South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 3 (2022), pp. 171-178 DOI: 10.56827/SEAJMMS.2022.1803.14 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ON SUBMANIFOLDS OF A MANIFOLD ADMITTING $f_a(2\nu+3,-1)$ - STRUCTURE

Jai Pratap Singh and Kripa Sindhu Prasad*

B. S. N. V. P. G. College, Lucknow, INDIA

E-mail : jaisinghjs@gmail.com

*Department of Mathematics, Thakur Ram Multiple Campus, Birgunj, Tribhuvan University, NEPAL

E-mail : kripasindhuchaudhary@gmail.com

(Received: Jun. 27, 2022 Accepted: Nov. 10, 2022 Published: Dec. 30, 2022)

Abstract: Psomopoulou defined and studied the Invariant submanifolds of a manifold with $f(2\nu + 3, -1)$ -structure. In this paper $f_a(2\nu + 3, -1)$ structure has been defined and submanifolds, of a manifold with such a structure have been studied. Some interesting results have been stated and proved in this paper.

Keywords and Phrases: Riemannian Manifold, projection operator, invariant submanifold, integrability conditions.

2020 Mathematics Subject Classification: 53C15, 53C40, 53D10.

1. Introduction and Preliminaries

Let V_n be an n-dimensional C^{∞} manifold imbedded differentiabily in an mdimensional C^{∞} Riemannian manifold $W_m(m > n)$ by an imbedding map b: $V_n \to W_m$. If B=db, B is a mapping $T(V_n) \to T(W_m)$ such that a vector field X of $T(V_n)$ correspond to a vector field $BX \in T(W_m)$; $T(V_n)$; $T(W_m)$ denote the tangent bundles of V_n and W_m respectively. If $T(b(V_n))$ is the set of all vectors tangent to the submanifold $b(V_n)$ then $B: T(V_n) \to T(b(V_n))$ is an isomorphism. Let \tilde{X}, \tilde{Y} be C^{∞} vector fields, defined along $b(V_n)$ tangent to $b(V_n)$ and let \tilde{X} and \tilde{Y} be local C^{∞} extensions of \bar{X} and \bar{Y} respectively. Then $[\bar{X}, \bar{Y}]$ is tangent to $b(V_n)$. If $X, Y \in J_0^1(V_n)$ where $J_0^1(V_n)$ denote the set of all vector fields, in V_n then

$$B[X,Y] = [BX,BY] \tag{1.1}$$

Let \tilde{g} be the Riemannian metric tensor on the enveloping manifold W_m . Then the submanifold V_n also has the induced metric g such that

$$\tilde{g}(BX, BY) = g(X, Y), \text{ for all } X, Y \in J_0^1(V_n)$$

$$(1.2)$$

Let $\overline{\nabla}$ be the Riemannian connection in W_m determined by \tilde{g} and $\tilde{\nabla}$ the induced connection in $b(V_n)$ defined by

$$\bar{\nabla}_{\bar{X}}\bar{Y} = \tilde{\nabla}_{\tilde{X}}\tilde{Y}/b(V_n)$$

where \bar{X}, \bar{Y} are C^{∞} vector fields defined along $b(V_n)$. and \tilde{X}, \tilde{Y} are their C^{∞} extensions in W_m . Finally $\bar{\nabla}_{\bar{X}}\bar{Y} = [\bar{X}, \bar{Y}]$ for the manifold $b(V_n)$.

Suppose now that in the manifold W_m , there exists a tensor field \bar{f} of type (1,1) of class C^{∞} and rank r (rjm) such that

$$\bar{f}^{2\nu+3} - a^2 \bar{f} = 0 \tag{1.3}$$

where μ is a positive integer and a is a complex number not equal to zero. In such W_m , let us put

(i)
$$\bar{l} = \frac{\bar{f}^{2\nu+2}}{a^2}$$
 and (ii) $\bar{m} = I - \frac{\bar{f}^{2\nu+2}}{a^2}$ (1.4)

I denote the unit tensor field. Then it can be easily proved that

$$\bar{l}^2 = \bar{l} , \ \bar{m}^2 = \bar{m} , \ \bar{l} + \bar{m} = 0, \ \text{and} \ \bar{l}\bar{m} = \bar{m}\bar{l} = 0.$$
 (1.5)

Thus the operator \tilde{l} and \tilde{m} when applied to the tangent space of W_m at a point are complementary projection operators. Let \tilde{L} and \tilde{M} be distributions corresponding to the complementary projection operators \tilde{l} and \tilde{m} respectively. Let us call such a structure on W_m as a $f_a(2\nu + 3, -1)$ structure of rank r.

2. Invariant Submanifolds

Let V_n be an n dimensional C^{∞} manifold imbedded differentiabily in the m dimensional manifold $W_m(n < m)$. Suppose the enveloping manifold W_m is equipped with $f_a(2\nu + 3, -1)$ - structure. Let b be the imbedding and B=db. Then the V_n is said to be the invariant submanifold of W_m of the tangent space $T_p(b(V_n))$ of the manifold $b(V_n)$ is invariant by the mapping f at each point p of $b(V_n)$. Thus for each $X \in J_0^1(V_n)$ where $J_0^1(V_n)$ is the set of vector fields tangents to

$$\tilde{f}(BX) = BY \text{ for some } Y \in J_0^1(V_n)$$
 (2.1)

Thus the (1, 1) tensor field f on V_n defined by f(X) = Y satisfies the relation

$$\tilde{f}(BX) = BfX$$
 for any $X \in J_0^1(V_n)$ (2.2)

Now we consider the following two cases depending on the fact that distribution \tilde{M} is tangent or not to the submanifold $b(V_n)$.

Let us now suppose that the distribution M is not tangent to the submanifold $b(V_n)$. Therefore any vector field of the form $\tilde{m}\bar{X}$, where \bar{X} is the vector field tangent to $b(V_n)$ is independent of any vector field of the form $X \in J_0^1(V_n)$.

$$\tilde{m}(BX) = (I - \frac{\tilde{f}^{2\nu+2}}{a^2})BX$$
$$= BX - B\frac{\tilde{f}^{2\nu+2}X}{a^2}$$
or $\tilde{m}(BX) = B(I - \frac{\tilde{f}^{2\nu+2}X}{a^2})X$

But $\tilde{m}(BX) = 0$, Thus $I - \frac{f^{2\tilde{\nu}+2}}{a^2} = 0$ or $(\tilde{f}^{(\nu+1)})^2 = a^2 I$

Thus the invariant submanifold
$$b(V_n)$$
 admits GF-structure.
Hence we have.

Theorem 2.1. An invariant submanifold V_n imbedded in an $\tilde{f}_a(2\nu+3,-1)$ -struture manifold W_m such that the distribution \tilde{M} is not tangent to $b(V_n)$ is a GF-structure manifold and the induced GF-structure is defined by the tensor field $\tilde{f}^{\nu+1}$ of type (1,1).

Let \tilde{g} be the Riemannian metric in W_m defined as follows [3].

$$\tilde{g}(\tilde{X}, \tilde{Y}) = \frac{1}{2(\nu+1)a^4} [h(\tilde{X}, \tilde{Y}) + h(\tilde{f}\tilde{X}, \tilde{f}\tilde{Y}) + h(\tilde{f}^2\tilde{X}, \tilde{f}^2\tilde{Y}) + \dots + \dots h(\tilde{f}^{(2\nu+1)}\tilde{X}, \tilde{f}^{(2\nu+1)}\tilde{Y}) - m^*(\tilde{X}, \tilde{Y})]$$
(2.3)

where

$$m^*(\tilde{X}, \tilde{Y}) = h(\tilde{m}\tilde{X}, \tilde{m}\tilde{Y})$$
(2.4)

and h is globally defined positive Riemannian metric. Obviously

$$h(\frac{\tilde{f}^{(2\nu+2)}\tilde{X}}{a^2}, \frac{\tilde{f}^{(2\nu+2)}\tilde{Y}}{a^2}) = h(\tilde{X}, \tilde{Y}) - m^*(\tilde{X}, \tilde{Y})$$
(2.5)

and

$$(i)m^{*}(\tilde{f}\tilde{X},\tilde{f}\tilde{Y}) = 0$$

$$(ii)h(\tilde{X},\tilde{m}\tilde{Y}) = h(\tilde{m}\tilde{X},\tilde{Y}) = m^{*}(\tilde{X},\tilde{Y})$$

$$(iii)m^{*}(\tilde{X},\tilde{m}\tilde{Y}) = m^{*}(\tilde{X},\tilde{Y})$$

$$(2.6)$$

It can be easily proved that the \tilde{g} satisfies the following relations

$$\tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{f}\tilde{X}, \tilde{f}\tilde{Y})$$
(2.7)

Hence the Riemannian metric \tilde{g} on W_m is the Hermitian metric on W_m . Now we prove the following theorem on the invariant submanifold V_n imbedded in W_m .

Theorem 2.2. An invariant submanifold imbedded in an $\tilde{f}_a(2\nu + 3, -1)$ -structure manifold W_m in such a way that the distribution \tilde{M} is not tangent to $b(V_n)$ is equipped with a Hermitian metric g induced by the Riemannian metric \tilde{g} on W_m given by (2.3).

Proof. Replacing \tilde{X} by BX, \tilde{Y} by BY in equation (2.7) we get

$$\tilde{g}(\tilde{f}BX, \tilde{f}BY) = \tilde{g}(BX, BY).$$
(2.8)

In view of the equation (2.2) the above equation takes the form

$$\tilde{g}(BfX, BfY) = \tilde{g}(BX, BY) \tag{2.9}$$

Where f is (1,1) tensor field induced on the submanifold V_n from the (1,1) tensor field \tilde{f} on the enveloping manifold W_m .

As g is the induced metric on the submanifold V_n , hence the equation (2.9) is equivalent to

$$g(fX, fY) = g(X, Y)$$

Hence g is the Hermition metric on the manifold V_n .

Since the enveloping manifold W_m admits $\tilde{f}_a(2\nu+3,-1)$ - structure hence from the equations (1.3) and (2.16) it follows that

$$f^{2\nu+3} - a^2 f = 0$$

Thus the submanifold V_n admits $f_a(2\nu + 3, -1)$ - structure induced from the enveloping manifold W_m . Thus we have

Theorem 2.3. An invariant submanifold V_n imbedded in an $\tilde{f}_a(2\nu + 3, -1)$ structure manifold W_m in such a way that the distribution \tilde{M} is tangent to $b(V_n)$ is equipped with the similar $f_a(2\nu + 3, -1)$ -structure.

Let \tilde{N} and N be the Nijenhuis tensors corresponding to \tilde{f} and f respectively. Then we have $\tilde{V}(DN) = \tilde{V}(DN) = \tilde{V}(DN$

 $\tilde{N}(BX, BY) = [\tilde{f}(BX), \tilde{f}(BY)] - \tilde{f}[\tilde{f}(BX), BY] - \tilde{f}[BX, \tilde{f}(BY)] + \tilde{f}^2[BX, BY],$ for $X, Y \in J_0^1(V_n)$

In view of the equation (1.1) and (2.2), the above equation takes the form $\tilde{N}(BX, BY) = [B(fX), B(fY)] - \tilde{f}[B(fX), BY] - \tilde{f}[BX, B(fY)] + \tilde{f}^2(B[X, Y])$ Since $\tilde{f}^2(BX) = B(f^2(X)), X \in J_0^1(V_n)$, we have $\tilde{N}(BX, BY) = B([fX, fY]) - B(f[fX, Y]) - B([X, fY]) + B(f^2[X, Y])$ Let us now suppose that the distribution \tilde{M} is tangent to the submanifold $b(V_n)$

Thus for each $X \in J_0^1(V_n)$.

$$\tilde{m}(BX) = BY$$
 for some $Y \in J_0^1(V_n)$ (2.10)

Thus the tensor field m in V_n given by

$$mX = Y \tag{2.11}$$

satisfies the relation

$$\tilde{m}(BX) = B(mX) \tag{2.12}$$

Let us define a (1,1) tensor field 'l' on V_n as

$$l = -\frac{f^{(2\nu+2)}}{a^2} \tag{2.13}$$

Thus in view of the equations (1.4), (2.2) and (2.13) it follows that

$$\tilde{l}(BX) = B(lX), X \in J_0^1(V_n)$$
 (2.14)

Theorem 2.4. The (1,1) tensor field 'l' and 'm' defined on the invariant submnifold V_n satisfies the following relations

$$\begin{aligned} (i)l + m &= 0, \\ (ii)lm &= ml = 0, \\ (iii)l^2 &= 0, m^2 = 0 \end{aligned} \tag{2.15}$$

Proof. Proof follows easily by virtue of equation (1.5), (2.12) and (2.14). In view of the equation (2.2) we can show that

$$(\tilde{f}^{(2\nu+3)} - a^2 \tilde{f})(BX) = B(f^{(2\nu+2)} - a^2 f)X$$
(2.16)

Thus

$$\tilde{N}(BX, BY) = BN(X, Y) \tag{2.17}$$

Using the equations (2.12) and (2.14) it can be easily verified that

$$\begin{aligned} (i)\tilde{N}(\tilde{l}(BX),\tilde{l}(BY)) &= BN(lX,lY)\\ (ii)\tilde{N}(\tilde{m}(BX),\tilde{m}(BY)) &= BN(mX,mY)\\ (iii)\tilde{N}(\tilde{l}(BX),\tilde{l}(BY)) &= BN(lX,lY)\\ (iv)\tilde{m}\tilde{N}(BX,BY) &= BmN(X,Y) \end{aligned}$$

Let us denote by L, M the complementary distributions of V_n corresponding to the projection operators l and m respectively. Thus according to the integrability conditions, we have the following theorem.

Theorem 2.5. If the distribution \overline{L} respectively \overline{M} of W_m is integrable then the distribution L respectively M of V_n is also integrable.

Theorem 2.6. If the distributions \overline{L} and \overline{M} are both integrable then both the distributions L and M of V_n are also integrable.

Theorem 2.7. If the $f_a(2\nu + 3, -1)$ - structure defined on W_m is integrable then the induced structure $f_a(2\nu + 3, -1)$ on V_n is also integrable.

References

- [1] Dimitropoulou-Psomopoulou-Dimitra D., Invariant submanifold of a manifold admitting an $f(2\nu + 3, -1)$ structure, Tensor N. S., Vol. 51 (1992), 133-137.
- [2] Dimitropoulou-Psomopoulou-Dimitra D., On integrability conditions of a structure f satisfying $f^{2\nu+3} + f = 0$, Tensor N. S., Vol. 42 (1985), 252-257.
- [3] Dimitropoulou-Psomopoulou-Dimitra D. and Gouli-Andreou F., On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field $f(\neq 0)$ of type (1,1) satisfying $f^{2\nu+3} + f = 0$, Tensor N. S., Vol. 42 (1985), 245-251.

176

- [4] Srivastava Sudhir Kumar, Ram Nivas, On $f_{\lambda}(2\nu + 3, 1)$ structure Manifold and its Integrability conditions, The Nepali Mathematical Science Report, Vol. 18 No. 1 and 2, (2000), 51-62.
- [5] Yano K., and Kon M., Structures on manifold, World Scientific Publishing Company, Pvt. Ltd., Farrer Road, Singapore 9128, (1984).