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1. Introduction
A linear connection ∇ on a semi-Riemannian manifold (M, g) is called an

(`,m)−type connection [7] if ∇ and its torsion tensor T satisfy

(∇Xg)(Y , Z) = `{θ(Y )g(X,Z) + θ(Z)g(X,Y )

−m{θ(Y )g(JX,Z) + θ(Z)g(JX, Y ) (1.1)

and

T (X,Y ) = `{θ(Y )X − θ(X)Y }+m{θ(Y )JX − θ(X)JY }, (1.2)

where ` and m are two smooth functions on M , J is a tensor field of type (1, 1)
and θ is a 1-form associated with a smooth unit vector field ζ which is called the
characteristic vector field of M , given by θ(X) = g(X, ζ). By direct calculation it
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can be easily seen that a linear connection∇ on M is an (`,m)–−type connection
if and only if ∇ satisfies

∇XY = ∇XY + θ(Y ){`X +mJX}, (1.3)

where ∇ is the Levi-Civita connection of a semi-Riemannian manifold (M, g) with
respect to g.
In case (`,m) = (1, 0) : The above connection ∇ turns into a semi-symmetric
non-metric connection . The notion of semisymmetric non-metric connection on a
Riemannian manifold was introduced by Ageshe-Chafle [1, 2] and later, studied by
several authors [8, 9]. In case (`,m) = (0, 1) : The above connection ∇ becomes a
non-metric φ-symmetric connection such that

φ(X,Y ) = g(JX, Y ).

The notion of the non-metric φ symmetric connection was introduced by Jin [10,
11, 12].
In case (`,m) = (1, 0) in (1.1) and (`,m) = (0, 1) in (1.2): The above connection
∇ reduces to a quarter-symmetric non-metric connection. The notion of quarter-
symmetric non-metric connection was introduced by Golab [5] and then, studied
by Sengupta-Biswas [4] and Ahmad-Haseeb [3]. In case (`,m) = (0, 0) in (1.1) and
(`,m) = (0, 1) in (1.2): The above connection∇ will be a quarter-symmetric metric
connection. The notion of quarter-symmetric metric connection was introduced
Yano-Imai [14]. In case (`,m) = (0, 0) in (1.1) and (`,m) = (1, 0) in (1.2): The
above connection ∇ will be a semi-symmetric metric connection. The notion of
semi-symmetric metric connection was introduced by Hayden [6].

2. Preliminaries
Let M be an almost contact manifold equipped with an almost contact metric

structure (J, ζ, θ, g) consisting of a (1,1) tensor field J , a vector field ζ, a 1-form
θ and a compatible Riemannian metric g satisfying

J2X = −X + θ(X)ζ, g(JX, JY ) = g(X,Y )− εθ(X)θ(Y ), θ(ζ) = 1, (2.1)

where ε = 1 or −1 according as ζ is spacelike or timelike, respectively.
From this, we also have

Jζ = 0, θoJ = 0, g(JX, Y ) = −g(X, JY ), θ(X) = εg(X, ζ), ∀X, Y ∈ χ(M).

In the entire discussion of this article, we shall assume that the structure vector
field ζ to be unit spacelike one, i.e., ε = 1, without loss of generality.
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An almost contact metric manifold M is a Kenmotsu manifold [13] if and only if it
satisfies

(∇XJ)Y = g(JX, Y )ζ − θ(Y )JX, X, Y ∈ χ(M).

With the above equation and (1.3), (2.1) and θ(JY ) = 0, it follows that

(∇XJ)Y = g(JX, Y )ζ − θ(Y )JX − θ(Y ){`JX −mX +mθ(X)ζ}. (2.2)

Taking Y = ζ and using Jζ = 0 with θ(∇Xζ) = `θ(X), we have

(∇Xζ) = mJX + (`+ 1)X − θ(X)ζ. (2.3)

Let (M, g) be a lightlike hypersurface of M . The normal bundle TM⊥ of M is a
subbundle of the tangent bundle TM of M , of rank 1, and coincides with the rad-
ical distribution Rad(TM) =TM∩ TM⊥. Denote by F (M) the algebra of smooth
functions on M and by T (E) the F (M) module of smooth sections of any vector
bundle E over M .
A complementary vector bundle S(TM) of Rad(TM) in TM is non-degenerate
distribution on M , which is called a screen distribution on M , such that
TM = Rad(TM) ⊕orth S(TM),
where ⊕orth denotes the orthogonal direct sum. For any null section ξ of Rad(TM),
there exists a unique null section N of a unique lightlike vector bundle tr(TM) in
the orthogonal complement S(TM)⊥ of S(TM) satisfying
g(ξ,N) = 1, g(N,N) = g(N,X) = 0; ∀ X ∈ T (S(TM)).
We call tr(TM) and N the transversal vector bundle and the null transversal vector
field of M with respect to the screen distribution S(TM), respectively.
The tangent bundle TM of M is decomposed as follow:
TM = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM).
In the sequel, let X, Y, Z and W be the vector fields on M , unless otherwise spec-
ified. Let P be the projection morphism of TM on S(TM). Then the local Gauss
and Weingartan formulas of M and S(TM) are given respectively by [7]

∇XY = ∇XY +B(X, Y )N, (2.4)

∇XN = −ANX + τ(X)N, (2.5)

∇XPY = ∇?
XPY + C(X,PY )ξ, (2.6)

∇Xξ = −A?ξX − σ(X)ξ. (2.7)

where∇ and∇? are the induced linear connections on TM and S(TM) respectively,
B and C are the local second fundamental forms on TM and S(TM) respectively,
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AN and A?N are the shape operators on TM and S(TM) respectively, and τ and σ
are 1-forms on M .
For a lightlike hypersurface M of Kenmotsu manifold ( M , g ), it is known [3]
that J(Rad(TM)) and J(tr(TM)) are subbundles of S(TM), of rank 1 such that
J(Rad(TM)) ∩ J(tr(TM)) = 0. Thus there exist two non-degenerate almost
complex distributions D0 and D on M with respect to J , i.e., J(D0) = D0 and
J(D) = D, such that

S(TM) = J(Rad(TM))⊕ J(tr(TM))⊕orth D0,

D = {Rad(TM)⊕orth J(Rad(TM))} ⊕orth D0,

TM = D ⊕ J(tr(TM)).

Consider two null vector fields U and V , and two 1-forms u and v such that

U = −JN, V = −Jξ, u(X) = g(X, V ); v(X) = g(X,U). (2.8)

Denote by S the projection morphism of TM on D. Any vector field X of M is
expressed as X = SX + u(X)U . Applying J to this form, we have

JX = FX + u(X)N, (2.9)

where F is a tensor field of type (1, 1) globally defined on M by F = JoS. Applying
J to (2.9) and using (1.2) , (1.3) and (2.8), we have

F 2X = −X + u(X)U + θ(X)ζ. (2.10)

As u(U) = 1 and FU = 0, the set (F, u, U) defines an indefinite almost contact
structure on M and F is called the structure tensor field of M .

3. (`,m)−type Connections
Using (1.1),(1.2), (1.3), (2.4) and (2.9), we obtain

(∇X g)(Y, Z) = B(X, Y )η(Z) +B(X,Z)η(Y )

− `{θ(Y )g(X,Z) + θ(Z)g(X, Y )}
−m{θ(Y )g(JX,Z) + θ(Z)g(JX, Y )}, (3.1)

T (X, Y ) = `{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY }, (3.2)

B(X, Y )−B(Y,X) = m{θ(Y )u(X)− θ(X)u(Y )}, (3.3)
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where T is the torsion tensor with respect to ∇ and η is a 1-form such that
η(X) = g(X,N).

Proposition 3.1. Let M be a lightlike hypersurface of Kenmotsu manifold M with
an (`,m)− type connection such that ζ is tangent to M .Then if m = 0, then B is
symmetric and conversely if B is symmetric then m = 0.
Proof. If m = 0, then B is symmetric by (3.3). Conversely, if B is symmetric,then
replacing X by ζ and Y by U , we get m = 0.
As B(X, Y ) = g(∇XY, ξ), so B is independent of the choice of S(TM) and satisfies

B(X, ξ) = 0, B(ξ,X) = 0. (3.4)

Local second fundamental forms are related to their shape operators by

B(X, Y ) = g(A?ξX, Y ) +m u(X)θ(Y ), (3.5)

C(X,PY ) = g(ANX,PY ) + {`η(X) +m u(X)}θ(PY ), (3.6)

g(A?ξX,N) = 0, g(ANX,N) = 0, σ = τ. (3.7)

S(TM) is non-degenerate, so using (3.4), (3.5), we have

A?ξξ = 0, ∇xξ = −A?ξX − τ(X)ξ. (3.8)

Taking ∇x to g(ζ, ξ) = 0 and g(ζ,N) = 0 and using (1.1), (2.3), (2.5), (3.5), (3.6)
and (3.8), we have

g(A?ξX, ζ) = 0, B(X, ζ) = m u(X), (3.9)

g(ANX, ζ) = η(X), C(X, ζ) = (`+ 1)η(X) +mv(X). (3.10)

By (2.9), (2.3) and (2.4), we have

∇Xζ = m FX + (`+ 1)X − θ(X)ζ. (3.11)

Applying ∇x to (2.8) and (2.9) and using (2.2), (2.4), (2.5), (2.9), (2.10), (3.1),
(3.6), (3.8) with θ(U) = θ(V ) = 0, we have

B(X,U) = C(X, V ), (3.12)
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∇XU = F (ANX) + τ(X)U − V (X)ζ, (3.13)

∇XV = F (A?ξX)− τ(X)V − u(X)ζ, (3.14)

(∇XF )Y = u(Y )ANX −B(X, Y )U

+ {g(JX, Y )−m θ(X)θ(Y )}ζ
+m θ(Y )X − (`+ 1)θ(Y )FX, (3.15)

(∇Xu)Y = −u(Y )τ(X)−B(X,FY )− (`+ 1)θ(Y )u(X), (3.16)

(∇Xu)Y = v(Y )τ(X)− g(ANX,FY )− (`+ 1)θ(Y )v(X) +m θ(Y )η(X). (3.17)

4. Recurrent Hypersurfaces
Structure tensor field F of M is said to be recurrent [10] if there exists a non-

zero 1-form ω on TM such that (∇XF )Y = w(X)FY .
A lightlike hypersurface M of a Kenmotsu manifold M is called recurrent if it ad-
mits a recurrent structure tensor field F.

Theorem 4.1. There exist no recurrent lightlike hypersurface of Kenmotsu mani-
fold with an (`,m)−type connection such that ζ is tangent to M and F is recurrent.
Proof. As M is recurrent so by definition and (3.15), we have

w(X)FY = u(Y )ANX −B(X, Y )U

+ {g(JX, Y )−mθ(X)θ(Y )}ζ
+mθ(Y )X − (`+ 1)θ(Y )FX. (4.1)

Taking Y = ξ and using (3.4) with Fξ = −V , we have

w(X)V + u(X)ζ = 0.

Taking scalar product with U , we get w = 0.
Hence F is parallel to ∇ .
Replacing Y by ξ and using (3.9), we get

m{X − u(X)U − θ(X)ζ} = `FX.

Replacing X by V , we get mV C = `ξ, which implies m = 0 and ` = 0.
Taking scalar product with ζ to (4.1) and using (3.10), we get

u(X)v(Y )− u(Y )v(X) = 0.
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Hence m = 0, which is a contradiction that (`,m) 6= (0, 0). Hence the theorem
follows.

Corollary 4.1. There exist no recurrent lightlike hypersurface of Kenmotsu man-
ifold with an (`,m)−type connection such that ζ is tangent to M and F is parallel
with respect to connection ∇ of M .

5. Lie Recurrent Hypersurfaces
Structure tensor field F of M is said to be Lie recurrent [10] if there exists a

non-zero 1-form v on TM such that (LXF )Y = v(X)FY ,
where LX denote the Lie derivative on M with respect to X.
Structure tensor field F is called Lie parallel if LXF = 0. A lightlike hypersurface
M of Kenmotsu manifold M is called Lie recurrent if it admits a Lie recurrent
structure tensor field F .

Theorem 5.1. Let M be a Lie recurrent lightlike hypersurface of Kenmotsu man-
ifold M with an (`,m)−type connection such that ζ is tangent to M and F is Lie
recurrent. Then
(1) F is Lie parallel,
(2) 1-form τ satisfies τ = 0 and
(3) Shape operator A?ξ satisfies A?ξU = A?ξV = 0.
Proof. (1) By definition of Lie recurrent, (2.9), (2.10), (3.2) and (3.15), we have

ν(X)FY = −∇FYX + F∇YX + u(Y )ANX

− {B(X, Y )−mθ(Y )u(X)}U
− θ(Y )(FX) + g(JX, Y )ζ. (5.1)

Replacing Y by ξ and using (3.4), we have

−ν(X)V = ∇VX + F∇ξX + u(X)ζ. (5.2)

Taking the scalar product with V and ξ, we get

u(∇VX) = 0, θ(∇VX) + u(X) = 0. (5.3)

Taking Y = V in (5.1) and using θ(V ) = 0, we get

−ν(X)ξ = −∇ξX + F∇VX −B(X, V )U. (5.4)

Applying F and using (2.10) and (5.3), we have

ν(X)V = ∇VX + F∇ξX + u(X)ζ.
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Comparing this with (5.2), we have ν = 0. Hence F is Lie parallel.
(2) Taking scalar product with N to (5.1) and using (3.7), we have

−g(∇FYX,N) + g(∇YX,U) = 0. (5.5)

Taking X = ξ and using (2.7) with (3.5), we get

B(X,U) = τ(FX). (5.6)

Taking X = U and using (3.12) with FU = 0, we have

C(U, V ) = B(U,U) = 0. (5.7)

Taking X = V in (5.5) and using (3.5) with (3.14), we have

B(FY, U) = −τ(Y ).

Taking Y = U and Y = ζ with the fact FU = Fζ = 0, we get

τ(U) = 0, τ(ξ) = 0. (5.8)

Taking X = U to (5.1) and using (3.3), (3.10), (3.12), (3.13), we get
u(Y )ANU − F (ANFY )− ANY − τ(FY )U + η(Y )ζ = 0.
Taking scalar product with V and using (3.6),(3.12) and (5.7), we get
B(X,U) = −τ(FX).
Comparing with (5.6), we have τ(FX) = 0.
Replacing X by FY and using (2.10) with (5.8), we have
τ = 0.
(3)Taking X = U in (3.3) and using (5.6) with τ = 0, we have

B(U,X) = m θ(X). (5.9)

Taking X = U in (3.5) and using (5.9), we have g(A?ξU,X) = 0. Hence A?ξU = 0.
Replacing X by ξ in (4.3) and using (3.8) with τ = 0, we have ANV = 0.
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