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Abstract: This paper is motivated by the ideas of fractional Fourier transform
and Hartley transform. Looking towards the practicality and demanding attention
of fractional Hartley transform we take keen interest into it. In this paper, we
deal with inverse theorem of FRHT and some important properties of fractional
Hartley transform like exponential rule, multiplication rule, transform of derivative
and derivative of transform, which play a very crucial role in the development of
fractional Hartley transform.
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1. Introduction and Preliminaries

The fractional Hartley transform is an extension of classical Hartley transform.
Moreover, fractional Hartley transform is very closely related to fractional Fourier
transform. In the year 1980, the fractional Fourier transform was introduced by
V. Namias to solve some type of ordinary and partial differential equation arising
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in quantum mechanics [10]. The fractional Fourier transform is used in optical
propagation problems [2], time-frequency representations [3], along with this it has
numerous uses in science [4, 5, 8, 10, 11]. In 1998, a new definition of fractional
Hartley transform was introduced by S. C. Pei, C. C. Tseng, M. H. Yeh and J. J.
Ding, which obeys additive property and precisely makes a desirable impact on this
paper [12]. Image encryption technology is a very significant research topic in the
area of information security [16]. A recently developed method for image encryption
is established based on two-dimensional generalization of one-dimensional fractional
Hartley transform [6]. It is seen that, fractional Hartley transform has many appli-
cations in the field of phase image encryption [15], nonlinear optical double image
encryption [14], and optical image encryption [6, 7, 18]. In many applications of
engineering and science the concept of fractional operator and measure have been
investigated comprehensively. In [17], a new idea of fractional quantum calculus is
defined. A fractional calculus approach is used [9] to study the analytic solution for
oxygen diffusion from capillary to tissues involving external force effects. Because
of plenty amount of applications, image formula of fractional calculus operators
have impressed not only statisticians and mathematicians with multiple research
interest but also biologist, psychologist, electrical engineers etc. [1]. For pattern
recognition and classification, the fractional dimension is being used extensively.
However, for image compression and adaptive filtering various unitary transforms
have been commonly applied except the Fourier transform. Some common ones are
cosine transform, sine transform, and Hartley transform etc. So far, the fractional
version of these transforms has been generalized. The fractional Hartley transform
is applicable in the various technical fields like electrical power system, oceanog-
raphy, and electronic communication. Preliminaries part deals with definition and
some properties of fractional Fourier transform as it forms a concrete base for frac-
tional Hartley transform. Further, the definition of fractional Hartley transform
along with relation between kernel of fractional Hartley transform and kernel of
fractional Fourier transform is stated. Main result contends with inverse fractional
Hartley transform, some properties of fractional Hartley transform like exponential
rule, multiplication rule, fractional Hartley transform of derivative and derivative
of fractional Hartley transform.

Definition 1.1. [2] Ift, v, a € R, with « is a constant and h € L}(R) N CY(R),
then fractional Fourier transform are denoted by R*[h(t)](v) or F,(v) or ¢%(v) and
1s defined by

RMOI(0) = Falo) = 2(0) = [ nOKE( o)

[e.9]
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Kg(t, v) =4/ % exp {Z|:%(t2 + v?) cot h — tvcscw} },

with ¢ = % and ¢ # wn, for alln =0,1,2,....

Theorem 1.2. [4, 5] If R*[h(t)](v) = F.(v) = ¢g%(v) is the fractional Fourier
transform of h(t), then h(t) is given by

where

h@)—l[fjkga,wg%wﬁw,

K&(t, v) = \/w exp{ —iB(t2 + v?) cot —tvcscz/)} },

with ¢ = % and ¢ # 7n, for alln =0,1,2,....
The proof of properties 1.3 — 1.6 becomes obvious using the results from [2], [3],
8], [11], [12] and [13]. In the subsequent work we shall use following properties of

fractional Fourier transform.

where

Property 1.3. Exponential rule
Ift, v, a,b € R, with a and b are constants and h € L'(R) N CY(R), then the
exponential rule for fractional Fourier transform is given by

Fuleh(t)](v) = e*=(=*%%) F, [n())(v — bsina).

Property 1.4. Multiplication Rule
Ift, v, « € R, with « is a constant and h € L*(R) N CY(R), then the multiplication
rule for fractional Fourier transform is given by

FL[h(1)] (v) = (v cosa + z’sinad%)mFa[h(t)](v),

where m is an positive integer.

Property 1.5. Transform of derivative
Ift, v, « € R, with a is a constant and h € L*(R)NCY(R), then the differentiation
rule for fractional Fourier transform is given by

8

jt_”; (h(t))] (v) = (w sin a + cos a%) " R)).
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where m is an positive integer and h(t) is differentiable and vanishes at t — +o00.

Property 1.6. Derivative of the Transform
Ift, v, « € R, with a 1s a constant and h € L'(R) N CY(R), then the derivative of
the fractional Fourier transform is obtained as follows

e
s} = et gl + (T sl senol)

where g&[h(t)](v) is the fractional Fourier transform of h(t) and ¢ = % and ¢ #
mn, for alln =0,1,2,....

Definition 1.7. [8] Ift, v, a € R, with « is a constant and h € L}*(R) N C(R),
then the FRHT of h(t) is denoted by g%[h(t)](v) or g% (v) and defined as

G h()(w) = giy(v) = / Kt o)h(t)dr, 1)

where

1 —1cot , .
Ky (t, v) =4/ %ﬂ} gia (P v?) coty [ cos(tv escep) + €Y7 2) sin(tv csc )]

and 1 = &F if ¢ # mn; for alln =0,1,2,. ..

2
Note 1.8. Ify = 7, then the extended transform defined in definition 1.7 reduces
to Hartley transform.

Result 1.9. [12] The correlation between kernel of FRHT and kernel of FRFT is
written by

i

1+ ez
2

QT

1—ez
2

K8 (t,v0) = K&(t,v) + K&(t, —v). (2)
o [

2. Main Results

Result 2.1. If a kernel of FRF'T is denoted by K¢(t,v) and a kernel of FRHT is
denoted by K§(t,v), then

—iam

1+ e
2

—iam

1 — 2

}Kf}(t,v) + {%] Ko (t, —v).

Ki(t,0) = |

The proof becomes obvious by using definition of kernel of fractional Fourier trans-
form and kernel of fractional Hartley transform.
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Result 2.2. If h € LY(R) N CY(R), the FRET of h(t) is denoted by g%(v) and
FRHT is denoted by g% (v), then

o 1+e'%" N l—ez2] ,
o) = [y |+ [ -
The proof is obtained by using Result 1.9 and linearity of integration.

Result 2.3. If h € LY(R) N CYR), the FRET of h(t) is denoted by g%(v) and
FRHT is denoted by g%(v), then

—iam —iam

1+e2 1 —e2

i) = |+ | g

The proof is obtained by using Result 2.1 and linearity of integration.

Theorem 2.4. Inverse fractional Hartley transform.
If h e LY(R) N CYR); t, v, « € R™, where a 1s a constant, g%(v) is the FRHAT of
h(t), then h(t) is as follows

) = [ Fat oo,

where

e 1 +icot 12402 o
Kg(t, v) =4/ %Ow eI oty [ cos(tvescy)) + e~ sin(tw csc V)]

and ¢ = ¢ if ¢ # mn; for alln =0,1,2,. ...
Proof. By using Theorem 1.2 and Result 2.3, we have

)= [ RE gt o)

-/ WKHT)M) ¥ (#)gy—v)} v

(14N
- [~ mgE (o )t
— P o
—i—/ K&(t, v) (T>9H(—v)dv
T l+e 57\
— [ R (s

—iam

v [ R (S st
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That is
< s N
= [ [Re o (P )+ R o (P ) |
Consider

zaTr 1_ —iam
Ko(t, v ( )+K§;(t, ~0) (%)
1 27\ /1 t 1
—( ter ) +icoty exp{—i{i(tz—i-vz)cotw—tvcscw}}

- 21

+ (1 - W) 1+ icoty exp{—iB(tQijz)cotw—l—tvcsm/}]}

1 + Tticoty ovy [ (€1 ey
2
_mﬁ ’Lt’U csch e*itv cscyp
e < 2i )}

1+icot 5o
ﬁ 2402 o 1/) COS(tU cse w) +e2 e_zw sm(tv Csc w)]

1+ 7cot i(Y—3)
\/ﬂ comp cos(tv cscr) + e~ =3%) sin(tv csc w)] .

Therefore
/00 \———— ! + teot ¢ 5% oty [cos(tvesc ) + e~ 2) sin(tv csc1p)]
Hence
~ | FR o (v,
where
Ke(t, v) = w 5% oty [cos(tvesc ) + e~ sin(tv esc 1))

and ¢ = G if a # wn;foralln=0,1,2,....
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Property 2.5. Exponential Rule.
If t, v, a,b € R, with a and b are constants and h € LY(R) N CY(R), then the
exponential rule for the fractional Hartley transform is written as

gale™h(t)](v)

_ eibcosw(vfm%) { (%) gy [h(t)](v — bsiney) + ésmwx

g lh())(—v + bsmw)} g tome(co-t) { — 2 sind gi[h(H](~v — bsiny)

N (1 — cos

‘ )gz[hm]mbsmw},

where gg(v) is the fractional Hartley transform of h(t) and ¢ = < if ¢ # wn; for
alln =0,1,2,....
Proof. By definition of fractional Hartley transform, we have

a zbth / Ka t U zbth( )d

By using relation between fractional Hartley transform and fractional Fourier trans-
form and also by shifting property of fractional Fourier transform, we have

gale™h(t)](v)

=(F55 st nion) + (S5 ) nioi-o

_ (#)eibcow(v—mﬂ) g2 [h(t)](v — bsin )

# (55 e ) g oo — bsin).

2

Now, by using relation between fractional Fourier transform and fractional Hartley
transform, we get

girle™h(t)](v)

_ (ﬂ) gibeosw (v-tee ) { <M) g [h(1)] (v — bsine))

2 2

+ (1 —;W)g%[h(t)](—v + bsin ¢)} 4 (#) eibcosw(fv,%) y
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{ (1 i e_w) ga[h(t)](—v — bsinep) + (#)g}’}[h(tﬂ(v + bsin@}

2

_ e (v-tpe) { (#) g5 (1)) (v — bsin ) + £ sinx

0

g% [h(t)](—v + bsin w)} + eibwsw(—”—b“ﬁ”"){ — —sine g% [h(t))(—v — bsin)

2
+ (#)g}’}[h(t}](v + bsin w)}.

Property 2.6. Multiplication Rule.
Ift, v, a € R, with a is a constant, h € L*(R) N CY(R), and m is any positive
integer, then multiplication rule for fractional Hartley transform is given by

(

cos (u cos 1 + ¢sin @D%) mg}‘fl[h(t)](u)
gt h(t)](u) = < +isiny (u cos 1) + isin ¢%) mgj‘}[h(t)](—u); if m is odd

(u cos 1) + i sin w%)m gy [h(t)](u); if m is even,

\

where gg;[h(t)](v) is the fractional Hartley transform of h(t) and ¢ = < if ¢ # mn;
foralln=20,1,2,....

Proof. By using relation between fractional Hartley transform and fractional
Fourier transform and also by multiplication rule of fractional Fourier transform,
we have

1+ e 1— e

sl =(*5 ) arlenoln) + (<5 Jakleh i)
:(Hew) ucowﬂsiw%)gg[h(t)](u)

2

(! —;“") (1) (wcosss  isin vt )] ),

Now, by using relation between fractional Fourier transform and fractional Hartley
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transform, we get

gulth(t)](u)

:<1 *26w> (u cos b + isinzﬁ%) { (#) g% [h(®)] (u) + (1 _;w) «
g}‘}[h(t)](—u)} + (155 ) 0 (weosv + ssinvt) { (H )
b)) + (#)gmhwm}

(e“” . 1”) (1vcoss -+ isinv g g fhcol )

+ (z " —Qie_iw) <u cos 1) + i sin w%)gﬁ}[h(t)](—u)
=cos (u cos 1) + i sin w%) gy [h(t)](u)+
isin (u cos 1) + isin ¢%> gy lh(t)](—u).

Again by using relation between fractional Hartley transform and fractional Fourier
transform and also by multiplication rule of fractional Fourier transform, we have

1+ et 1—e®

gt no) =(+5 ) g ol +

) G2l h(D)] (—u)

() (oo s s ) gl

n (1 _;w) (—1)? (u cos ) + isimﬂ%f grlh@))(—u)

1+ e

:(ucosw +isinw%>2 gg[h(t)](u){< 5 ) gz [h(t)](u)

(455 g%[h(t)](—w}

- (u cos 1) + i sin lﬁ%) 2 g [h()](w).
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Similarly
3
g% [t h(t)](uw) =cosp (u cos 1 + i sin wdii> gy [h(t)](u)

d 3
+ isiny <u cos 1) + isin 1/Jd—) gylh(t)](—u).
u
Therefore by mathematical induction method for any positive integer m, we can

obtain
(

cos <u cos ) + i sin @D%) mgj‘_“[[h(t)] (u)
gyt h(t)](u) =< +i Sinl/J(U cos ) + isin w%)mgj’}[h(t)](—u); if m is odd

(u cos 1) + isin w%)m g [h(t)](u); if m is even.

\
Property 2.7. Transform of the derivative.

Ift, v, a € R, with  is a constant, h € L*(R) N CY(R), m is any positive inte-
ger, h(t) is differentiable and vanishes at t — doo, then Differentiation rule for
fractional Hartley transform is given by

(

cos ) (z wsin ) + cos %)mgg[h@)](w
g%[dm (Mﬂ)] (u) = +¢sm¢(z’ usinw—i—coszﬂ%)mg;}[h(t)](—u); if m is odd

<i usiny + cos @b%)m gy [h(t)](u); if m is even,

\
where g [h(t)|(v) is the fractional Hartley transform of h(t) and i = 5 if ¢ # wn;
foralln=20,1,2,....
Proof. By using relation between fractional Hartley transform and fractional
Fourier transform and also by differentiation rule of fractional Fourier transform,
we have

1+e" 1— e

010 =5 el + (S5 )]0
:<1 + ew) (z wsin + COSQﬁ%) G2 [h()](w)

2
. (1 - w) <_1><@- wsind + mw%)gzﬁw)}(—u)-

2
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Now, by using relation between fractional Fourier transform and fractional Hartley
transform, we get

gulh ()](w)

:<1 +2€w> (z using + COSQﬁ%) { (#)ﬁ;[h(m(u) n (1 _;_w) x
g;-_f,[h@)](—u)} + (1 _fp) (—1) (z wsin + coszp%) { (1 +2€_w) X

"
)~ + (%)gmhu)m)}

B eV + e
N 2

) (s cosv i Jatnioi)

# (155 ) (o + cosu D) hio(-w
—cos (i using + cosw L))

ising (1 using + cosv 3 )i O]

Again by using relation between fractional Hartley transform and fractional Fourier
transform and also by differentiation rule of fractional Fourier transform, we have

- (h(t))] ()
_ (#) g l% (h(t))] (u) + (1 ‘;w> g l% <h(t))] (—u)

(55 (rusme+ wd%) g3 (D) ()

9

n <1 _26“[)) (—1)? (2 usina + cos 1/1%)2 grlh(®)](—u)

(i usini s cosi ) g%[h(t)](w{ (255 st
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+(455) g%[h(t)](—U)}

_ <z usin + cos w%) 2 guh(®)](u).

Similarly
0 [jT (h<t>)] () =coss (i usin + w%) g3 1h(1)] ()

N3
+ isin (z usint + cos @Dd—> gy [h(t)](—u).
u
Therefore by mathematical induction method for any positive integer m, we can

obtain
)

cos (z usint + cos w%) mglog[h(t)] (u)
9% [i—z (h(t))] (u) = ¢ +isiny (z usin ) + cos w%>mg%[h(t)](—u); if m is odd

(i usint + cos @b%)m gy [h(t)](u); if m is even.

\

Property 2.8. Derivative of the Transform.
Ift, v, a € R, with a is a constant, h € L}(R) N CY(R), then the derivative of the
fractional Hartley transform is obtained as follows

Hanon)

— ivcot g h(H](v) + (u

5 )g}’;[—itv cscYh(t)](v)
+ 5 sinvigh it cseph(](—v) + ' sinvgh litv esc ph(n)])(~v)

. (ﬁ) g litv esevh(b)](v),

where gg;[h(t)](v) is the fractional Hartley transform of h(t) and ¢ = < if ¢ # mn;
foralln=20,1,2,....
Proof. By definition of fractional Hartley transform, we have

a3 h(8)] (v) = / K (o) h()dt
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By using relation between fractional Hartley transform and fractional Fourier trans-
form and also by derivative of fractional Fourier transform, we have

{amenm}
i { (255 )amene + (* ‘2€i¢)g%[h<t>1<—v>}

et
<1 + >{w cot wgp[h(t)](v) + gp[—itvcsc wh(t)](v)}

+ (1 ' ){wcowgp[ (>](—v)+g;£[z'tvcsc¢h(t)](_v)}

e
i cot gy (D] (0) + (1 - )g%[—z'w esc ph(D)](v)

n (1 _zew ) glitv escPh(t)](—v).

Now, by using relation between fractional Fourier transform and fractional Hartley
transform, we get

ano)

~ weot g (o)) + *;’w) { (255 )sal-iweseunio]

n (#)g;}[—itv cse wh(t)](—“>} + (1 —;”’) { (1 +2€_iw) :

1—e ™

gy litv escph(t)](—v) + ( 5 )g}"{[z’tv csce wh(t)](v)}

2 2

+ (1 —|—26w) (1 _;_iw)g%[—?tv csch(t)](—v) + (1 —Qe“/’) (1 +2€—w> X

difits st + (15 ) (L5 Jailiwese o]

= weotug o))+ (F5 ) (FE ) ahl-toese o]
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14 cose

= 1w cot Yy [h(t)](v) + ( 2

)g;-;[_m s ph(t))(v)
+ % sin ¢ g%y [—itv csc Yh(t)](—v) + _72 sin ¢ g% [itv esc Yh(t)](—v)

n <$) g% litv cscph(t)] (v).

3. Examples
Example 3.1. If h(t) = 1, then the FRHT of h(t) with parameter o € R is equal

to /T + 7 tant) etV tanv if o) — % is not multiple of 7 see in [3].
_¢2
Example 3.2. If h(t) = e2", then the FRHT of h(t) with parameter o € R is
2
equal to e2".

4. Conclusion

The present work proved inverse theorem of FRHT and some important prop-
erties of fractional Hartley transform like exponential rule, multiplication rule,
transform of derivative and derivative of transform.
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