ON SUBMANIFOLDS OF A MANIFOLD ADMITTING $f_{a}(2 \nu+3,-1)$ - STRUCTURE

Jai Pratap Singh and Kripa Sindhu Prasad*
B. S. N. V. P. G. College, Lucknow, INDIA
E-mail : jaisinghjs@gmail.com
*Department of Mathematics, Thakur Ram Multiple Campus, Birgunj, Tribhuvan University, NEPAL
E-mail : kripasindhuchaudhary@gmail.com

(Received: Jun. 27, 2022 Accepted: Nov. 10, 2022 Published: Dec. 30, 2022)

Abstract: Psomopoulou defined and studied the Invariant submanifolds of a manifold with $f(2 \nu+3,-1)$-structure. In this paper $f_{a}(2 \nu+3,-1)$ structure has been defined and submanifolds, of a manifold with such a structure have been studied. Some interesting results have been stated and proved in this paper.

Keywords and Phrases: Riemannian Manifold, projection operator, invariant submanifold, integrability conditions.

2020 Mathematics Subject Classification: 53C15, 53C40, 53D10.

1. Introduction and Preliminaries

Let V_{n} be an n-dimensional C^{∞} manifold imbedded differentiabily in an mdimensional C^{∞} Riemannian manifold $W_{m}(m>n)$ by an imbedding map b : $V_{n} \rightarrow W_{m}$. If $\mathrm{B}=\mathrm{db}, \mathrm{B}$ is a mapping $T\left(V_{n}\right) \rightarrow T\left(W_{m}\right)$ such that a vector field X of $T\left(V_{n}\right)$ correspond to a vector field $B X \in T\left(W_{m}\right) ; T\left(V_{n}\right) ; T\left(W_{m}\right)$ denote the tangent bundles of V_{n} and W_{m} respectively. If $T\left(b\left(V_{n}\right)\right)$ is the set of all vectors tangent to the submanifold $b\left(V_{n}\right)$ then $B: T\left(V_{n}\right) \rightarrow T\left(b\left(V_{n}\right)\right)$ is an isomorphism. Let \tilde{X}, \tilde{Y} be C^{∞} vector fields, defined along $b\left(V_{n}\right)$ tangent to $b\left(V_{n}\right)$ and let \tilde{X} and \tilde{Y}
be local C^{∞} extensions of \bar{X} and \bar{Y} respectively. Then $[\bar{X}, \bar{Y}]$ is tangent to $b\left(V_{n}\right)$. If $X, Y \in J_{0}^{1}\left(V_{n}\right)$ where $J_{0}^{1}\left(V_{n}\right)$ denote the set of all vector fields, in V_{n} then

$$
\begin{equation*}
B[X, Y]=[B X, B Y] \tag{1.1}
\end{equation*}
$$

Let \tilde{g} be the Riemannian metric tensor on the enveloping manifold W_{m}. Then the submanifold V_{n} also has the induced metric g such that

$$
\begin{equation*}
\tilde{g}(B X, B Y)=g(X, Y), \text { for all } \quad X, Y \in J_{0}^{1}\left(V_{n}\right) \tag{1.2}
\end{equation*}
$$

Let $\bar{\nabla}$ be the Riemannian connection in W_{m} determined by \tilde{g} and $\tilde{\nabla}$ the induced connection in $b\left(V_{n}\right)$ defined by

$$
\bar{\nabla}_{\bar{X}} \bar{Y}=\tilde{\nabla}_{\tilde{X}} \tilde{Y} / b\left(V_{n}\right)
$$

where \bar{X}, \bar{Y} are C^{∞} vector fields defined along $b\left(V_{n}\right)$. and \tilde{X}, \tilde{Y} are their C^{∞} extensions in W_{m}. Finally $\bar{\nabla}_{\bar{X}} \bar{Y}=[\bar{X}, \bar{Y}]$ for the manifold $b\left(V_{n}\right)$.
Suppose now that in the manifold W_{m}, there exists a tensor field \bar{f} of type $(1,1)$ of class C^{∞} and rank $\mathrm{r}(\mathrm{r} j \mathrm{~m})$ such that

$$
\begin{equation*}
\bar{f}^{2 \nu+3}-a^{2} \bar{f}=0 \tag{1.3}
\end{equation*}
$$

where μ is a positive integer and a is a complex number not equal to zero. In such W_{m}, let us put

$$
\begin{equation*}
\text { (i) } \bar{l}=\frac{\bar{f}^{2 \nu+2}}{a^{2}} \text { and (ii) } \bar{m}=I-\frac{\bar{f}^{2 \nu+2}}{a^{2}} \tag{1.4}
\end{equation*}
$$

I denote the unit tensor field. Then it can be easily proved that

$$
\begin{equation*}
\bar{l}^{2}=\bar{l}, \bar{m}^{2}=\bar{m}, \bar{l}+\bar{m}=0, \text { and } \bar{l} \bar{m}=\bar{m} \bar{l}=0 \tag{1.5}
\end{equation*}
$$

Thus the operator \tilde{l} and \tilde{m} when applied to the tangent space of W_{m} at a point are complementary projection operators. Let \tilde{L} and \tilde{M} be distributions corresponding to the complementary projection operators \tilde{l} and \tilde{m} respectively. Let us call such a structure on W_{m} as a $f_{a}(2 \nu+3,-1)$ structure of rank r.

2. Invariant Submanifolds

Let V_{n} be an n dimensional C^{∞} manifold imbedded differentiabily in the m dimensional manifold $W_{m}(n<m)$. Suppose the enveloping manifold W_{m} is equipped with $f_{a}(2 \nu+3,-1)$ - structure. Let b be the imbedding and $\mathrm{B}=\mathrm{db}$. Then the V_{n} is said to be the invariant submanifold of W_{m} of the tangent space $T_{p}\left(b\left(V_{n}\right)\right)$ of the
manifold $b\left(V_{n}\right)$ is invariant by the mapping f at each point p of $b\left(V_{n}\right)$. Thus for each $\mathrm{X} \in J_{0}^{1}\left(V_{n}\right)$ where $J_{0}^{1}\left(V_{n}\right)$ is the set of vector fields tangents to

$$
\begin{equation*}
\tilde{f}(B X)=B Y \text { for some } Y \in J_{0}^{1}\left(V_{n}\right) \tag{2.1}
\end{equation*}
$$

Thus the $(1,1)$ tensor field f on V_{n} defined by $f(X)=Y$ satisfies the relation

$$
\begin{equation*}
\tilde{f}(B X)=B f X \text { for any } X \in J_{0}^{1}\left(V_{n}\right) \tag{2.2}
\end{equation*}
$$

Now we consider the following two cases depending on the fact that distribution \tilde{M} is tangent or not to the submanifold $b\left(V_{n}\right)$.
Let us now suppose that the distribution \tilde{M} is not tangent to the submanifold $b\left(V_{n}\right)$. Therefore any vector field of the form $\tilde{m} \bar{X}$, where \bar{X} is the vector field tangent to $b\left(V_{n}\right)$ is independent of any vector field of the form $X \in J_{0}^{1}\left(V_{n}\right)$.

$$
\begin{aligned}
\tilde{m}(B X) & =\left(I-\frac{\tilde{f}^{2 \nu+2}}{a^{2}}\right) B X \\
& =B X-B \frac{\tilde{f}^{2 \nu+2} X}{a^{2}} \\
\text { or } \tilde{m}(B X) & =B\left(I-\frac{\tilde{f}^{2 \nu+2} X}{a^{2}}\right) X
\end{aligned}
$$

But $\tilde{m}(B X)=0$, Thus $I-\frac{f^{2 \tilde{\nu}+2}}{a^{2}}=0$

$$
\text { or }\left(\tilde{f}^{(\nu+1)}\right)^{2}=a^{2} I
$$

Thus the invariant submanifold $b\left(V_{n}\right)$ admits GF-structure.
Hence we have.
Theorem 2.1. An invariant submanifold V_{n} imbedded in an $\tilde{f}_{a}(2 \nu+3,-1)$-struture manifold W_{m} such that the distribution \tilde{M} is not tangent to $b\left(V_{n}\right)$ is a GF-structure manifold and the induced GF-structure is defined by the tensor field $\tilde{f}^{\nu+1}$ of type (1,1).

Let \tilde{g} be the Riemannian metric in W_{m} defined as follows [3].

$$
\begin{align*}
\tilde{g}(\tilde{X}, \tilde{Y})=\frac{1}{2(\nu+1) a^{4}}[h(\tilde{X}, \tilde{Y}) & +h(\tilde{f} \tilde{X}, \tilde{f} \tilde{Y})+h\left(\tilde{f}^{2} \tilde{X}, \tilde{f}^{2} \tilde{Y}\right)+\ldots \\
& \left.+\ldots h\left(\tilde{f}^{(2 \nu+1)} \tilde{X}, \tilde{f}^{(2 \nu+1)} \tilde{Y}\right)-m^{*}(\tilde{X}, \tilde{Y})\right] \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
m^{*}(\tilde{X}, \tilde{Y})=h(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y}) \tag{2.4}
\end{equation*}
$$

and h is globally defined positive Riemannian metric. Obviously

$$
\begin{equation*}
h\left(\frac{\tilde{f}^{(2 \nu+2)} \tilde{X}}{a^{2}}, \frac{\tilde{f}^{(2 \nu+2)} \tilde{Y}}{a^{2}}\right)=h(\tilde{X}, \tilde{Y})-m^{*}(\tilde{X}, \tilde{Y}) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \text { (i) } m^{*}(\tilde{f} \tilde{X}, \tilde{f} \tilde{Y})=0 \\
& (i i) h(\tilde{X}, \tilde{m} \tilde{Y})=h(\tilde{m} \tilde{X}, \tilde{Y})=m^{*}(\tilde{X}, \tilde{Y}) \\
& (i i i) m^{*}(\tilde{X}, \tilde{m} \tilde{Y})=m^{*}(\tilde{X}, \tilde{Y}) \tag{2.6}
\end{align*}
$$

It can be easily proved that the \tilde{g} satisfies the following relations

$$
\begin{equation*}
\tilde{g}(\tilde{X}, \tilde{Y})=\tilde{g}(\tilde{f} \tilde{X}, \tilde{f} \tilde{Y}) \tag{2.7}
\end{equation*}
$$

Hence the Riemannian metric \tilde{g} on W_{m} is the Hermitian metric on W_{m}.
Now we prove the following theorem on the invariant submanifold V_{n} imbedded in W_{m}.
Theorem 2.2. An invariant submanifold imbedded in an $\tilde{f}_{a}(2 \nu+3,-1)$-structure manifold W_{m} in such a way that the distribution \tilde{M} is not tangent to $b\left(V_{n}\right)$ is equipped with a Hermitian metric g induced by the Riemannian metric \tilde{g} on W_{m} given by (2.3).
Proof. Replacing \tilde{X} by BX , \tilde{Y} by BY in equation (2.7) we get

$$
\begin{equation*}
\tilde{g}(\tilde{f} B X, \tilde{f} B Y)=\tilde{g}(B X, B Y) . \tag{2.8}
\end{equation*}
$$

In view of the equation (2.2) the above equation takes the form

$$
\begin{equation*}
\tilde{g}(B f X, B f Y)=\tilde{g}(B X, B Y) \tag{2.9}
\end{equation*}
$$

Where f is $(1,1)$ tensor field induced on the submanifold V_{n} from the $(1,1)$ tensor field \tilde{f} on the enveloping manifold W_{m}.
As g is the induced metric on the submanifold V_{n}, hence the equation (2.9) is equivalent to

$$
g(f X, f Y)=g(X, Y)
$$

Hence g is the Hermition metric on the manifold V_{n}.
Since the enveloping manifold W_{m} admits $\tilde{f}_{a}(2 \nu+3,-1)$ - structure hence from the equations (1.3) and (2.16) it follows that

$$
f^{2 \nu+3}-a^{2} f=0
$$

Thus the submanifold V_{n} admits $f_{a}(2 \nu+3,-1)$ - structure induced from the enveloping manifold W_{m}. Thus we have
Theorem 2.3. An invariant submanifold V_{n} imbedded in an $\tilde{f}_{a}(2 \nu+3,-1)$ structure manifold W_{m} in such a way that the distribution \tilde{M} is tangent to $b\left(V_{n}\right)$ is equipped with the similar $f_{a}(2 \nu+3,-1)$-structure.

Let \tilde{N} and N be the Nijenhuis tensors corresponding to \tilde{f} and f respectively. Then we have
$\tilde{N}(B X, B Y)=[\tilde{f}(B X), \tilde{f}(B Y)]-\tilde{f}[\tilde{f}(B X), B Y]-\tilde{f}[B X, \tilde{f}(B Y)]+\tilde{f}^{2}[B X, B Y]$, for $X, Y \in J_{0}^{1}\left(V_{n}\right)$

In view of the equation (1.1) and (2.2), the above equation takes the form

$$
\tilde{N}(B X, B Y)=[B(f X), B(f Y)]-\tilde{f}[B(f X), B Y]-\tilde{f}[B X, B(f Y)]+\tilde{f}^{2}(B[X, Y])
$$

Since $\tilde{f^{2}}(B X)=B\left(f^{2}(X)\right), X \in J_{0}^{1}\left(V_{n}\right)$, we have
$\tilde{N}(B X, B Y)=B([f X, f Y])-B(f[f X, Y])-B([X, f Y])+B\left(f^{2}[X, Y]\right)$
Let us now suppose that the distribution \tilde{M} is tangent to the submanifold $b\left(V_{n}\right)$. Thus for each $\left.X \in J_{0}^{1}\left(V_{n}\right)\right)$.

$$
\begin{equation*}
\tilde{m}(B X)=B Y \text { for some } Y \in J_{0}^{1}\left(V_{n}\right) \tag{2.10}
\end{equation*}
$$

Thus the tensor field m in V_{n} given by

$$
\begin{equation*}
m X=Y \tag{2.11}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
\tilde{m}(B X)=B(m X) \tag{2.12}
\end{equation*}
$$

Let us define a $(1,1)$ tensor field 'l' on V_{n} as

$$
\begin{equation*}
l=-\frac{f^{(2 \nu+2)}}{a^{2}} \tag{2.13}
\end{equation*}
$$

Thus in view of the equations (1.4), (2.2) and (2.13) it follows that

$$
\begin{equation*}
\tilde{l}(B X)=B(l X), X \in J_{0}^{1}\left(V_{n}\right) \tag{2.14}
\end{equation*}
$$

Theorem 2.4. The (1,1) tensor field 'l' and 'm' defined on the invariant submnifold V_{n} satisfies the following relations

$$
\begin{align*}
& (i) l+m=0 \\
& (i i) l m=m l=0 \\
& (i i i) l^{2}=0, m^{2}=0 \tag{2.15}
\end{align*}
$$

Proof. Proof follows easily by virtue of equation (1.5), (2.12) and (2.14).
In view of the equation (2.2) we can show that

$$
\begin{equation*}
\left(\tilde{f}^{(2 \nu+3)}-a^{2} \tilde{f}\right)(B X)=B\left(f^{(2 \nu+2)}-a^{2} f\right) X \tag{2.16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\tilde{N}(B X, B Y)=B N(X, Y) \tag{2.17}
\end{equation*}
$$

Using the equations (2.12) and (2.14) it can be easily verified that

$$
\begin{aligned}
& (i) \tilde{N}(\tilde{l}(B X), \tilde{l}(B Y))=B N(l X, l Y) \\
& (i i) \tilde{N}(\tilde{m}(B X), \tilde{m}(B Y))=B N(m X, m Y) \\
& (i i i) \tilde{N}(\tilde{l}(B X), \tilde{l}(B Y))=B N(l X, l Y) \\
& \text { (iv) } \tilde{m} \tilde{N}(B X, B Y)=B m N(X, Y)
\end{aligned}
$$

Let us denote by L, M the complementary distributions of V_{n} corresponding to the projection operators l and m respectively. Thus according to the integrability conditions, we have the following theorem.
Theorem 2.5. If the distribution \bar{L} respectively \bar{M} of W_{m} is integrable then the distribution L respectively M of V_{n} is also integrable.
Theorem 2.6. If the distributions \bar{L} and \bar{M} are both integrable then both the distributions L and M of V_{n} are also integrable.
Theorem 2.7. If the $\tilde{f}_{a}(2 \nu+3,-1)$ - structure defined on W_{m} is integrable then the induced structure $f_{a}(2 \nu+3,-1)$ on V_{n} is also integrable.

References

[1] Dimitropoulou-Psomopoulou-Dimitra D., Invariant submanifold of a manifold admitting an $f(2 \nu+3,-1)$ - structure, Tensor N. S., Vol. 51 (1992), 133-137.
[2] Dimitropoulou-Psomopoulou-Dimitra D., On integrability conditions of a structure f satisfying $f^{2 \nu+3}+f=0$, Tensor N. S., Vol. 42 (1985), 252-257.
[3] Dimitropoulou-Psomopoulou-Dimitra D. and Gouli-Andreou F., On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field $\mathrm{f}(\neq 0)$ of type $(1,1)$ satisfying $f^{2 \nu+3}+f=0$, Tensor N. S., Vol. 42 (1985), 245-251.
[4] Srivastava Sudhir Kumar, Ram Nivas, On $f_{\lambda}(2 \nu+3,1)$ structure Manifold and its Integrability conditions, The Nepali Mathematical Science Report, Vol. 18 No. 1 and 2, (2000), 51-62.
[5] Yano K., and Kon M., Structures on manifold, World Scientific Publishing Company, Pvt. Ltd., Farrer Road, Singapore 9128, (1984).

