).

Proposition 2.38. [11] In a M-metric space every open ball is open.

Theorem 2.39. [11] In a M-metric space (M,d),
(i) Union of arbitrary number of open sets of multi points is open.
(ii) Elementary intersection of two open sets of multi points is open.
(iii) Intersection of two open sets of multi points is open.

Theorem 2.40. [11] In a M-metric space (M,d),
(i) The null sub mset ∅ is multi open.
(ii) M is multi open.
(iii) Arbitrary union of multi open sets is multi open.
(iv) Intersection of two multi open sets is multi open.

Example 2.41. [11] Arbitrary intersection of multi open sets may not be multi
open.
For example consider R to be a multi set with multiplicity of each element 1.
Define d : Rpt × Rpt −→ (mR+)pt by d(P 1

x , P
1
y ) = P 1

|x−y|, ∀P 1
x , P

1
y ∈ Rpt.

Consider the collection {Pn : n ∈ N} of multi sets such that
Pn = {1/x : − 1

n
< x < 1

n
}. Then Pn, n ∈ N are multi open sets as (Pn)pt = {P 1

x :
− 1
n
< x < 1

n
}, n ∈ N are open sets of multi points in (R, d) and Pn = MS((Pn)pt).

But,
⋂
n∈N Pn = {1/0} which is not multi open in (R, d).
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Definition 2.42. [11] A multi set N in a M-metric space (M,d) is said to be
multi closed if its complement N c is multi open in (M,d).

Proposition 2.43. [11] Let {Ni : i ∈ 4} be an arbitrary collection of multisets in
(M,d). Then

⋃
i∈4(Ni)

c = (
⋂
i∈4Ni)

c and
⋂
i∈4(Ni)

c = (
⋃
i∈4Ni)

c.

Theorem 2.44. [11] In a M-metric space,
(i) The null multi set ∅ is multi closed.
(ii) The absolute multiset M is multi closed.
(iii) Arbitrary intersection of multi closed sets is multi closed.
(iv) Finite union of multi closed sets is multi closed.

Definition 2.45. [11] Let (M,d) be a M-metric space and B be a collection of
multi points of M . Then a multi point P l

x of M is said to be a limit point of B
if every open ball B(P l

x, P
1
r ) (r > 0) containing P l

x in (M,d) contains at least one
point of B other than P l

x.

The set of all limit points of B is said to be the derived set of B and is denoted
by Bd.

Definition 2.46. [11] Let (M,d) be a M-metric space and N ⊂M . Then P l
x ∈Mpt

is said to be a multi limit point of N if it is a limit point of Npt ie. if every
open ball B(P l

x, P
1
r ) (r > 0) containing P l

x in (M,d) contains at least one point of
Npt other than P l

x.

A multi limit point of a multi set N may or may not belong to the set N . The
multiset generated by the multi limit points of N is called the multi derived set
of N and is denoted by Nd. Thus Nd = MS[(Npt)

d].

Theorem 2.47. [11] Let A and B be collections of multi points in (M,d). Then
(i) Ad ∪Bd = (A ∪B)d (ii) (Ad)d * Ad in general.

Theorem 2.48. [11] For two sub multi sets P and Q of M, (P ∪Q)d = P d ∪Qd.

Definition 2.49. [11] Let (M,d) be a M-metric space and B ⊂ Mpt. Then the
collection of all points of B together with all limit points of B is said to be the
closure of B in (M,d) and is denoted by B. Thus B = B ∪Bd.

Theorem 2.50. [11] If B ⊂Mpt in (M,d), then B = B.

Definition 2.51. [11] Let (M,d) be a M-metric space and N ⊂ M . Then the
multi set generated by all multi points and all multi limit points of N is said to be
the multi closure of N and is denoted by N .

Thus the multi set generated by all the multi points of Npt is the multi closure
of N and we have N = MS[Npt] = MS[Npt ∪ (Npt)

d] = MS[Npt] ∪MS[(Npt)
d] =
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N ∪MS[(Npt)
d] = N ∪Nd.

Theorem 2.52. [11] Let (M,d) be a M-metric space and P ⊂ M . Then Ppt =
(P )pt.

Theorem 2.53. [11] Let (M,d) be a M-metric space and P,Q ⊂M . Then (i) ∅ = ∅
and M = M (ii) P ⊂ P (iii) P = P (iv) P ⊂ Q⇒ P ⊂ Q (v) P∪Q = P ∪Q
(vi) P ∩Q ⊂ P ∩ Q (vii) P l

x ∈ Mpt and δ(P
l
x, Q) = P 1

0 ⇒ P l
x ∈ Qpt, but the

converse is not true in general.

3. Completeness of M-metric Spaces

Definition 3.1. A sequence {P ln
xn} of multi points in mR+ is said to converge to

P 1
0 if for any ε > 0, there exists n0 ∈ N such that P ln

xn < P 1
ε for all n ≥ n0.

Since ln ≥ 1,∀n ∈ N;P ln
xn < P 1

ε ⇐⇒ xn < ε.

∴ P ln
xn → P 1

0 ⇐⇒ xn → 0 as n→ +∞ in R+.

Definition 3.2. Let {P ln
xn} be a sequence of multi points in a M-metric space

(M,d). The sequence {P ln
xn} is said to converge in (M,d) if there exists P l

x belongs
to Mpt such that d(P ln

xn , P
l
x) → P 1

0 as n → +∞. This means that for any ε > 0,
there exists n0 ∈ N such that d(P ln

xn , P
l
x) < P 1

ε ∀ n ≥ n0.

We denote this by P ln
xn → P l

x as n → +∞ or by limn→+∞ P
ln
xn = P l

x. P
l
x is said

to be the multi limit of the sequence {P ln
xn} as n→ +∞.

Note 3.3. All convergent sequences of multi points having same bases will converge
to multi points having same base ie. if for a sequence {P ln

xn} of multi points P ln
xn →

P l
x, then P kn

xn → P k
x for any sequence {kn} of natural numbers with 1 ≤ kn ≤

CM(xn) and for any natural number k with 1 ≤ k ≤ CM(x).

To prove this, let ε > 0 be arbitrary.
Then as P ln

xn → P l
x, there exists m0 ∈ N such that, for all n ≥ m0, d(P ln

xn , P
l
x) < P 1

ε
2

⇒ For any sequence {kn} of natural numbers with 1 ≤ kn ≤ CM(xn), for any
natural number k with 1 ≤ k ≤ CM(x) and for n ≥ m0,
d(P kn

xn , P
k
x ) ≤ d(P kn

xn , P
ln
xn) + d(P ln

xn , P
l
x) + d(P l

x, P
k
x ) < P un

0 + P 1
ε
2

+ P u
0 [where un =

Max{kn, ln} and u = Max{k, l}] = P
Max{un,u}
ε
2

< P 1
ε ⇒ P kn

xn → P k
x .

Theorem 3.4. Uniqueness of multi limit :
A convergent sequence of multi points converge to multi limit having the same
base.
Proof. Let {P ln

xn} be a sequence of multi points in a M-metric space (M,d),
limP ln

xn = P l
x and limP ln

xn = Pm
y where x 6= y ⇒ d(P l

x, P
m
y ) = P i

a where a > 0.
Let 0 < ε < a

2
. Since limP ln

xn = P l
x and limP ln

xn = Pm
y , there exist n1, n2 ∈ N such
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that d(P ln
xn , P

l
x) < P 1

ε for all n ≥ n1 and d(P ln
xn , P

m
y ) < P 1

ε for all n ≥ n2.
Let n0 = n1 ∨ n2. Then for all n ≥ n0, d(P ln

xn , P
l
x) < P 1

ε and d(P ln
xn , P

m
y ) < P 1

ε .
∴ for all n ≥ n0, d(P l

x, P
m
y ) ≤ d(P ln

xn , P
l
x) + d(P ln

xn , P
m
y ) < P 1

ε + P 1
ε

= P 1
2ε < P i

a [∵ 2ε < a], which is not possible. ∴ x = y.

Theorem 3.5. Let (M,d) be a M-metric space and P ⊂ M . Then a multi point
P l
x is a multi limit point of P iff ∃ a sequence {P ln

xn} of multi points of P other
than P l

x, converging to P l
x.

Proof. Let P l
x be a multi point of P . Then for each n ∈ N, B(P l

x, P
1
1
n

) ∩
[Ppt\{P l

x}] 6= φ.
Let for all n ∈ N, P ln

xn ∈ B(P l
x, P

1
1
n

) ∩ [Ppt\{P l
x}]. Then {P ln

xn} is a sequence of

multi points of P other than P l
x such that d(P ln

xn , P
l
x) < P 1

1
n

, for all n ∈ N. Since
1
n
→ 0 as n → +∞, for any ε > 0, ∃ n0 ∈ N such that 1

n
< ε for all n ≥ n0

⇒ P 1
1
n

< P 1
ε ∀ n ≥ n0 ⇒ d(P ln

xn , P
l
x) < P 1

ε ∀n ≥ n0 ⇒ limP ln
xn = P l

x.

Conversely let {P ln
xn} be a sequence of multi points in P other than P l

x such that
limP ln

xn = P l
x ⇒ for any ε > 0, there exists n0 ∈ N such that P ln

xn ∈ B(P l
x, P

1
ε ) for

all n ≥ n0. Also P ln
xn ∈ Ppt\{P

l
x} for all n ≥ n0. ∴ P ln

xn ∈ B(P l
x, P

1
ε ) ∩ [Ppt\{P l

x}]
for all n ≥ n0. ∴ For any ε > 0, B(P l

x, P
1
ε )∩ [Ppt\{P l

x}] 6= φ. ∴ P l
x is a multi limit

point of P.

Theorem 3.6. Let (M,d) be a M-metric space and P ⊂ M . Then a multi point
P l
x ∈ Ppt iff ∃ a sequence {P ln

xn} of multi points of P , converging to P l
x.

Proof. Let P l
x ∈ Ppt = Ppt ∪ (Ppt)

d.
If P l

x ∈ Ppt, the sequence {P ln
xn} where P ln

xn = P l
x for all n ∈ N will serve the purpose.

If P l
x ∈ (Ppt)

d, there exists a sequence {P ln
xn} in Ppt other than P l

x, converging to
P l
x.

Conversely let ∃ a sequence {P ln
xn} of multi points of P , converging to P l

x. If
P l
x /∈ Ppt, {P ln

xn} is a sequence other than P l
x in Ppt converging to P l

x and hence
P l
x ∈ (Ppt)

d.

Note 3.7. Since P ln
xn → P l

x for some 1 ≤ l ≤ CM(x) ⇒ P ln
xn → P k

x ∀ 1 ≤ k ≤
CM(x), ∴ P l

x ∈ Ppt for some 1 ≤ l ≤ CM(x)⇒ P k
x ∈ Ppt ∀ 1 ≤ k ≤ CM(x).

Definition 3.8. A sequence {P in
xn} of multi points in a M-metric space (M,d)

is said to be bounded if the set {d(P in
xn , P

im
xm) : m,n ∈ N} is bounded ie. ∃ a

nonnegative multi real point P i
a such that d(P in

xn , P
im
xm) ≤ P 1

a ,∀m,n ∈ N.

Definition 3.9. A sequence {P in
xn} of multi points in a M-metric space (M,d)

is said to be a multi Cauchy sequence if for any ε > 0, ∃ n0 ∈ N such that
d(P in

xn , P
im
xm) < P 1

ε ∀ m,n ≥ n0 ie. d(P in
xn , P

im
xm)→ P 1

0 as m,n→ +∞.
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Theorem 3.10. Every convergent sequence in a M-metric space is Cauchy and
every Cauchy sequence is bounded. A Cauchy sequence is convergent iff it has a
convergent subsequence.
Proof. Let{P ln

xn} be a convergent sequence in a M-metric space (M,d) converging
to P l

x ∈ Mpt. Then for any ε > 0, there exists n0 ∈ N such that d(P ln
xn , P

l
x) < P 1

ε
2

for all n ≥ n0

Now we have d(P ln
xn , P

lm
xm) ≤ d(P ln

xn , P
l
x)+d(P l

x, P
lm
xm) < P 1

ε
2
+P 1

ε
2

= P 1
ε for allm,n ≥ n0

⇒ {P ln
xn} is a Cauchy sequence.

Next let {P ln
xn} be a Cauchy sequence in (M,d).

Then for any ε > 0, there exists n0 ∈ N such that d(P ln
xn , P

lm
xm) < P 1

ε , for all
m,n ≥ n0.
Since {d(P ln

xn , P
lm
xm) : m,n ≤ n0} is a finite collection of nonnegative multi real

points, we must have Max{d(P ln
xn , P

lm
xm) : m,n ≤ n0} = P l

r ∈ (mR+)pt

If m < n0 and n ≥ n0, d(P ln
xn , P

lm
xm) ≤ d(P ln

xn , P
ln0
xn0

)+d(P
ln0
xn0
, P lm

xm) < P l
r+P 1

ε = P l
r+ε.

Thus d(P ln
xn , P

lm
xm) ≤ P l

r+ε, ∀m,n ∈ N and consequently {P ln
xn} is bounded.

Next, if a Cauchy sequence is convergent, each of its subsequence is convergent.

Conversely let us assume that {P ln
xn} is a Cauchy sequence having a convergent

subsequence {P lkn
xkn} converging to P l

x ∈Mpt. Then for any ε > 0 we can find n0 ∈ N
such that d(P

lkn
xkn , P

l
x) < P 1

ε
2
, ∀n ≥ n0 and

d(P ln
xn , P

lm
xm) < P 1

ε
2
, ∀ m,n ≥ n0

Now n ≥ n0 ⇒ kn ≥ n0 ⇒ d(P ln
xn , P

lkn
xkn ) < P 1

ε
2
.

∴ ∀ n ≥ n0, d(P ln
xn , P

l
x) ≤ d(P ln

xn , P
lkn
xkn ) + d(P

lkn
xkn , P

l
x) < P 1

ε
2

+ P 1
ε
2

= P 1
ε .

⇒ {P ln
xn} is convergent and converges to P l

x.

Definition 3.11. (Complete M-metric space)
A M-metric space (M,d) is said to be complete if every multi Cauchy sequence in
(M,d) converges to a multi point of M. A M-metric space is said to be incomplete
if it is not complete.

Example 3.12. Consider the M-metric space (R, d) as in the example [2.41]. Let
P = {1/x : 0 < x ≤ 1} and for any n ∈ N, P 1

an = P 1
1
n

. Then {P 1
an} is a sequence of

multi points in P.

For any ε > 0, we choose m ∈ N such that m > 1
ε
.

Then for i ≥ j ≥ m, |1
i
− 1

j
| = |i−j|

ij
≤ i

ij
= 1

j
≤ 1

m
< ε

⇒ d(P 1
ai
, P 1

aj
) = d(P 1

1
i

, P 1
1
j

) = P 1
| 1
i
− 1
j
| < P 1

ε ∀ i ≥ j ≥ m.

⇒ {P 1
an} is a Cauchy sequence in P.
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Also the sequence converges to P 1
0 which is not a multi point of P. So the se-

quence cannot converge in (P, dP ).
∴ (P, dP ) is not a complete multi metric space.

Theorem 3.13. In a M-metric space (M,d), for any sub mset P of M , if
δ(P ) = P i

a, then δ(P ) = P j
a where i ≤ j.

Proof. Let δ(P ) = P j
b .

Since P ⊂ P , δ(P ) ≤ δ(P )
⇒ P i

a ≤ P j
b

⇒ a ≤ b ———–(1)
Let P k

c , P
l
d ∈ (P )pt = Ppt and d(P k

c , P
l
d) = Pm

e .
Then for any ε > 0, B(P k

c , P
1
ε
2
) ∩ Ppt 6= φ and B(P l

d, P
1
ε
2
) ∩ Ppt 6= φ.

Let P n
f ∈ B(P k

c , P
1
ε
2
) ∩ Ppt and P p

g ∈ B(P l
d, P

1
ε
2
) ∩ Ppt

⇒ P n
f , P

p
g ∈ Ppt, d(P k

c , P
n
f ) < P 1

ε
2

and d(P l
d, P

p
g ) < P 1

ε
2

⇒ Pm
e = d(P k

c , P
l
d) ≤ d(P k

c , P
n
f ) + d(P n

f , P
p
g ) + d(P l

d, P
p
g )

< P 1
ε
2

+ δ(P ) + P 1
ε
2

[∵ P n
f , P

p
g ∈ Ppt, d(P n

f , P
p
g ) ≤ δ(P )]

⇒ Pm
e < P 1

ε + P i
a = P i

ε+a ⇒ e ≤ ε+ a.
Since this is true for any e such that Pm

e = d(P k
c , P

l
d), P

k
c , P

l
d ∈ (P )pt,

so Sup{e : Pm
e = d(P k

c , P
l
d), P

k
c , P

l
d ∈ (P )pt} ≤ ε+ a

⇒ b ≤ ε+ a [∵ δ(P ) = P j
b ].

Since this is true for any ε > 0, b ≤ a——— (2)
Thus from (1)& (2), b = a.
∴ δ(P ) = P i

a ⇒ δ(P ) = P j
a where i ≤ j as P ⊂ P .

Definition 3.14. If {Pn} is a sequence of sub msets of M in (M,d) and δ(Pn)→
P 1

0 as n→ +∞⇒ δ(Pn)→ P 1
0 as n→ +∞ in mR+.

Proof. Let δ(Pn) = P in
anfor all n ∈ N.

Then δ(Pn) = P jn
an where in ≤ jn for all n ∈ N.

Now δ(Pn) = P in
an −→ P 1

0 as n→ +∞ in mR+

⇒ For any ε > 0, ∃ n0 ∈ N such that P in
an < P 1

ε for all n ≥ n0 [∵ in ≥ 1 for all
n ∈ N]
⇒ P jn

an < P 1
ε for all n ≥ n0

⇒ δ(Pn) < P 1
ε for all n ≥ n0

⇒ δ(Pn)→ P 1
0 as n→ +∞.

Proposition 3.15. If {Pi : i ∈ ∆} be an arbitrary collection of sub msets in a
M-metric space (M,d), then

⋂
i∈∆ (Pi)pt = (

⋂
i∈∆ Pi)pt.

Proof. We have
⋂
i∈∆ Pi ⊂ Pi ∀ i ∈ ∆

⇒ (
⋂
i∈∆ Pi)pt ⊂ (Pi)pt ∀ i ∈ ∆
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⇒ (
⋂
i∈∆ Pi)pt ⊂

⋂
i∈∆(Pi)pt.

Next let P k
a ∈

⋂
i∈∆(Pi)pt

⇒ P k
a ∈ (Pi)pt for all i ∈ ∆.

⇒ CPi(a) ≥ k for all i ∈ ∆ ⇒
∧
i∈∆CPi(a) ≥ k

⇒ C⋂
i∈∆ Pi(a) ≥ k

⇒ P k
a ∈ (

⋂
i∈∆ Pi)pt

⇒
⋂
i∈∆(Pi)pt ⊂ (

⋃
i∈∆ Pi)pt.

Theorem 3.16. (Cantor’s intersection theorem in M-metric space)
A M-metric space (M,d) is complete iff for any sequence {Pn} of non null sub
mset of M with Pn = Pn for all n ∈ N and P1 ⊃ P2 ⊃ ........ ⊃ Pn ⊃ ... such that
δ(Pn) → P 1

0 as n → +∞, the intersection P = ∩n∈NPn consists of multi points
having same base.
Proof. Let (M,d) be a complete M-metric space and {Pn} be a sequence of non
null sub mset of M with Pn = Pn for all n ∈ N and P1 ⊃ P2 ⊃ ........ ⊃ Pn ⊃ ...
such that δ(Pn)→ P 1

0 as n→ +∞.
Since ∀ n ∈ N, Pn 6= ∅, ∃ a multi point P kn

an ∈ (Pn)pt, ∀ n ∈ N.
To show that {P kn

an } is Cauchy, we have for m,n ∈ N,m ≥ n,
P kn
an , P

km
am ∈ (Pn)pt, [Pm ⊂ Pn ∀ m ≥ n ⇒ (Pm)pt ⊂ (Pn)pt, ∀ m ≥ n]

and hence d(P kn
an , P

km
am ) ≤ δ(Pn) → P 1

0 as n→ +∞ [and hence m→ +∞]
∴ d(P kn

an , P
km
am )→ P 1

0 as m,n→ +∞
∴ {P kn

an } is Cauchy in (M,d)
Since (M,d) is complete, by hypothesis ∃ P k

a ∈Mpt such that limP kn
an = P k

a .

To show that P k
a is a multi point of ∩n∈NPn we have for any n ∈ N,

{P km
am }m≥n ∈ (Pn)pt and hence limmP

km
am = P k

a ∈ (Pn)pt = (Pn)pt
⇒ P k

a ∈
⋂
n∈N (Pn)pt = (

⋂
n∈N Pn)pt.

∴
⋂
n∈N Pn consists of at least one multi point.

Also since P kn
an → P k

a ⇒ P kn
an → P l

a ∀ 1 ≤ l ≤ CM(a), it follows that
P l
a ∈ (

⋂
n∈N Pn)pt ∀ 1 ≤ l ≤ CM(a).

To prove the uniqueness of the base a, let P j
b ∈ (

⋂
n∈N Pn)pt =

⋂
n∈N (Pn)pt

⇒ P j
b ∈ (Pn)pt ∀ n ∈ N. Also since P k

a ∈ (Pn)pt ∀ n ∈ N, it follows that ∀ n ∈
N, d(P k

a , P
j
b ) ≤ δ(Pn)→ P 1

0 as n→ +∞.
⇒ d(P k

a , P
j
b ) < P 1

ε for any ε > 0 which gives a = b.

Conversely, let the given condition be true. Let {P kn
an } be a Cauchy sequence

of multi points in (M,d) and for each n ∈ N,
Pn =MS{P kn

an , P
kn+1
an+1

, P kn+2
an+2

, ........}.
Then P1 ⊃ P2 ⊃ ........ ⊃ Pn ⊃ ... and hence P1 ⊃ P2 ⊃ ........ ⊃ Pn ⊃ ...
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Thus {Pn} is a sequence of non null sub msets of M such that P1 ⊃ P2 ⊃ ........ ⊃
Pn ⊃ ... and Pn = Pn, ∀ n ∈ N.
Also δ(Pn)→ P 1

0 as n→ +∞ as {P kn
an } is a Cauchy sequence.

∴ δ(Pn)→ P 1
0 as n→ +∞.

∴ by the given condition
⋂
n∈N Pn consists of multi points having the same base.

Let P k
a be one of them.

Then d(P kn
an , P

k
a ) ≤ δ(Pn)→ P 1

0 as n→ +∞.
⇒ d(P kn

an , P
k
a )→ P 1

0 as n→ +∞
limP kn

an = P k
a .

Hence {P kn
an } converges to P k

a proving that (M,d) is complete.

Definition 3.17. (Contraction mapping)
Let (M,d) be a M-metric space. Then a mapping T : Mpt −→ Mpt is said
to be a contraction mapping if ∃ 0 < α < 1 and ∃ 1 ≤ u ≤ w such that
d[T (P i

a), T (P j
b )] ≤ P u

α × d(P i
a, P

j
b ) for all P i

a, P
j
b ∈Mpt.

Definition 3.18. (Iterative sequence)
Let (M,d) be a M-metric space, P i

a ∈Mpt and T : Mpt −→Mpt be a mapping. Now
we construct a sequence as follows:
P i1
a1

= T (P i
a), P

i2
a2

= T (P i1
a1

) = T 2(P i
a). Similarly P i3

a3
= T (P i2

a2
) = T 3(P i

a), .................,
P in
an = T (P in−1

an−1
) = T n(P i

a).

Then the sequence {P in
an} is called an iterative sequence constructed by the multi

point P i
a.

Theorem 3.19. (Banach’s fixed point theorem)
Every contraction mapping defined over a complete M-metric space has fixed points
with same base.
Proof. Let (M,d) be a complete M-metric space and T : Mpt −→ Mpt be a
contraction mapping. Let P i

a ∈ Mpt and we construct the iterative sequence as
follows:

P i1
a1

= T (P i
a)

P i2
a2

= T (P i1
a1

) = T 2(P i
a)

P i3
a3

= T (P i2
a2

) = T 3(P i
a)

P in
an = T (P in−1

an−1
) = T n(P i

a)

...........................

...........................
Now we show that {P in

an} is a Cauchy sequence.
We have for m ∈ N, d(P im+1

am+1
, P im

am) = d(T (P im
am), T (P im−1

am−1
)))

≤ P u
α × d(P im

am , P
im−1
am−1

) [where 0 < α < 1 and 1 ≤ u ≤ w]
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= P u
α × d(T (P im−1

am−1
), T (P im−2

am−2
))

≤ P u
α × P u

α × d(P im−1
am−1

, P im−2
am−2

)

= P u
α2 × d(P im−1

am−1
, P im−2

am−2
) [From associative property of multiplication]

...........................

...........................

≤ P u
αm × d(P i1

a1
, P i

a).
Now for n > m,
d(P im

am , P
in
an) ≤ d(P im

am , P
im+1
am+1

) + d(P im+1
am+1

, P im+2
am+2

) + .........+ d(P in−1
an−1

, P in
an)

≤ P u
αm × d(P i1

a1
, P i

a) + P u
αm+1 × d(P i1

a1
, P i

a) + ............+ P u
αn−1 × d(P i1

a1
, P i

a)
= [P u

αm + P u
αm+1 + P u

αn−1 ]× d(P i1
a1
, P i

a)
= P u

αm+αm+1+.......+αn−1 × d(P i1
a1
, P i

a)
= P u

αm(1−αn−m)
1−α

× P k
c [where d(P i1

a1
, P i

a) = P k
c ]

= P l
αm(1−αn−m)c

1−α

[Where l = Max{u, k} and assuming without any loss of generality,

neither P k
c nor P u

αm(1−αn−m)
1−α

equal to P 1
0 ]

< P l
αmc
1−α

[∵ 0 < α < 1 and so 0 < αn−m < 1]

< P 1
ε ∀ n > m ≥ n0 [As limαm = 0, for any ε > 0, ∃ n0 ∈ N such that

αm < (1−α)ε
c

, ∀ m ≥ n0]
∴ d(P im

am , P
in
an)→ P 1

0 as m,n→ +∞
⇒ {P in

an} is a Cauchy sequence.

Since (M,d) is complete,{P in
an} converges to a multi point P j

b ∈Mpt .

Now we have d(T (P j
b ), P j

b ) ≤ d(T (P j
b ), P in

an) + d(P in
an , P

j
b ) [For any n ∈ N]

= d[T (P j
b ), T (P in−1

an−1
)] + d(P in

an , P
j
b )

≤ P u
α × d(P j

b , P
in−1
an−1

) + d(P in
an , P

j
b )

−→ P 1
0 as n→ +∞ [∵ lim d(P in

an , P
j
b ) = P 1

0 , lim d(P j
b , P

in−1
an−1

) = P 1
0

and so limP u
α × d(P j

b , P
in−1
an−1

) = P 1
0 ]

∴ d(T (P j
b ), P j

b ) = P 1
0 ⇒ T (P j

b ) = P j
b .

Thus P j
b is a fixed point of T.

Since P in
an → P j

b for some 1 ≤ j ≤ CM(b) ⇒ P in
an → P k

b ∀ 1 ≤ k ≤ CM(b), so
each P k

b , 1 ≤ k ≤ CM(b) i.e., each multi point having base b is a fixed point of T .

Next to show the uniqueness of the base b let P k
c be a fixed point of T where

b 6= c. Then we have d(P j
b , P

k
c ) = P l

d where d > 0.
Now P l

d = d(P j
b , P

k
c ) = d(T (P j

b ), T (P k
c )) ≤ P u

α × d(P j
b , P

k
c ) [0 < α < 1 and 1 ≤ u ≤

w] ⇒ P l
d ≤ P u

α × P l
d = P

Max{u,l}
αd

⇒ d ≤ αd ⇒ α ≥ 1 [∵ d > 0], which is a contradiction. So b = c.
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4. Conclusions
Functional analysis is an important branch of Mathematics and it has many

applications in Mathematics and Sciences. Metric space is the beginning of func-
tional analysis and it has several applications in many branch of functional analysis.
In this paper convergence in multi metric space and complete multi metric space
are studied. Cantor’s intersection theorem and Banach’s fixed point theorem are
established in multi set settings. There is an ample scope for further research on
multi metric space. Research on Multi norm and multi inner product can be of
special interest.
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