# CERTAIN SUBCLASS OF BI-UNIVALENT FUNCTIONS RELATED TO HORADAM POLYNOMIALS ASSOCIATED WITH $q$-DERIVATIVE 

P. Nandini and S. Latha<br>Department of Mathematics, JSS Academy of Technical Education, Srinivaspura, Bengaluru - 560060, INDIA<br>E-mail : pnandinimaths@gmail.com, drlatha@gmail.com

(Received: Jan. 25, 2022 Accepted: Dec. 16, 2022 Published: Dec. 30, 2022)

Abstract: In this paper, by making use of $q$-derivative, we define a new subclass of analytic and bi-univalent functions related to Horadam polynomials. For functions belonging to this class, we derive coefficient inequalities and the Fekete-Szegö inequalities. We also provide relevant connections of our results with those considered in earlier investigations.
Keywords and Phrases: Univalent and Bi-univalent functions, Fekete-Szegö inequality, Horadam polynomials and $q$-derivative.
2020 Mathematics Subject Classification: 52A40.

## 1. Introduction

We indicate by $\mathcal{A}$ the collection of functions, which are analytic in the open unit disc given by

$$
\mathbb{D}=\{z \in \mathbb{C} ;|z|<1\}
$$

and have the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

We denote by $\mathcal{S}$ the sub-collection of the set $\mathcal{A}$ consisting of functions, which are also univalent in $\mathbb{D}$. According to the Koebe's one-quarter theorem [3], every function $f \in \mathcal{S}$ has an inverse $f^{-1}$ defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{D})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.2}
\end{equation*}
$$

We say that a function $f \in \mathcal{A}$ is bi-univalent in $\mathbb{D}$ if both $f$ and its inverse $f^{-1}$ are univalent in $\mathbb{D}$. Let $\Sigma$ stand for the family of bi-univalent functions in $\mathbb{D}$ given by (1.1).
Next, we recall the definition of subordination between analytic functions. For two functions $f, g \in \mathcal{A}$, We say that $f$ is subordinate to $g$ in $\mathbb{D}$, written as $f \prec g$ provided there is an analytic function $w$ in $\mathbb{D}$ with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. It follows from Schwarz Lemma that

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{D}) \subset g(\mathbb{D}), \quad z \in \mathbb{D}
$$

Jackson [6] introduced the $q$-derivative operator $D_{q}$ of a function $f$ as follows:

$$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} \quad(0<q<1, z \neq 0)
$$

For a function $f \in \mathcal{A}$ defined by (1.1), we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}$.
Recently, Hörzum and Kocer [5] studied the Horadam polynomials $h_{n}(x)$, which are given by the following recurrence relation [4]:

$$
\begin{equation*}
h_{n}(x)=\rho x h_{n-1}(x)+\sigma h_{n-2}(x) \quad(x \in \mathbb{R} ; \quad n \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.3}
\end{equation*}
$$

with

$$
h_{1}(x)=a \quad \text { and } \quad h_{2}(x)=b x
$$

for some real constants $a, b, \rho$ and $\sigma$. Moreover, the generating function of the Horadam polynomials $h_{n}(x)$ is given by

$$
\begin{equation*}
\Pi(x, z)=\sum_{n=1}^{\infty} h_{n}(x) z^{n-1}=\frac{a+(b-a \rho) x z}{1-\rho x z-\sigma z^{2}} \tag{1.4}
\end{equation*}
$$

Remark 1.1. We record here some special cases of the Horadam polynomials $h_{n}(x)$ by appropriately choosing the parameters $a, b, \rho$ and $\sigma$.
(i) Taking $a=b=\rho=\sigma=1$, we obtain the Fibonacci polynomials $F_{n}(x)$.
(ii) Taking $a=2, b=\rho=\sigma=1$, we get the Lucas polynomials $L_{n}(x)$.
(iii) Taking $a=\sigma=1$ and $b=\rho=2$, we have the Pell polynomials $P_{n}(x)$.
(iv) Taking $a=b=\rho=2$ and $\sigma=1$, we find the Pell-Lucas polynomials $Q_{n}(x)$.
(v) Taking $a=b=1, \rho=2$ and $\sigma=-1$, we obtain Chebyshev polynomials $T_{n}(x)$ of first kind.
(vi) Taking $a=1, b=\rho=2$ and $\sigma=-1$, we have Chebyshev polynomials $U_{n}(x)$ of second kind.

Definition 1.2. A function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$ for $0 \leq \alpha \leq 1$ and $z, w \in \mathbb{D}$, if the following conditions are satisfied.

$$
\alpha\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)+(1-\alpha) D_{q} f(z) \prec \Pi(x, z)+1-a
$$

and

$$
\alpha\left(\frac{D_{q}\left(w D_{q} g(w)\right)}{D_{q} g(w)}\right)+(1-\alpha) D_{q} g(w) \prec \Pi(x, w)+1-a
$$

where $a$ is real constant and the function $g=f^{-1}$ is given by (1.2).
Remark 1.3. The family $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$ generalizes the following known families of bi-univalent functions.
(i) $\mathcal{S}_{\Sigma}^{*}(\alpha, x, 1)=\mathcal{G}^{*}(\alpha, x)$, the class of bi-univalent functions established by Orhan [7].
(ii) $\mathcal{S}_{\Sigma}^{*}(0, x, 1)=\Sigma^{\prime}(x)$, the class of bi-univalent functions studied by Al-Amoush [2].
(iii) $\mathcal{S}_{\Sigma}^{*}(1, x, 1)=\mathcal{K}_{\sigma}(x)$, the class of bi-univalent functions investigated by Abirami [1].

Theorem 1.4. Let $f \in \mathcal{A}$ be in the class $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{b x \sqrt{b x}}{\sqrt{\left|\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right)\right|}} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|b x|}{[3]_{q}\left|\alpha\left([3]_{q}-2\right)+1\right|}+\frac{b^{2} x^{2}}{[2]_{q}^{2}\left[\alpha\left([2]_{q}-2\right)+1\right]^{2}} \tag{1.6}
\end{equation*}
$$

Proof. Let $f \in \mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$. Then there are two analytic functions $u, v: \mathbb{D} \rightarrow \mathbb{D}$ given by

$$
\begin{equation*}
u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\ldots(z \in \mathbb{D}) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=v_{1} w+v_{2} w^{2}+v_{3} w^{3}+\ldots(w \in \mathbb{D}) \tag{1.8}
\end{equation*}
$$

with $u(0)=v(0)=0$ and $\max \{|u(z)|,|v(w)|\}<1 \quad(z, w \in \mathbb{D})$, such that

$$
\begin{gathered}
\alpha\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)+(1-\alpha) D_{q} f(z) \prec \Pi(x, u(z))+1-a \\
\alpha\left(\frac{D_{q}\left(w D_{q} g(w)\right)}{D_{q} g(w)}\right)+(1-\alpha) D_{q} g(w) \prec \Pi(x, v(w))+1-a .
\end{gathered}
$$

Equivalently

$$
\begin{array}{r}
\alpha\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)+(1-\alpha) D_{q} f(z)  \tag{1.9}\\
=h_{1}(x)+h_{2}(x) u(z)+h_{3}(x)(u(z))^{2}+\ldots+1-a
\end{array}
$$

and

$$
\begin{array}{r}
\alpha\left(\frac{D_{q}\left(w D_{q} g(w)\right)}{D_{q} g(w)}\right)+(1-\alpha) D_{q} g(w)  \tag{1.10}\\
=h_{1}(x)+h_{2}(x) v(w)+h_{3}(x)(v(w))^{2}+\ldots+1-a
\end{array}
$$

Combining (1.7)-(1.10) yields the following relation:

$$
\begin{array}{r}
\alpha\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)+(1-\alpha) D_{q} f(z)  \tag{1.11}\\
=1+h_{2}(x) u_{1} z+\left[h_{2}(x) u_{2}+h_{3}(x) u_{1}^{2}\right] z^{2}+\ldots
\end{array}
$$

and

$$
\begin{array}{r}
\alpha\left(\frac{D_{q}\left(w D_{q} g(w)\right)}{D_{q} g(w)}\right)+(1-\alpha) D_{q} g(w)  \tag{1.12}\\
=1+h_{2}(x) v_{1} w+\left[h_{2}(x) v_{2}+h_{3}(x) v_{1}^{2}\right] w^{2}+\ldots
\end{array}
$$

It is known that, if

$$
\max \{|u(z)|,|v(w)|\}<1 \quad(z, w \in \mathbb{D})
$$

then

$$
\begin{equation*}
\left|u_{j}\right| \leq 1 \quad \text { and } \quad\left|v_{j}\right| \leq 1 \quad(\forall z \in \mathbb{N}) \tag{1.13}
\end{equation*}
$$

Now, by comparing the corresponding coefficients in (1.11) and (1.12), we find that

$$
\begin{gather*}
{[2]_{q}\left[\alpha\left([2]_{q}-2\right)+1\right] a_{2}=h_{2}(x) u_{1}}  \tag{1.14}\\
{[3]_{q}\left[\alpha\left([3]_{q}-2\right)+1\right] a_{3}-[2]_{q}^{2} \alpha\left([2]_{q}-1\right) a_{2}^{2}=h_{2}(x) u_{2}+h_{3}(x) u_{1}^{2}}  \tag{1.15}\\
-[2]_{q}\left[\alpha\left([2]_{q}-2\right)+1\right] a_{2}=h_{2}(x) v_{1}  \tag{1.16}\\
-[3]_{q}\left[\alpha\left([3]_{q}-2\right)+1\right] a_{3}+\left\{2[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2}\left([2]_{q}-1\right) \alpha\right\} a_{2}^{2}=h_{2}(x) v_{2}+h_{3}(x) v_{1}^{2} \tag{1.17}
\end{gather*}
$$

It follows from (1.14) and (1.16) that

$$
\begin{equation*}
u_{1}=-v_{1}, \quad \text { provided } \quad h_{2}(x)=b x \neq 0 \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{1}{2[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}}\left(h_{2}(x)\right)^{2}\left(u_{1}^{2}+v_{1}^{2}\right) \tag{1.19}
\end{equation*}
$$

If we add (1.15) to (1.17), we find that

$$
\begin{equation*}
2\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2}\left([2]_{q}-1\right) \alpha\right] a_{2}^{2}=h_{2}(x)\left(u_{2}+v_{2}\right)+h_{3}(x)\left(u_{1}^{2}+v_{1}^{2}\right) \tag{1.20}
\end{equation*}
$$

Upon substituting the value of $u_{1}^{2}+v_{1}^{2}$ from (1.19) into the right hand side of (1.20), we deduce the following result:

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(h_{2}(x)\right)^{3}\left(u_{2}+v_{2}\right)}{2\left\{\left(h_{2}(x)\right)^{2}\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right]-h_{3}(x)[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\right\}} \tag{1.21}
\end{equation*}
$$

By further computations using (1.3), (1.13) and (1.21) we obtain

$$
\left|a_{2}\right| \leq \frac{b x \sqrt{b x}}{\sqrt{\left|\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right)\right|}} .
$$

Next, if we subtract (1.17) from (1.15), we can easily see that

$$
\begin{equation*}
2[3]_{q}\left[\alpha\left([3]_{q}-2\right)+1\right]\left(a_{3}-a_{2}^{2}\right)=h_{2}(x)\left(u_{2}-v_{2}\right)+h_{3}(x)\left(u_{1}^{2}-v_{1}^{2}\right) \tag{1.22}
\end{equation*}
$$

In the light of (1.18) and (1.19), we conclude from (1.22) that

$$
a_{3}=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}+\frac{\left(h_{2}(x)\right)^{2}\left(u_{1}^{2}+v_{1}^{2}\right)}{2[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}} .
$$

Thus, by applying (1.3), we obtain the following inequality

$$
\left|a_{3}\right| \leq \frac{|b x|}{[3]_{q}\left|\alpha\left([3]_{q}-2\right)+1\right|}+\frac{b^{2} x^{2}}{[2]_{q}^{2}\left[\alpha\left([2]_{q}-2\right)+1\right]^{2}}
$$

In the next theorem, we present the Fekete-Szegö inequality for $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$.
Theorem 1.5. Let $f \in \mathcal{A}$ be in the class $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$ and $\mu \in \mathbb{R}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|b x|}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}, \\
\left(|\mu-1| \leq \frac{\left.\mid[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right) \mid}{b^{2} x^{2}[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right) \\
\left.\frac{\left|\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} b^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right)\right|}{\mid[2]]^{2}-1}\right) \\
\left(|\mu-1| \geq \frac{\left.\mid[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right) \mid}{b^{2} x^{2}[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right) .
\end{array}\right.
$$

Proof. It follows from (1.21) and (1.22) that

$$
\begin{gathered}
a_{3}-\mu a_{2}^{2}=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2[3]_{q}\left[\alpha\left([3]_{q}-2\right)+1\right]}+(1-\mu) a_{2}^{2} \\
=\frac{h_{2}(x)\left(u_{2}-v_{2}\right)}{2[3]_{q}\left[\alpha\left([3]_{q}-2\right)+1\right]} \\
+(1-\mu) \frac{\left(h_{2}(x)\right)^{3}\left(u_{2}+v_{2}\right)}{2\left\{\left(h_{2}(x)\right)^{2}\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right]-h_{3}(x)[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\right\}} \\
=\frac{h_{2}(x)}{2}\left[\left(\eta(\mu, x)+\frac{1}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right) u_{2}+\left(\eta(\mu, x)-\frac{1}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right) v_{2}\right]
\end{gathered}
$$

$$
\eta(\mu, x)=\frac{\left(h_{2}(x)\right)^{2}(1-\mu)}{\left(h_{2}(x)\right)^{2}\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right]-h_{3}(x)[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}} .
$$

Thus, according to(1.3), we have the following inequality:

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}, & \text { if } \quad 0 \leq|\eta(\mu, x)| \leq \frac{1}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)} \\ |b x| \cdot|\eta(\mu, x)| & \text { if } \quad|\eta(\mu, x)| \geq \frac{1}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\end{cases}
$$

which, after simple computation, yields the following inequality:

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|b x|}{\left[33_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)\right.}, \\
\begin{array}{l}
\left(\mu-1 \left\lvert\, \leq \frac{\left.\mid[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right) \mid}{b^{2} x^{2}[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right.\right) \\
\frac{|b x|^{3}|\mu-1|}{\left|\left[[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2} \alpha\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right)\right|} \\
\left(|\mu-1| \geq \frac{\left.\mid[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)-[2]_{q}^{2}\left([2]_{q}-1\right)\right] b^{2} x^{2}-[2]_{q}^{2}\left(\alpha\left([2]_{q}-2\right)+1\right)^{2}\left(\rho b x^{2}+\sigma a\right) \mid}{b^{2} x^{2}[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}\right)
\end{array} .
\end{array}\right.
$$

we have thus completed the proof of Theorem 1.5.
By putting $\mu=1$ in Theorem 1.5, we are led to the following corollary.
Corollary 1.7. Let $f \in \mathcal{A}$ be in the class $\mathcal{S}_{\Sigma}^{*}(\alpha, x, q)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|b x|}{[3]_{q}\left(\alpha\left([3]_{q}-2\right)+1\right)}
$$

## Remark 1.7.

(i) If we take $q \rightarrow 1$ in our Theorems, we have the corresponding results for the family $\mathcal{G}^{*}(\alpha, x)$ of bi-univalent functions which was considered by Orhan [7].
(ii) If we put $\alpha=0$ and $q \rightarrow 1$ in our Theorems, we have the corresponding results for the family $\Sigma^{\prime}(x)$, which was studied recently by Al-Amoush [2].
(iii) If we put $\alpha=1$ and $q \rightarrow 1$ in our Theorems, we have the corresponding results for the family $\mathcal{K}_{\sigma}(x)$, which was discussed by Abirami [1].

## References

[1] Abirami C., Magesh N. and Yamini J., Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal., 2020.
[2] Al-Amoush A. G., On a subclass of bi-univalent functions associated to Horadam polynomials, Int. J. Open Problems Complex Analysis, 12, (1) (2020).
[3] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenchaften, Springer- Verlag, New York, 1983.
[4] Horadam A. F., Mahon J. M., Pell and Pell-Lucas polynomials, Fibonacci Quart, 23 (1985),7-20.
[5] Hörcum T., Koçer E. G., On some properties of Horadam polynomials, Internat. Math. Forum., 4 (2009), 1243-1252.
[6] Jackson F. H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 4253-281.
[7] Orhan H., Mamatha P. K., Swamy S. R., Magesh N. and Yamini J., Certain classes of bi-univalent functions associated with the Horadam polynomials, Acta Univ. Sapientiae, Mathematica, 13, (1) (2021), 258-272.
[8] Srivastava H. M., Altinkaya Sahsene and Yalcin Sibel, Certain subclasses of Biunivalent functions associated with the Horadam polynomials, Iranian Journal of Science and Technology, Transactions A: Science, 43 (4), (2019), 1873-1879.

