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1. Introduction

In 1988 Tanno [12] introduced the notion of x-nullity distribution of a contact
metric manifold as a distribution such that characteristic vector field & of contact
metric manifold belongs to the s-nullity distribution. The contact metric mani-
fold with ¢ belonging to the s-nullity distribution is called N(k)-contact metric
manifold. Such manifold have been also studied by several authors such as Blair
([4], [3]), [8], [7] and many others. In 2014, Shaikh and Khundu [10] studied the
equivalency of various geometric structures obtained by some restrictions impos-
ing on different curvature tensors. In 2016 same authors studied semi-symmetric
type and pseudo-symmetric type curvature restricted geometric structures due to
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projective curvature tensor and characterized such structures on Riemannian and
semi-Riemannian manifolds [9].

In differential geometry, various curvature tensors arise as invariants of differ-
ent transformations, e.g., projective, conformal, concircular , M-projective , Wy
curvature tensor etc.

Shaikh and Kundu [10] proved that the conditions
i)R-P=0,R-R=0,R-C=0,R-P=0,RM=0,R-W,=0and R-W; =0
(for all i = 1,2,....9) are equivalent and we name such a class by C}
C-R=1LQ(g,R),C-W, = LQ(g,W;) and C-W} = LQ(g, Ws) (for alli = 1,2,....9)
are equivalent and we name such a class by Cy
iii)C-R=0,C-P=0,C-C=0,C-P=0,C-M=0,C-W,; =0 and
C-W;r =0 (for all i = 1,2,....9) are equivalent and we name such a class by C3
ivy) K-R=0,K-P=0,K-C=0,K-P=0,K-M=0, K-W, =0 and
K -W; =0 (for all i = 1,2,....9) are equivalent and we name such a class by C
v) R- K =0and R-W = 0 are equivalent and we name such a class by Cj

vi) R-W = LQ(g,W) and R- K = LQ(g, K) are equivalent and we name such a
class by Cg

vii) R-C = LQ(g,C) , R- P =LQ(g,P), R- P* = LQ(g, P*), R- M = LQ(g, M),
R-R=LQ(g,R), RW; = LQ(g9,W;) and R-W; = LQ(g, W;) (foralli =1,2,....9)
are equivalent and we name such a class by C7

viii) K - W =0 and K - K = 0 are equivalent and we name such a class by Cs,
ix) R=0W =0,P=0,P =0, M=0 W, =0 and Wf = 0 (for all
i=1,2,....9) are equivalent and we name such a class by Cy,

where the symbols R, W, C, P, K, M and W, stand for Riemann curvature tensor,
conformal curvature tensor, concircular curvature tensor, projective curvature ten-
sor, conharmonic curvature tensor, M-projective curvature tensor, W;-curvature
tensor and W;-curvature tensor, 1 = 1,2, ...,9.

An important invariant of concircular transformation is the concircular curvature

tensor C, which is defined by [1]

r

C(X,Y)Z = R(X, Y)Z—m

gV, Z2)X —g(X, Z)Y], for allX,Y, Z € x(M).

(1.1)
The projective curvature tensor P [9], and the conformal curvature tensor W [7]
are respectively given by,

P(X,Y)Z =R(X,Y)Z — QL[S(Y, 7)X — S(X, 2)Y], (1.2)

n
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1
2n — 1
—g(X, Z)QY> +

W(X,Y)Z = R(X,Y)Z —

(S(Y,2)X — S(X, 2)Y + g(Y, 2)QX
(1.3)

o T X — (X, 2)Y),

for all X,Y, Z € x(M).
The conharmonic curvature tensor K [11] is defined by

K(X,Y)Z =R(X,Y)Z—

L (S(Y, 2)X —S(X. 2)Y +9(Y. Z)QX (X, Z2)QY),

n_
(1.4)
for all XY, Z € x(M).

2. Preliminaries

Let M be an almost contact metric manifold with the structure tensors (¢, &, 7, g),
where ¢ is a tensor field of type (1,1), £ a vector field, n a 1-form and g is a Rie-
mannian metric on M [4]. Then

X = —X +1(X)g, 9(X, €) = n(X), (2.1)
n(€) = 1,06 = 0,n(¢X) = 0, (2.2)
9(¢X, 6Y) = g(X,Y) = n(X)n(Y), (2.3)
9(¢X,Y) = —g(X, ¢Y), (2.4)

for any vector fields X,Y € x(M).
The k-nullity distribution of a Riemannian manifold (M, g) for a real number & is
a distribution given by

N(r) :p = Np(r) = {Z € xp(M) - R(X,Y)Z = r(g(Y, 2)X — g(X, 2)Y)} (2.9)

for any X,Y,Z € x,(M) , where R denotes the Riemannian curvature tensor
and x,(M) denotes the tangent vector space of M at any point p € M. If the
characteristic vector field of a contact metric manifold belongs to the x nullity
distribution, then the relation

R(X,Y)E = r(n(Y)X —n(X)Y) (2.6)
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holds. A contact metric manifold with £ € N (k) is called a N(k)-contact metric
manifold. In an N(k)-contact metric manifold M the following relations hold [4],

3]:

Vxé = —¢X — ¢hX, (2.7)

(Vx¢)Y = g(X +hX,Y)E —n(Y)(X + hX), (2.8)
(Vxn)Y = g(X + hX, ¢Y), (2.9)

R(§, X)Y = r(g(X,Y)§ = n(Y)X), (2.10)
R(X,§Y = r(n(Y)X —n(X)Y), (2.11)

S(X,Y) =2(n—1)g(X,Y) +2(n — 1)g(hX,Y) + 2[nk — (n — 1)]77(X)77(Y),Ez > i
2.12

S(X, &) = 2nkn(X), (2.13)

n(R(X,Y)Z) = &lg(Y, Z)n(X) — g(X, Z)n(Y)], (2.14)

(Vxh)(Y) = [(1 = x)g(X, 0Y) + g(X, hoY)]€ + n(Y)[h(¢X + ¢hX)],  (2.15)

where S and r are the Ricci tensor and scalar curvature with respect to Levi-civita
connection respectively.

The generalized Tanaka Webster connection V on a contact metric manifold M
is defined by [6].

VY = ViV —n(Y)Vx&+ (Vxn)(Y)E —n(X)pY

for any vector fields X,Y on M.
With the help of (2.7) the above equation takes the form,

VxY = VxY + g(X + hX, ¢Y)E + (V) (X 4+ ¢ohX) — n(X)¢Y. (2.16)
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Putting Y = £ in (2.16) we have,
Vxé=0. (2.17)

The Riemannian curvature tensor R with respect to generalized Tanaka-Webster
connection is given by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ. (2.18)

Using (2.16) in (2.18), we obtain

R(X,Y)Z = R(X,Y)Z + klg(X, Z)n(Y)E — g(Y, Z)n(X)§ +n(Y)n(Z)X
—n(X)(2)Y] + g(X + hX, 6Z)(¢Y + ¢hY) — g(X + hX, ¢Y) (2.19)
07 — g(Y + hY, 62)(¢X + ¢hX) + g(Y + hY, 6 X)o7,

where R and R denote curvature tensors with respect to V and V respectively.
From (2.19), we obtain

S(Y,Z)=8(Y,Z)—29(Y,Z) + 2nk + 2)n(Y)n(Z), (2.20)

T =71+ 2nk —4n. (2.21)
From (2.19) we have the following:

n(R(X,Y)Z) =0, (2.22)
R(X,Y)E =2k(n(Y)X —n(X)Y), (2.23)
S(X,€) = dnkn(X), (2.24)

where S and S are the Ricci tensors of M with respect to V and V respectively and
r and 7 denote the scalar curvatures of M with respect to V and V respectively.

3. N(k)- contact metric manifolds admitting generalized Tanaka-Webster
connection belonging to class C;, (i =1,2,...,9).

In this section we consider different types of flat, semi-symmetric and pseudo
symmetric conditions in a (2n + 1)-dimensional N (k)-contact metric manifold

admitting generalized Tanaka-Webster connection belonging to classes C; (i =
1,2,...,9).
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Theorem 3.1. A (2n + 1) dimensional N(k)-contact metric manifold admitting
generalized Tanaka Webster connection belonging to class Cyg is an n-FEinstein man-

ifold.
Proof. Case (i): Suppose P(X, Y)Z = 0. Then using (1.2), we have

R(X,Y)Z =5 [S(Y, )X — S(X, 2)Y]. (3.1)
Taking inner product of (3.1) with £, we have
3 1 - _
9(R(X,Y)Z,6) = - [S(Y, Z)n(X) = S(X, Z)n(Y)]. (3-2)
Putting Y = ¢ in (3.2), then from (2.20) and (2.22), we have

S(X,Z) = (4nk+2)9(X, Z) — (2nk + 2)n(X)n(Z). (3.3)
Case (ii): Next we consider W(X,Y)Z = 0. From (1.3), we have

R(X,Y)Z = 5 ! - S(Y,2)X — S(X,Z2)Y +g(Y, 2)QX — g(X, Z)QY]
ne - (3.4)
—m[g(Y, 2)X —g(X, Z)Y].
Taking inner product of the above with &, we obtain
MR(X,Y)Z) = (8, 2)n(X) — §(X, Z)n(Y) + 9(Y: Z)n(@X)
. P (3.5)
—9(X, Z2)n(QY)] — m[g(i/, Zn(X) — g(X, Z)n(Y)].
Putting Y = ¢ and using (2.19), (2.20) and (2.24), we get
S(X,Z)=—(4nk — Kk — %) 9(X,Z) + (bnk — Kk — %)n(X)n(Z). (3.6)

Hence Theorem (3.1) concludes from (3.3) and (3.6).

Theorem 3.2. Let M be a (2n + 1) dimensional N(k)-contact metric manifold
admitting generalized Tanaka Webster connection belonging either to class Cy or
to class C3. Then M is an n-Einstein manifold. Further M is a manifold with
constant scalar curvature.

Proof. Case(i): Suppose (R(X,Y) - P)(U, V)W =0. ie.
R(X,Y)P(U, V)W — P(R(X,Y)U,V)W — P(U,R(X,Y)V)W — P(U,V)R(X,Y)W = 0.
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Taking X = U = ¢ in (3.7), we get

R(&Y)P(&, V)W = P(R(E,Y)E, V)W = P(€, R(@Y>V>W—15<s,V>1%<§,Y>W(= 0).

3.8
Taking inner product of the above with ¢ and using (1.2), (2.23) and (2.19), we
obtain

Snk*n(Y)n(V) —2:S(V,Y) = 0, (3.9)
which implies that
S(V.Y) =29(V.Y) + (2nk — 2)n(Y)n(V). (3.10)
From which we derive
r=2n(k+2). (3.11)

Case(ii): We now consider (C(X,Y) - P)(Z,U)V = 0. i.e.

C(X,Y)P(Z,U)V — P(C(X,Y)Z,U)V — P(Z,C(X,Y)U)V — P(Z,U)C(X,Y)V.
(3.12)
We take X = ¢ in (3.12) to get

CE,Y)P(Z, U)WV — P(C(,Y)Z,U)V — P(Z,C(6,Y)U)V — P(Z,U)C(£,Y)V.
3.13
Using (1.1), (2.23) in (3.13), we obtain 19

2Kk — %
n(2n +1)
+26[n(Y)n(P(Z, U)V)f—q(Y)n(Z)P@, U)WV =n(Y)n(U)P(Z, &)V —n(Y)n(V)P(Z,U)¢]

[n(P(Z,U)V)Y +n(Z)P(Y,U)V +n(V)P(Z,Y)V +n(V)P(Z,U)Y]

T
2n(2n + 1)

9(Y, P(Z,U)V)é — (Y, 2)P(§,U)V
—g(Y.U)P(Z,E)V +g(Y,V)P(Z,U)¢] = 0. (3.14)

Taking the inner product of the above with &, setting U = ¢ in the resulting

equation, we have by using (1.2) and (2.22)

[S(Z,V)n(Y) = S, V)n(Z)] = 260(Z)n(V )n(Y)

1 -~
+n(P(Z,Y)V)+ %S(Z, Y)n(V)]=0. (3.15)
Next if we take V' = £ in (3.15), then we have either r = 2n(4nk + kK + 2) or
S(Z,Y) = 29(2,Y) + (20 — 2(Y (7).
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This completes the proof.

Theorem 3.3. Let M be a (2n + 1) dimensional N(k)-contact metric manifold
admitting generalized Tanaka Webster connection belonging to class Cy or to class
Cs. Then M 1is an n-Einstein manifold or is a manifold with constant scalar cur-

vature with respect to Lem’—cjm’tg connection.
Proof. Case(i): Suppose C' - C' = Lg(g,C) holds. Then

(CLY) - ONZ UV = Lel((X A, YIENZ,U)V]. (3.16)
Consider LHS of (3.16) and take X = £. Then we have

(C£,Y)-C)z, U)WV =CEY)C(Z,U)V - C(CEY)Z,UWV

. N i (3.17)
—C(Z,C(E,Y)U)V = C(Z,U)C(EY)V.

Consider RHS of (3.16) and take X = £. We have

La[((€ A Y)C*)(ZvU)V]— Le[(E A, Y)C(Z, U)WV — C((E A, Y)Z, U)V(3 .
&z .

(5 Ng Y) )V - C(Z> U)(f Ng Y) :
From (3.16), (3.17) and (3.18), we get

= 26[n(Y)n(Z)n(C (& U)WV) = n(Z)n(C(Y, U)V) +n(Y )InU)n(C(Z,£)V)
—n(Un(C(Z,Y)V) +n(Y )n(V)n(C(Z, n(V)n(C(Z,U)Y)]

U)¢) -
9(Y.C(Z,U)V) =n(C(Z,U)V)n(Y) — g(Y, Z) (3.19)

r

“lLe—5; (2n +1)
n(CEUWV) +n(Z)n(C(Y,U)V) = g(Y,Un(C(Z,&V) +n(U)
n(C(Z,Y)V) = g(Y,V)n(C(Z,U)¢) +n(V)n(C(Z,U)Y) = 0.

Taking Y = Z = e; in (3.19) and taking summation over i = 1,...,2n + 1, we get
either r = 4n — 2nk or

(2n — 1)(r — 4n + 2nk)

SOV) =12~ 2n(2n + 1)

YU, V) — (2nk + 2)n(U)n(V).  (3.20)

Case (ii): Next we assume (R - W) = Ly, Q(g, W) holds. then

(R(X,Y)-W)(Z,U)V = L [((X A, YYW)(Z,U)V]. (3.21)
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Taking X = ¢ in the LHS of (3.21), we get

(R(EY) - W)(ZU)V = REY)W(ZU)V - W(R(E,Y)Z,U)V

; . (3.22)
CW(Z,R(E, YU — W(Z,U)R(E,Y)V.
Taking X = ¢ in the RHS of (3.21), we get
Lip[(€ Ay YIW)(Z,U)V] = L [(€ A, YIW(Z,U)V = W((E A, Y)Z, U)V(3_23)

—W(Z, (EN YUV =W (Z,U)E N, Y)V.
Using (3.21) and (3.22) in (3.23), we obtain
26[n(Y)n(W(Z,U)V) = n(Y)n(Z)n(W ( U)WV) =nY)nU)n(Z,§)V)
Y)U(V)U( (Z,0)&)] = Ly [g(Y, W (Z,U)V) = g(Y, Z)n(W (&, u)v)
U)

—(
9(Y. Un(W (Z,9V) = 9(Y, V)n(W(Z,U)E)] + (Ly; —2%)[( (Z,U)V)
) = 0(Z)n(W (Y, U)V) = n(U)n(W(Z,Y)V) = n(V)n(W(Z,U)Y)] = 0.

Taking Y = Z = ¢; in (3.24) and taking summation over i, we get either r =

(3.24)

(Y
1

2nk — 2k + 2n+ — or
2n

S(U, V) =[2—8nk +7g(U, V) + [2n(8nk) — 7 — 2nk — 2n(U)n(V).  (3.25)

Theorem 3.4. Let M be a (2n + 1) dimensional N(k)-contact metric manifold
admitting generalized Tanaka Webster connection belonging to class Cs. Then M

is of constant scalar curvature with respect to Levi-civita connection.
Proof. Consider (R(X,Y)-W)(Z,U)V =0. ie.

RX,YYW(Z, U)WV —W(R(X,Y)Z,U)V —W(Z,R(X,Y)U)V —W(Z,U)R(X,Y)V = 0.

(3.26)
Setting X = ¢ in (3.26), we obtain

R(EYYW(Z,U)WV=W(R(,Y)Z,U)V-W(Z,R(EY)U)V-W(Z,U)REY)V =0.

(3.27)
Simplifying (3.27) using (2.10), and taking inner product of ¢ with resulting equa-
tion, we have

= 26[n(Y)n(Z)n(W (&, U)V) = n(Z)n(W (Y, U)V) + (¥ )n(U)n(W (Z,€)V)
= (U)W (Z,Y)V) +n(Y)n(V)n(W(Z,U)€) — n(V)n(W(Z,U)Y)] = 0. (3.28)
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On plugging Y = Z = ¢; in (3.28) and taking summation over i, we obtain
2k — 1
2n

Theorem 3.5. Let M be a (2n + 1) dimensional N(k)-contact metric manifold
admitting generalized Tanaka Webster connection belonging to class Cy. Then ei-
ther manifold M belonging to class Cy or M s of constant scalar curvature with
respect to Levi-civita connection.

Proof. Suppose (R(X,Y)-R) = L;((X A, Y)-R). Then

(R(X,Y) - R)U V)W = Li((X A, Y) - R(U, V)W, (3.30)

r=6nk+2n —2r — {

1. (3.29)

where L3 is a function on M. From (3.30) we have
R(X,Y)R(U, V)W — R(R(X, YU, V)W — R(U, R(X,Y)V)W
— R(U,V)R(X, Y)W = Li[(X A, Y)R(U, VYW — R(X A, Y)U,V)W (3.31)
— R(U, (X Ay Y)V)W — R(U,V)(X A, Y)WV].
Replacing X by ¢ in (3.31), we get
R(EY)R(U V)W — R(R(E, YU, V)W — R(U, R(&,Y)V)W
— R(U,V)R(&, Y)W = L[(€ Ay Y)R(U, VYW — R((€ A, YU, V)W (3.32)
— R(U, (E Ny Y)V)W — R(U,V)(E A, Y)W,
Contracting the above with &, we get

26[n(U)n(RY, V)W) + n(V)n(R(U,Y)W) + n(W)n((R(U, V)Y)]
= Lg[g(Y, R(U, V)W) = n(R(U,V)W)n(Y) + nU)n(RY, V)W)  (3.33)

+0(RU,Y)W)n(V) +n(R(U, V)Y )n(W)].
On plugging Y = U = ¢; in (3.33) and taking summation over i, we obtain either
Liz=0o0rr=2n(2—-k).

Theorem 3.6. Let M be a (2n + 1) dimensional N(k)-contact metric manifold
admitting generalized Tanaka Webster connection. The Ricci tensor of M belonging
to class Cy satisfies

S2UV) = (2—4nk)S(U, v>+[4f(2”(;7;+1)1)_ SKT (U V) 4[24+ 2— 22"‘1’ 1

Proof. Consider (K(X,Y)-C)(Z,U)V = 0. i.e.

K(X,Y)C(Z,U)V - C(K(X,Y)Z,U)V - C(Z, K(X,Y)U)V —C(Z,U)K(X,Y)V =0.
(3.34)

In(U)n(V).
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Taking X = ¢ in (3.34), we get

KEY)C(Z,U)W-CK(EY)Z,U)WV-C(Z K(EYU)V-C(Z,UK(EY)V =0.
(3.35)

Taking inner product with &, we have

n(K(EY)C (Z U)V) —=n(C(K(&,Y)Z,U)V) = n(C(Z, K Y)U)V)

(3.36)
—n(C(Z,U)K(£,Y)V) = 0.
On plugging Y = Z = ¢; in (3.36) and taking summation over i, we get
S2(U, V) = (2—4nk)S(U, V)+[4r(2"(’;n +1)1) 31U, V) + 20k +2— Qj’i":l]n(U)n(V).
(3.37)
Class | Curvature condition M
Ci |RX,)Y)-P=0 is n-Einstein
Cy | C-C=LsQ(g,0) is n-Einstein ~ or has constant
scalar curvature
Cs; |C(X,)Y)-P=0 is m-Einstein ~ or has constant
scalar curvature
Cy | K(X,)Y)-C=0 Ricci tensor has expression in
terms of S?(U, V)
Cs | RX,)Y) - W=0 is m-Einstein ~ or has constant
scalar curvature
Ce | R-W=L3Q(g, W) is n-Einstein ~ or has constant
scalar curvature
Cr | RIX,)Y)-R= L R((X A, Y)-R) |is of constant scalar curvature
Cy | P(X,Y)Z is n-Einstein
Coy W(X, Y)Z = 0 is n-Einstein
Table 1
4. Example

In this section we construct an example of projectively flat and conformaly flat
3-dimensional N (k)-contact metric manifold.

We consider 3-dimensional manifold M = {(z,y, z) € R3}, where (x,y, 2) are
the standard coordinates in R3. Let ei, ey, e3 be three vector fields in R* which
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satisfy [e1, ea] = (14-a)es, [ea, €3] = 2e1, [e3, 1] = (1—a)eq, where a is a real number.
Let g be a metric defined by g(er,es) = g(es,e3) = gler,e3) = 0, gler,e1) =
g(ea,e9) = g(es,e3) = 1. Let n be the 1-form defined by n(X) = g(X,e;) for
any X € x(M). Let ¢ be the (1,1)-tensor field defined by ¢e; = 0, pes = e3,
de3 = —e,. Using the linearity of ¢ and g, we have n(e;) = 1, ¢*X = —X +n(X)¢E
and g(¢X,¢Y) = g(X,Y) —n(X)n(Y), for any X,Y € x(M). Moreover, he; = 0,
hes = aeq and hes = —aes.
The Riemannian connection V of the metric tensor g is given by

29<VXY7 Z) = Xg(Y, Z)+Y9(Z7X)_ZQ(X7Y)_9(X7 [K ZD_Q(Y? [X, Z])+9<Z7 [X7 Y])
Using Koszul’s formula, we get the following,

Ve,e1=0,Veea =0,V e3=0,Ve,e1 = —(1+a)es, Ve,ea =0,

4.1
Vees = (14 a)er, Veer = (1 —a)ea, Vegea = —(1 — a)ey, Veyes = 0. (4.1)

In view of the above relations, we have Vx& = —pX — ¢hX for e; = €. Therefore,
the manifold is a contact metric manifold with the contact structure (¢,&,n,g).
Next we find the curvature tensor as follows:
R(er, ea)es = (1 —a?)ey, R(es, ea)es = —(1 — a?)es, R(ey, e3)es = (1 — a?)ey,
R(eq, e3)es = —(1 — a®)ey, R(eq, e3)e; = 0, R(e1, ex)e; = —(1 — a?)ey, (4.2)
R(es,e1)e; = (1 — a®)es.
In view of the expression of the curvature tensor we conclude that the manifold is

a N(1 — a*)-contact metric manifold. We find the components of Ricci tensor as
follows:

S(e1,e1) = g(R(er, ex)ea, e1) + g(R(e1, e3)es, e1) = 2(1 — a?). (4.3)

Similarly we find S(eq, e2) = 0 = S(es, e3). Hence r = 2(1 — a?).
From (2.16) we have the following:

Veer =0,Ve 69 = —e3, Ve e3 =62, Ve,e1 =0,Ve,e0 =0,Ve,e3 =0,

Y 5 N (4.4)
v53€1 = 0, Ve3€2 = O, V€3€3 =0.

By the above result we can obtain the components of curvature tensor and Ricci
tensor with respect to generalized Tanaka-Webster connection as follows:
1%(61, ez)eg = 0, é(€3, ez)eg = —2e3, é<€1> ez)es =0,

- N - - 4.5
R(627 63)63 = —262, R(eg, 63)61 = 0, R(el, 62)61 = O, R<€3, €1>61 = 0. ( )
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and S(ey, e1) =0, S(ey, e3) = =2, S(es, e3) = —2. Hence 7 = —4.
Computation of the following components of Ricci tensor

S(ey,ea) = S(ey,e3) = S(ea,e1) = S(eq,e3) = S(es, e1) = S(es, e2) = 0 lead to the
following:

p(e2, 61)61 = P(eg, 61)61 = P<€2, 63)61 = 0. (46)

and

W(eg, 61)61 = W(eg, 61)61 = W(€2, 63)61 =0. (47)
This is true for other components also. Therefore from (4.6) and (4.7), the manifold
is projectively flat and conformaly flat. Hence this example verifies Theorem (3.1).
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