South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 3 (2022), pp. 207-216

DOI: 10.56827/SEAJMMS.2022.1803.17

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

$N_{nc} \delta$ -OPEN SETS

A. Vadivel and C. John Sundar*

Department of Mathematics, Government Arts and Science College, Aravakurichi - 639201, Tamil Nadu, INDIA

E-mail: avmaths@gmail.com

*Department of Mathematics, Annamalai University, Annamalai Nagar - 608002, INDIA

E-mail : johnphdau@hotmail.com

(Received: Oct. 09, 2021 Accepted: Nov. 10, 2022 Published: Dec. 30, 2022)

Abstract: A new strong forms of sets called N-neutrosophic crisp δ -open sets and N-neutrosophic crisp δ -closed sets in N-neutrosophic crisp topological space are introduced in this article. Also, discuss their properties and examples are related to N-neutrosophic crisp δ open sets along with their near sets in N-neutrosophic crisp topological spaces.

Keywords and Phrases: $N_{nc}\delta os$, $N_{nc}\delta cs$, $N_{nc}\delta int(M)$, $N_{nc}\delta cl(M)$.

2020 Mathematics Subject Classification: 54A05, 54A10, 54A40.

1. Introduction

The concepts of neutrosophy and neutrosophic set are the recent tools in a topological space. It was first introduced by Smarandache [5, 6] in the end of 20^{th} century. In 2014, Salama, Smarandache and Kroumov [3] has provided the basic concept of neutrosophic crisp set in a topological space. After that Al-Omeri [1] also investigated some fundamental properties of neutrosophic crisp topological Spaces. Al-Hamido [2] explore the possibility of expanding the concept of neutrosophic crisp topological spaces into N-topology and investigate some of their basic properties in N-terms. In 1968, the idea of δ -interior and δ -closure operations was introduced by

Velicko [15] which are stronger than open sets. Also, it have been widely introduced some new spaces, sets and functions. Vadivel et al. [9, 10, 14] introduced δ -open sets in a neutrosophic topological spaces. Recently, Vadivel et al. introduced γ open [7] and β -open sets [8] and their maps [11, 12, 13] in N-neutrosophic crisp topological spaces.

In this present work, we establish the concept of N-neutrosophic crisp δ -open sets and N-neutrosophic crisp δ -closed sets in $N_{nc}ts$ and also interrogate some of their basic properties along with their near open sets in N-neutrosophic crisp topological spaces.

2. Preliminaries

Some basic definitions & properties of N_{nc} topological spaces are discussed in this section.

Definition 2.1. [4] For any non-empty fixed set X, a neutrosophic crisp set (briefly, ncs) M, is an object having the form $M = \langle M_1, M_2, M_3 \rangle$ where M_1, M_2 & M_3 are subsets of X satisfying any one of the types

(T1)
$$M_a \cap M_b = \phi, \ a \neq b \& \bigcup_{a=1}^3 M_a \subset X, \ \forall a, b = 1, 2, 3.$$

(T2) $M_a \cap M_b = \phi, \ a \neq b \& \bigcup_{a=1}^3 M_a = X, \ \forall a, b = 1, 2, 3.$

$$(T3) \bigcap_{a=1}^{3} M_a = \phi \& \bigcup_{a=1}^{3} M_a = X, \forall a = 1, 2, 3.$$

Definition 2.2. [4] Types of ncs's \emptyset_N and X_N in X are as follows

- (i) \emptyset_N may be defined as $\emptyset_N = \langle \emptyset, \emptyset, X \rangle$ or $\langle \emptyset, X, X \rangle$ or $\langle \emptyset, X, \emptyset \rangle$ or $\langle \emptyset, \emptyset, \emptyset \rangle$.
- (ii) X_N may be defined as $X_N = \langle X, \emptyset, \emptyset \rangle$ or $\langle X, X, \emptyset \rangle$ or $\langle X, \emptyset, X \rangle$ or $\langle X, X, X \rangle$.

Definition 2.3. [4] Let X be a non-empty set & the ncs's M & E in the form $M = \langle M_{11}, M_{22}, M_{33} \rangle$, $E = \langle E_{11}, E_{22}, E_{33} \rangle$, then

(i) $M \subseteq E \Leftrightarrow M_{11} \subseteq E_{11}, M_{22} \subseteq E_{22} \& M_{33} \supseteq E_{33} \text{ or } M_{11} \subseteq E_{11}, M_{22} \supseteq E_{22} \& M_{33} \supseteq E_{33}.$

$$(ii) \ M \cap E = \langle M_{11} \cap E_{11}, M_{22} \cap E_{22}, M_{33} \cup E_{33} \rangle \ or \ \langle M_{11} \cap E_{11}, M_{22} \cup E_{22}, M_{33} \cup E_{33} \rangle$$

(*iii*)
$$M \cup E = \langle M_{11} \cup E_{11}, M_{22} \cup E_{22}, M_{33} \cap E_{33} \rangle$$
 or $\langle M_{11} \cup E_{11}, M_{22} \cap E_{22}, M_{33} \cap E_{33} \rangle$

Definition 2.4. [4] Let $M = \langle M_1, M_2, M_3 \rangle$ a new on X, then the complement of M (briefly, M^c) may be defined in three different ways:

(C1)
$$M^{c} = \langle M_{1}{}^{c}, M_{2}{}^{c}, M_{3}{}^{c} \rangle$$
, or

(C2) $M^{c} = \langle M_{3}, M_{2}, M_{1} \rangle$, or

(C3) $M^c = \langle M_3, M_2^c, M_1 \rangle.$

Definition 2.5. [3] A neutrosophic crisp topology (briefly, $_{nc}t$) on a non-empty set X is a family Γ of nc subsets of X satisfying

- (i) $\emptyset_N, X_N \in \Gamma$.
- (ii) $M_1 \cap M_2 \in \Gamma \ \forall \ M_1 \ \& \ M_2 \in \Gamma$.
- (iii) $\bigcup_{a} M_a \in \Gamma, \forall M_a : a \in A \subseteq \Gamma.$

Then (X, Γ) is a neutrosophic crisp topological space (briefly, ncts) in X. The neutrosophic crisp open sets (briefly, ncos) are the elements of Γ in X. A ncs C is closed (briefly, nccs) iff its complement C^c is ncos.

Definition 2.6. [2] Let X be a non-empty set. Then ${}_{nc}\Gamma_1, {}_{nc}\Gamma_2, \cdots, {}_{nc}\Gamma_N$ are N-arbitrary crisp topologies defined on X and the collection $N_{nc}\Gamma$ is called N-neutrosophic crisp (briefly, N_{nc})-topology on X is

$$N_{nc}\Gamma = \{A \subseteq X : A = (\bigcup_{j=1}^{N} E_j) \cup (\bigcap_{j=1}^{N} F_j), E_j, F_j \in {}_{nc}\Gamma_j\}$$

and it satisfies the following axioms:

(i)
$$\emptyset_N, X_N \in N_{nc}\Gamma$$
.

(*ii*)
$$\bigcup_{j=1}^{\infty} A_j \in N_{nc} \Gamma \forall \{A_j\}_{j=1}^{\infty} \in N_{nc} \Gamma.$$

(*iii*) $\bigcap_{j=1}^{n} A_j \in N_{nc} \Gamma \forall \{A_j\}_{j=1}^{n} \in N_{nc} \Gamma.$

Then $(X, N_{nc}\Gamma)$ is called a N-neutrosophic crisp topological space (briefly, $N_{nc}ts$) on X. The N-neutrosophic crisp open sets (briefly, $N_{nc}os$) are the elements of $N_{nc}\Gamma$ in X and the complement of $N_{nc}os$ is called N-neutrosophic crisp closed sets (briefly, $N_{nc}cs$) in X. The elements of X are known as N-neutrosophic crisp sets $(N_{nc}s)$ on X.

Definition 2.7. [2] Let $(X, N_{nc}\Gamma)$ be $N_{nc}ts$ on X and M be an $N_{nc}s$ on X, then the N-neutrosophic crisp interior of M (briefly, $N_{nc}int(M)$) and N-neutrosophic crisp closure of M (briefly, $N_{nc}cl(M)$) are defined as

$$N_{nc}int(M) = \bigcup \{A : A \subseteq M \& A \text{ is a } N_{nc}os \text{ in } X\}$$

 $N_{nc}cl(M) = \cap \{C : M \subseteq C \& C \text{ is a } N_{nc}cs \text{ in } X\}.$

Definition 2.8. [2] Let $(X, N_{nc}\Gamma)$ be any $N_{nc}ts$. Let M be an $N_{nc}s$ in $(X, N_{nc}\Gamma)$. Then M is said to be a N-neutrosophic crisp

- (i) regular open [7] set (briefly, $N_{nc}ros$) if $M = N_{nc}int(N_{nc}cl(M))$.
- (ii) pre open set (briefly, $N_{nc}\mathcal{P}os$) if $M \subseteq N_{nc}int(N_{nc}cl(M))$.
- (iii) semi open set (briefly, $N_{nc}Sos$) if $M \subseteq N_{nc}cl(N_{nc}int(M))$.
- (iv) α -open set (briefly, $N_{nc}\alpha os$) if $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}int(M)))$.
- (v) β -open [8] set (briefly, $N_{nc}\beta os$) if $M \subseteq N_{nc}cl(N_{nc}cl(M)))$.

The complement of a $N_{nc}ros$ (resp. $N_{nc}\mathcal{P}os$, $N_{nc}\mathcal{S}os$, $N_{nc}\alpha os \& N_{nc}\beta os$) is called a N-neutrosophic crisp regular (resp. pre, semi, $\alpha \& \beta$) closed set (briefly, $N_{nc}rcs$ (resp. $N_{nc}\mathcal{P}cs$, $N_{nc}\mathcal{S}cs$, $N_{nc}\alpha cs \& N_{nc}\beta cs$)) in X.

The family of all $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{P}cs$, $N_{nc}\mathcal{S}os$, $N_{nc}\mathcal{S}cs$, $N_{nc}\alpha os$, $N_{nc}\alpha cs$, $N_{nc}\beta os \& N_{nc}\beta cs$) of X is denoted by $N_{nc}\mathcal{P}OS(X)$ (resp. $N_{nc}\mathcal{P}CS(X)$, $N_{nc}\mathcal{S}OS(X)$, $N_{nc}\mathcal{S}CS(X)$, $N_{nc}\alpha OS(X)$, $N_{nc}\alpha CS(X)$, $N_{nc}\beta OS(X)$ & $N_{nc}\beta CS(X)$).

3. δ -open sets in $N_{nc}ts$

Throughout the section, let $(X, N_{nc}\Gamma)$ be any $N_{nc}ts$. Let M and E be an $N_{nc}s$'s in $(X, N_{nc}\Gamma)$.

Definition 3.1. A set M is said to be a N-neutrosophic crisp

- (i) δ interior of M (briefly, $N_{nc}\delta int(M)$) is defined by $N_{nc}\delta int(M) = \bigcup \{A : A \subseteq M \& A \text{ is a } N_{nc}ros\}.$
- (ii) δ closure of M (briefly, $N_{nc}\delta cl(M)$) is defined by $N_{nc}\delta cl(M) = \cap \{C : M \subseteq C \& C \text{ is a } N_{nc}rcs \text{ in } X\}.$

Definition 3.2. A set M is said to be a N-neutrosophic crisp

- (i) δ -open set (briefly, $N_{nc}\delta os$) if $M = N_{nc}\delta int(M)$.
- (ii) δ -pre open set (briefly, $N_{nc}\delta \mathcal{P}os$) if $M \subseteq N_{nc}int(N_{nc}\delta cl(M))$.
- (iii) δ -semi open set (briefly, $N_{nc}\delta Sos$) if $M \subseteq N_{nc}cl(N_{nc}\delta int(M))$.
- (iv) δ - α -open set (briefly, $N_{nc}\delta\alpha os$) if $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M)))$.
- (v) δ - β -open set (briefly, $N_{nc}\delta\beta$ os) if $M \subseteq N_{nc}cl(N_{nc}int(N_{nc}\delta cl(M)))$.

The complement of a $N_{nc}\delta os$ (resp. $N_{nc}\delta \mathcal{P}os$, $N_{nc}\delta \mathcal{S}os$, $N_{nc}\delta \alpha os \& N_{nc}\delta \beta os$) is called a N-neutrosophic crisp δ (resp. δ -pre, δ -semi, δ - $\alpha \& \delta$ - β) closed set (briefly, $N_{nc}\delta cs$ (resp. $N_{nc}\delta \mathcal{P}cs$, $N_{nc}\delta \mathcal{S}cs$, $N_{nc}\delta \alpha cs \& N_{nc}\delta \beta cs$)) in X.

The family of all $N_{nc}\delta\mathcal{P}os$ (resp. $N_{nc}\delta\mathcal{P}cs$, $N_{nc}\delta\mathcal{S}os$, $N_{nc}\delta\mathcal{S}cs$, $N_{nc}\delta\alpha os$, $N_{nc}\delta\alpha cs$, $N_{nc}\delta\beta os \& N_{nc}\delta\beta cs$) of X is denoted by $N_{nc}\delta\mathcal{P}OS(X)$ (resp. $N_{nc}\delta\mathcal{P}CS(X)$, $N_{nc}\delta\mathcal{S}OS(X)$, $N_{nc}\delta\mathcal{S}CS(X)$, $N_{nc}\delta\alpha OS(X)$, $N_{nc}\delta\alpha CS(X)$, $N_{nc}\delta\beta OS(X)$ & $N_{nc}\delta\beta OS(X)$.

Proposition 3.1. Every $N_{nc}\delta os$ (resp. $N_{nc}\delta cs$) is a $N_{nc}os$ (resp. $N_{nc}cs$).

Proof. Let M is a $N_{nc}\delta os$, then $M = N_{nc}\delta int(M) \subseteq N_{nc}int(M)$. $\therefore M$ is a $N_{nc}os$. Similar for their respective closed sets.

Proposition 3.2. Every $N_{nc}\delta os$ (resp. $N_{nc}\delta cs$) is a $N_{nc}os$ (resp. $N_{nc}cs$). Every $N_{nc}os$ (resp. $N_{nc}cs$) is a $N_{nc}\delta \alpha os$ (resp. $N_{nc}\delta \alpha cs$). **Proof.** Let M is a $N_{nc}os$ then $M = N_{nc}int(M)$ and so $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M)))$. $\therefore M$ is a $N_{nc}\delta\alpha os$.

Similar for their respective closed sets.

Proposition 3.3. Every $N_{nc}\delta\alpha os$ (resp. $N_{nc}\delta\alpha cs$) is a $N_{nc}\delta\mathcal{S}os$ (resp. $N_{nc}\delta\mathcal{S}cs$). **Proof.** Let M is a $N_{nc}\delta\alpha os$ then $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M)))$. So $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M))) \subseteq N_{nc}cl(N_{nc}\delta int(M))$. $\therefore M$ is a $N_{nc}\delta\mathcal{S}os$. Similar for their respective closed sets.

Proposition 3.4. Every $N_{nc}\delta\alpha os$ (resp. $N_{nc}\delta\alpha cs$) is a $N_{nc}\delta\mathcal{P}os$ (resp. $N_{nc}\delta\mathcal{P}cs$). **Proof.** Let M is a $N_{nc}\delta\alpha os$ then $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M)))$. So $M \subseteq N_{nc}int(N_{nc}cl(N_{nc}\delta int(M))) \subseteq N_{nc}int(N_{nc}\delta cl(M))$. $\therefore M$ is a $N_{nc}\delta\mathcal{P}os$.

Similar for their respective closed sets.

Proposition 3.5. Every $N_{nc}\delta Sos$ (resp. $N_{nc}\delta Scs$) is a $N_{nc}\delta \beta os$ (resp. $N_{nc}\delta \beta cs$). **Proof.** Let M is a $N_{nc}\delta Sos$, then $M \subseteq N_{nc}cl(N_{nc}\delta int(M)) \subseteq N_{nc} cl(N_{nc}int(N_{nc}\delta cl(M)))$. $\therefore M$ is a $N_{nc}\delta \beta os$.

Similar for their respective closed sets.

Proposition 3.6. Every $N_{nc}\delta\mathcal{P}os$ (resp. $N_{nc}\delta\mathcal{P}cs$) is a $N_{nc}\delta\beta os$ (resp. $N_{nc}\delta\beta cs$). **Proof.** Let M is a $N_{nc}\delta\mathcal{P}os$, then $M \subseteq N_{nc}int(N_{nc}\delta cl(M)) \subseteq N_{nc} cl(N_{nc}int(N_{nc}\delta cl(M)))$. $\therefore M$ is a $N_{nc}\delta\beta os$.

Similar for their respective closed sets.

Example 3.1. Let $X = \{l_1, m_1, n_1, o_1\}, {}_{nc}\tau_1 = \{\phi_N, X_N, \langle \{l_1, o_1\}, \{m_1, n_1\}, \{m_1, n_1\} \}$ $\rangle \}, {}_{nc}\tau_2 = \{\phi_N, X_N\}, \text{ then we have } 2_{nc}\tau = \{\phi_N, X_N, \langle \{l_1, o_1\}, \{m_1, n_1\}, \{m_1, n_1\} \rangle \}, \text{ then } \langle \{l_1, o_1\}, \{m_1, n_1\}, \{m_1, n_1\} \rangle \text{ is a } 2_{nc}os \text{ but not } 2_{nc}\delta os.$

Example 3.2. Let $X = \{l_1, m_1, n_1, o_1, p_1\}, \ _{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}, \ _{nc}\tau_2 =$

 $\{\phi_N, X_N\}$. $A = \langle \{n_1\}, \{n_1\}, \{l_1, m_1, o_1, p_1\} \rangle$, $B = \langle \{l_1, m_1\}, \{n_1\}, \{n_1, o_1, p_1\} \rangle$, $C = \langle \{l_1, m_1, n_1\}, \{n_1\}, \{o_1, p_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C\}$. The set

- (i) $\langle \{l_1, m_1, n_1, o_1\}, \{n_1\}, \{p_1\} \rangle$ is a $2_{nc}\delta\alpha os$ but not $2_{nc}os$.
- (ii) $\langle \{n_1, o_1\}, \{n_1\}, \{l_1, m_1, p_1\} \rangle$ is a $2_{nc}\delta \mathcal{S}os$ but not $2_{nc}\delta\alpha os$.
- (iii) $\langle \{l_1, n_1\}, \{n_1\}, \{m_1, o_1, p_1\} \rangle$ is a $2_{nc}\delta \mathcal{P}os$ but not $2_{nc}\delta\alpha os$.
- (iv) $\langle \{l_1\}, \{n_1\}, \{m_1, n_1, o_1, p_1\} \rangle$ is a $2_{nc}\delta\beta os$ but not $2_{nc}\delta\mathcal{S}os$.
- (v) $\langle \{l_1, o_1\}, \{n_1\}, \{m_1, n_1, p_1\} \rangle$ is a $2_{nc}\delta\beta os$ but not $2_{nc}\delta\mathcal{P}os$.

Proposition 3.7. The union (resp. intersection) of any family of $N_{nc}\delta \mathcal{P}OS(X)$ (resp. $N_{nc}\delta \mathcal{S}OS(X)$, $N_{nc}\delta \beta OS(X)$, $N_{nc}\delta \mathcal{P}CS(X)$, $N_{nc}\delta \mathcal{S}CS(X)$, $N_{nc}\delta \beta CS(X)$) is a $N_{nc}\delta \beta OS(X)$ (resp. $N_{nc}\delta \mathcal{S}OS(X)$, $N_{nc}\delta \beta OS(X)$, $N_{nc}\delta \mathcal{P}CS(X)$, $N_{nc}\delta \mathcal{S}CS(X)$, $N_{nc}\delta \beta CS(X)$).

Remark 3.1. The intersection of two $N_{nc}\delta Sos$ (resp., $N_{nc}\delta Pos \& N_{nc}\delta \beta os$)'s need not be $N_{nc}\delta Sos$ (resp., $N_{nc}\delta Pos \& N_{nc}\delta \beta os$.

Example 3.3. In Example 3.2, The sets

- (i) $\langle \langle \{l_1, m_1, o_1\}, \{n_1\}, \{n_1, p_1\} \rangle \rangle$ and $\langle \{n_1, o_1, p_1\}, \{n_1\}, \{l_1, m_1\} \rangle$ are $2_{nc}\delta Sos$ but the intersection $\langle \{o_1\}, \{n_1\}, \{l_1, m_1, n_1, p_1\} \rangle$ is not $2_{nc}\delta Sos$.
- (ii) $\langle \langle \{l_1, n_1, o_1\}, \{n_1\}, \{m_1, p_1\} \rangle \rangle$ and $\langle \{m_1, n_1, o_1\}, \{n_1\}, \{l_1, p_1\} \rangle$ are $2_{nc}\delta \mathcal{P}os$ but the intersection $\langle \{n_1, o_1\}, \{n_1\}, \{l_1, m_1, p_1\} \rangle$ is not $2_{nc}\delta \mathcal{P}os$.
- (iii) $\langle \langle \{l_1, m_1, p_1\}, \{n_1\}, \{n_1, o_1\} \rangle \rangle$ and $\langle \{m_1, n_1, p_1\}, \{n_1\}, \{l_1, o_1\} \rangle$ are $2_{nc}\delta\beta os$ but the intersection $\langle \{m_1, p_1\}, \{n_1\}, \{l_1, n_1, p_1\} \rangle$ is not $2_{nc}\delta\beta os$.

Proposition 3.8. The $N_{nc}\delta$ -interior operator satisfies

- (i) $N_{nc}\delta int(M) \subseteq M$.
- (ii) $M \subseteq E \Rightarrow N_{nc}\delta int(M) \subseteq N_{nc}\delta int(E)$.
- (*iii*) $N_{nc}\delta int(M \cap E) = N_{nc}\delta int(M) \cap N_{nc}\delta int(E).$
- (iv) $N_{nc}\delta int(M)$ is the largest $N_{nc}\delta os$ containing M.
- (v) $N_{nc}\delta int(M) = M$ iff M is an $N_{nc}\delta os$.

- (vi) $N_{nc}\delta int(N_{nc}\delta int(M)) = N_{nc}\delta int(M).$
- (vii) $(X \setminus N_{nc}\delta int(M)) = N_{nc}\delta cl(X \setminus M).$

Proof.

- (i) $N_{nc}\delta int(M) = \bigcup \{A : A \subseteq M \& A \text{ is a } N_{nc}ros\}$. Thus, $N_{nc}\delta int(M) \subseteq M$.
- (ii) $N_{nc}\delta int(E) = \bigcup \{A : A \subseteq E \& A \text{ is a } N_{nc}ros\} \supseteq \bigcup \{A : A \subseteq M \& A \text{ is a } N_{nc}ros\} \supseteq N_{nc} \delta int(M)$. Thus, $N_{nc} \delta int(M) \subseteq N_{nc} \delta int(E)$.
- (iii) $N_{nc}\delta int(M \cap E) = \bigcup \{A : A \subseteq M \cap E \& A \text{ is a } N_{nc}ros\} = (\bigcup \{A : A \subseteq M \& A \text{ is a } N_{nc}ros\}) \cap (\bigcup \{A : A \subseteq E \& A \text{ is a } N_{nc}ros\}) = N_{nc}\delta int(M) \cap N_{nc}\delta int(E).$ Thus, $N_{nc}\delta int(M \cap E) = N_{nc}\delta int(M) \cap N_{nc}\delta int(E).$
- (iv) If A is any $N_{nc}\delta os$ contained in M, then $A \subseteq N_{nc}\delta int(M)$. Hence, $N_{nc}\delta int(M)$ is the largest $N_{nc}\delta os$ containing M.
- (v) Suppose M is any $N_{nc}\delta os$ of X. Then the largest $N_{nc}\delta os$ contained in M is itself. Therefore, $N_{nc}\delta int(M) = M$.
- (vi) By (iv), the largest $N_{nc}\delta os$ containing $N_{nc}\delta int(M)$ is itself. Hence, $N_{nc}\delta int(N_{nc}\delta int(M)) = N_{nc}\delta int(M)$.
- (vii) $N_{nc}\delta int(M)$ is the largest $N_{nc}\delta os$ containing M. The complement is the smallest $N_{nc}\delta cs$ contained in $X \setminus M$. Therefore, $(X \setminus N_{nc}\delta int(M)) = N_{nc}\delta cl(X \setminus M)$.

Hence the proof.

Proposition 3.9. The $N_{nc}\delta$ -closure operator satisfies

- (i) $M \subseteq N_{nc}\delta cl(M)$.
- (ii) $M \subseteq E \Rightarrow N_{nc}\delta cl(M) \subseteq N_{nc}\delta cl(E)$.
- (*iii*) $N_{nc}\delta cl(M \cup E) = N_{nc}\delta cl(M) \cup N_{nc}\delta cl(E).$
- (iv) $N_{nc}\delta cl(M)$ is the smallest $N_{nc}\delta c$ set containing M.
- (v) $N_{nc}\delta cl(M) = M$ iff M is an $N_{nc}\delta c$ set.
- (vi) $N_{nc}\delta cl(N_{nc}\delta cl(M)) = N_{nc}\delta cl(M).$
- (vii) $(X \setminus N_{nc} \delta cl(M)) = N_{nc} \delta int(X \setminus M).$

(viii) $y \in N_{nc}\delta cl(M)$ iff $M \cap C \neq \phi$ for every $N_{nc}\delta os C$ containing y.

Proof. (viii) Suppose $y \in N_{nc}\delta cl(M)$. Let C be a $N_{nc}\delta os$ containing y. If $M \cap C = \phi$, then $X \setminus C$ is a $N_{nc}\delta cs$ containing M and so $y \notin N_{nc}\delta cl(M)$, a contradiction. Therefore, $M \cap C \neq \phi$. If $y \notin N_{nc}\delta cl(M)$, then there exists a $N_{nc}\delta cs D$ containing M such that $y \notin D$. Then $C = X \setminus D$ is a $N_{nc}\delta os$ containing y such that $M \cap C = \phi$, a contradiction. Therefore, $y \in N_{nc}\delta cl(M)$.

The other cases are follows from Proposition 3.8.

4. Conclusion

We have studied some new notions of strongly N_{nc} open (closed) sets called $N_{nc}\delta$ -open and $N_{nc}\delta$ -closed sets and their respective interior and closure operators in this paper. Also, $N_{nc}\delta\alpha$ -open, $N_{nc}\delta\alpha$ -closed, $N_{nc}\delta\mathcal{S}$ -open, $N_{nc}\delta\mathcal{S}$ -closed, $N_{nc}\delta\mathcal{P}$ open, $N_{nc}\delta\mathcal{P}$ -closed, $N_{nc}\delta\beta$ -open and $N_{nc}\delta\beta$ -closed sets are introduced. Also studied some of their fundamental properties in $N_{nc}ts$. In our next work, this can be extended to $N_{nc}\delta$ -continuous mappings in $N_{nc}ts$ and also their relationship with near mappings such as $N_{nc}\delta\alpha Cts$, $N_{nc}\delta\mathcal{S}Cts$, $N_{nc}\delta\mathcal{P}Cts$ and $N_{nc}\delta\beta Cts$. Also, their $N_{nc}\delta$ open and $N_{nc}\delta$ closed mappings in $N_{nc}ts$.

References

- Al-Omeri W., Neutrosophic crisp sets via neutrosophic crisp topological Spaces NCTS, NSS, 13 (2016), 96-104.
- [2] Al-Hamido Riad K., Gharibah T., Jafari S. and Smarandache F., On neutrosophic crisp topology via N-topology, NSS, 23 (2018), 96-109.
- [3] Salama A. A., Smarandache F. and Kroumov V., Neutrosophic crisp sets and neutrosophic crisp topological spaces, NSS, 2 (2014), 25-30.
- [4] Salama A. A. and Smarandache F., Neutrosophic crisp set theory, Educational Publisher, Columbus, Ohio, USA, 2015.
- [5] Smarandache F., A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, 1999.
- [6] Smarandache F., Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).

- [7] Vadivel A. and John Sundar C., γ -open sets in N_{nc} -topological spaces, Advances in Mathematics: Scientific Journal, 9, (4) (2020), 2197-2202.
- [8] Vadivel A. and John Sundar C., $N_{nc}\beta$ -open sets, Advances in Mathematics: Scientific Journal, 9, (4) (2020), 2203-2207.
- [9] Vadivel A. and John Sundar C., Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science (IJNS), 13, (2) (2021), 66-74.
- [10] Vadivel A. and John Sundar C., New Operators Using Neutrosophic δ -Open Set, Journal of Neutrosophic and Fuzzy Systems, 1, (2) (2021), 61-70.
- [11] Vadivel A. and John Sundar C., $N_{nc}\gamma$ Maps in N_{nc} -Topological Spaces, International Journal of Neutrosophic Science, 18, (3) (2022), 30-40.
- [12] Vadivel A. and John Sundar C., On Almost γ-Continuous Functions in N-Neutrosophic Crisp Topological Spaces, Palestine Journal of Mathematics, 11, (3) (2022), 424-432.
- [13] Vadivel A., John Sundar C., and Thangaraja P., N_{nc}β-Continuous Maps, South East Asian Journal of Mathematics and Mathematical Sciences, 18, (2) (2022), 275-288.
- [14] Vadivel A., Seenivasan M. and John Sundar C., An introduction to δ -open sets in a neutrosophic topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.
- [15] Velicko N. V., H-closed topological spaces, Mat. Sb. 70, (1966), 98-112;
 English transl., in Amer. Math. Soc. Transl., 78, (2) (1968), 102-118.