South Fast Asian J. of Mathematics and Mathematical Sciences
Vol. 18, No. 3 (2022), pp. 55-66

DOI: 10.56827/SEAJMMS.2022.1803.6 ISSN (Online): 2582-0850
ISSN (Print): 0972-7752

EXTENDED GENERALIZED 7-GAUSS’ HYPERGEOMETRIC
FUNCTIONS AND THEIR APPLICATIONS

Bharti Chauhan and Prakriti Rai*

Department of Mathematics,
Amity Institute of Applied Sciences,
Amity University, Noida - 201301, Uttar Pradesh, INDIA

E-mail : chauhan.bharti29@yahoo.com

*Department of Mathematics,
Siddharth University, Kapilvastu, (U. P.), INDIA

E-mail : prakritirai.rai@gmail.com

(Received: Nov. 10, 2021 Accepted: Nov. 21, 2022 Published: Dec. 30, 2022)

Abstract: In this article, by means of the extended beta function, we introduce
new extension of the generalized 7-Gauss’ hypergeometric functions and present
some new integral and series representations (including the one obtained by adopt-
ing the well-known Ramanujan’s Master Theorem). We also consider some new
and known results as consequences of our proposed extension of the generalized
7-Gauss hypergeometric function.
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1. Introduction

New extensions of some of the well-known special functions (e.g. gamma func-
tion, beta function, Gauss hypergeometric function, etc.) have been extensively
studied in the recent past. By inserting a regularization factor e ', Chaudhry
et.al. [4] have introduced the following extension of the gamma function:

I,(z) = /OOO " Leap(—t — g)dt (R(p) > 0), (1.1)
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and Chaudhry et al. [2] considered the extension of Euler’s beta function in the
following form:

By(z,y) = /000 "1 —t) teap (tu_f) t)) dt (R(p) > 0). (1.2)

Later, Chaudhry et al. [3] used By(z,y) to extend the Gauss hypergeometric
function given by

Fple, B,7,2) = ;(a)ang; Zjﬁ_)ﬂ)% (1.3)

(p=0,[2] <1,R(y) > R(B) > 0),

where («),, denotes the Pochhammer symbol defined in terms of gamma functions
by
[(a+mn)
(@) = —=—~—
[(a)

For p = 0, the function (1.3) reduces to the usual Gauss hypergeometric function.

Definition 1.1. ([10], p. 243) Let a function O({k }icny;2) be analytic within
the disk |z| < R(0 < R < 1) and let its Taylor-Maclaurin coefficients be explicitly
denoted by the sequence {k; }ien, ([4]). Suppose also that the function ©({k;}ieny; 2)
can be continued analytically in the right half-plane R(z) > 0 with the asymptotic
property given as follows:

O({ki}ieny; 2)

(1.4)

_ Zio{kl}% (|z] < R;0 < R < oo; kg = 1),
Myz" eXp(Z)[l + O(%)] (?R(Z) — 00; My > 0;w € (C)7

for some suitable constants My and w depending essentially on the sequence {k; }ien, -

Srivastava et.al. also defined extended Gamma function Fékl}(z) and the extended
beta function respectively as (see [4, Equations (2.2) and (2.3)])

ikt (z) = /oo O ({ki}; —t — §>dt (R(p) = 0,R(z) > 0), (1.5)

and

B (a, B) = /Oltal(l —t)'e ({k:l}; %) dt, (1.6)

1—-1
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(R(p) = 0, min(R(a), R(B)) > 0).

We shall also make use of the following definition of a two-parameter extension of
(1.6) due to Srivastava et al. [4, p.256, Eqn. (6.1)] (see also [4, Section 6] for other
related two-parameter definitions):

Bian = [ea-oe (-t - s )an

(min(R(p), R(q)) > 0, min(R(e), R(B)) > 0).

In this paper, we introduce some extended forms of the generalized 7-Gauss’ hy-
pergeometric functions by means of (1.7). Section 2 gives the extensions of 7-
Gauss’ hypergeometric functions and Section 3 treats extensions of the generalized
7-Gauss’ hypergeometric functions together with some of their fundamental prop-
erties. Section 4 gives the Mellin transformation and Mellin-Barnes type integral
representations by the application of the well-known Ramanujan’s Master Theo-
rem.

2. 7-Gauss’ Hypergeometric Functions
Using the extended beta function Bg’q})(a, f) defined by (1.7), we can easily
form another series representation of the 7-Gauss’ hypergeometric function

o0

- (a2)n7'£
oRi(0n, g, 51,7, 2) = HZ:O(Oél)n (B)mr 1! ) (2.1)

(1>0, |z| <1, R(B1) > R(az) > 0 when |z| =1).

Let us replace

(at2)nr Béil;) (g + T, B — ag)

(Bwr ~ Blow, Br— )

in (2.1), then we obtain the extended form of the 7-Gauss’ hypergeometric function
using the extended beta function in the following form:

Definition 2.1. [6] The extended T-Gauss’ hypergeometric function gRik’} is de-
fined as :

00 B{kz}

(Oég + nrT, Bl - 0{2) 2"
) ‘ _ . (r.2) —
oy (g, Br, T3 2, p, q) Z(al) B(ag, 1 — as) nl’

(2.2)

n=0

(1 >0, |z] <1, R(G1) > R(az) > 0 when |z| = 1, min(R(p), R(q)) > 0).
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Theorem 2.2. The integral representation of extended T-Gauss’ hypergeometric
function is defined as :

2Rikl}(041> ag, f1,T; 2, D, Q)

_ 1 1 az—1(] _ p)fi—ee—1(] _ 7 p_ g
- B<a27ﬁl—a2)/o S S @({kl}’ t <1t>)<§té>

(R(B1) > R(ag) > 0,R(p) >R(q) >0, b=d =0, |arg(l —2)| < 7).

Proof. Replacing the extended beta function B&{;Z};(ag + n1, 01 — az) in (2.2)
by its integral representation given by (1.7) and then interchanging the order of
summation and integration (which can be justified due to the absolute convergence
of the integral and the series involved), the integral representation (2.3) follows
immediately after some necessary simplification.

In terms of the extended beta function Béf’;})(a, f) defined in (1.7), we can
construct a suitable extension of 7-Gauss’ hypergeometric function. Consideration

of the following cases is required :

1. For u = v+1, the coefficients of ,R,(aq, s, ..., f1, B2, ..., By, T; 2) can be

written as :
T Q) — B(aj1 + n7, B; — ajy1)
(a)n ) | =5 = (a)n : (n € Np).
jl_[l B; ]1_[1 Blaj1, B — aj41)

By substituting the extended beta function (1.7) for each B(ajt1 + nr, 5; —
ajt1), we get the coefficients as :

v BU (04 + 07, B — ajin)
(al)nH (p.g)\7 J J

B(%‘H’ B — %‘H)

, (n € Np).

j=1

2. For u = v, the coefficients of our extension are simply :

v B{kf}(aj +nr, B — ;)

H (p,9)
B(aj, B — a )

J=1

(n S No)

3. For u < v, the only reasonable construction of the coefficients is :

r 1 u gkl (a; + 0T, Bjsr — )

(p,q)
11 (Bi)n 1 B(ay, Bj4r — )

i=1 T j=1

s (TL - No)
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In the third section, we extend the generalized hypergeometric function by using
the extended beta function Bg”i]})( ,B).

3. Extended Generalized 7-Gauss’ Hypergeometric Functions
The generalized hypergeometric function with « numerator and v denominator
parameters is defined as :

R (a17a27' auaﬁlaﬂ?a' 751177— Z Z ﬁl)n ?;i;:(?ﬁuj;: 2_7;7 (31)

n=

(aq,8; €C, B; #0,—1,-2,..,l=1,..,u,j=1,.,v)

which is absolutely convergent for all values of z € C, if u <v. When u = v + 1,
the series is absolutely convergent for |z| < 1 and for |z| = 1,when %(Z;’zl B; —
S, o) > 0, while it is conditionally convergent for |z| = 1(|z| # 1) if -1 <
RO B = 2 ) <0

We can now give the formal definition to our extended generalized 7-Gauss’
hypergeometric function as follows :

Definition 3.1. For suitably constrained (real or complex) parameters o, j = 1,2,
v u; By, 1=1,2,..,v, we define the extended generalized T-Gauss’ hypergeometric
function by

uRz{)kl}(ab A,y ...y, 517 527 ) 51}’ 752D, Q)

p
Zoo (O{ ) H'u B(p q)(aj+1+n7-7 J a]+1)
n=0\"1/n 11j=1 Blaj41,6j—ajr1)  nl’

(2] < Lu=v+1,R(8;) > R(ajs1) > 0)

B{kl} (aj+nT,Bj—0 )

Zn OHJ 1 (1“1) B(aj,B;—aj) %7;’
= (€ C,u=v,R(8;) > R(a;) > 0) (3.2)

B{kl}(a‘JrnT,ﬂ —aj)

(p, 3 Pj+r j) sm

Zn OHZ 1 H? 1 pg(aj,ﬁj+rfaj) il_!7
(zeCr=v—u,u<v,R(Br+; > R(a;) >0)).

\

The following theorem demonstrates that the form of the Euler-type integral repre-
sentation of uRq{,kl} is very similar to that of the Euler-type integral representation

of ,R,.
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Theorem 3.2. For the extended generalized T-Gauss’ hypergeometric function
defined by (3.2), we have the following integral representation:

uR;{;kl}(OCl;OéQv '-'au7ﬁl?ﬁ2> "'75’077; Z; D, q)

_ F(Bv) . 1 ay—171 ﬁv—au—l R{kl} a1, 09, ..0y—1, . d
a F(O%)F(ﬁv — ) /0 ! (1=t B1, B2, Bo_1 , T3 2L p,q | dt.
(3.3)

(R(By) > R(w,) > 0, min(R(p),R(q)) > 0,p=q=0,arg|l — z| <)
Proof. We need to verify that the formula (3.3) holds for three different expressions
of uRikl}(al,aQ, e Qy, B, Bay ooy Buy T; 25D, q) given in (3.2) respectively. Consider
the case u = v+1, in view of the representation that

B({p lq}) (av—i-l + nr, ﬁv - av+1)
B(av+1a By — 1)

I(8,) / el (] pBo—osi-1 ( p__4 )
= ety erevn Tl ( [k} - — dt,
i (1-1) {ki} ;

(o) T(By — (1—1)
(3.4)
(m € No, min(R(p), R(q)) > 0, R(B,) > R(vps1) > 0)
we find that
’U+1R1{;kl}(a17 Qg, ...Qp11, /817 /827 ceey ﬁva T,25D, Q)
r(5.) / e
tav+1 1 _ t v —Qy41
(Olv+1) (ﬁfu av—f—l) 0 ( )
0 v— 1B{kl} Qi +nT, B — o n
'Z(Oél) H () (@41 Bj — ajt1) (zt) gt
n=0 j:1 B(O[j+17 /8.7 - a]+1) n|

1
_ L(B,) / =L (et g (OV BN g ) dt
[+ 1)T(By — cwt1) Jo B1, B2, ..Bu—1

After putting the value u = v+1, we get

['(By) /1 1 Bo—cu—1 {kl} a1, Qg . 0y—1,

= T (1 =) 1R, , Tzt p,q | dt.
[(ew)T(By — o) Jo ( ) ! B, B2, - Pu—1

(3.5)
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It is clear that the relation (3.3) is also valid for the v < v and this completes the
proof.

Special Cases

1. When v = 2, and v = 1 ; (3.3) reduces to the following extended 7-Gauss’
hypergeometric function:

2R£kl}(a17 g, Bla T,2,D, Q>

1 1
= B(a2 5= a2> /0 t012—1(1 — t)ﬁl—er—l 1 Rékl}<041, L2t p, Q)dt

2. When7 =1, u=2andv =1, p=¢q = 0; (3.3) reduces to the following
Gauss hypergeometric function:

1
B<0427B1 — Qg

1
QRikl}(Olljaz;ﬁl;Z) = )/ o2 (1 —¢)Prmeet 1Rékl}(a1,,, zt)dt.
0

Remark. A multidimensional case of the Euler-type integral representation of
(3.5) is given as:

v+1R1{)kl}<a17 a9, ...0041, 617 627 ceey /87.)7 T, 2D, Q> - H

j=1

1 1 v
// ||t°.”j“(1—tj)5j—aj+l—1® {kl};—g—L (I—tyto..tyz) " “dty..dty,
Ll t;  (1—1t)
0 0 551 J

J

which follows from the repeated application of the functional equation (3.5).

Special Case
When 7 = 1; v =1 ; equation (3.5) reduces to an extended Gauss hypergeo-
metric function [9)

ZRikl}(ala g, 617 z, P, Q)

B I'(5) Lt  N\Bi—aa—1(q _ _p\—au _p__q
—r<a2>r<ﬁ1—@2>/ot N St A

= ! /1t°‘2_1(1 — )P (1 ) Ok, L — L),
B(Oég,ﬁl—Oég) 0 t 1—1¢
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Theorem 3.3. The following derivative formula holds for v < v+1
dn
dz n{u v l}(al g, ... Oly, 61a 527 ceey 51)7 T2:D, q)}

(a1)n.. ()

= Wt RN (a4, o 4 0T, B 40T, B + 0, T 25 p,q) (n€ Np).
(ﬂl)nT'”(/Bv)nT

(3.6)
Proof. Differentiating U+1Rz{,kl} with respect to z, we obtain
d
%{v+1R;{;kl}<ala Oy, ﬁh "'Bva T,%,D, Q)}
o v k
Z H BU (g1 407, B — aga) (37
1 = B(ajy1, 85 — ajt1) (n—1) ‘

Replacing n by n+1 in the rlght—hand side of (3.7), we are lead to

d
%{U—&—IRq{;kl}(alv Oy, 617 "ﬁva T;2:D, Q}

— (o) H;:1 Q41

= (ay) 2"
H j=1 ﬁj

Recursive application of this procedure n-times gives us the general form (3.6).

Similarly, we can prove the result for the case u < v.
For u = 2 and v = 1; we at once get

(al)n(a2)n7
(61)717—

: {v—&-lR;{;kl}(al + 17 <Oy + T, 51 +T7 611 + T, T,2,D,s Q} (38)

QRikl}(al—i_nﬁ Qo+nT, 61"‘”7—, T,2:D, Q>7
(3.9)

W R{ l}(a17a27ﬁ177— 2y Q> —
which corresponds to the known result [6, Theorem 3].

Next, We derive the Mellin transformation and Mellin Barnes type contour
integral representation of the function (3.2). We need the following well-known
theorem which is widely used to evaluate definite integrals and infinite series.

4. Mellin transform representation and Mellin Barnes type integral
representation of the Extended Generalized 7-Gauss’ Hypergeometric
Functions

Theorem 4.1. (Ramanujan’s Master theorem [1]) Assume f admits an ex-
pansion of the form :

-y —W)]i!_x) (A(0) #0).

k=0
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Then the Mellin transform of f is given by

F(s) = /000 25 f(2)dr = T(s)\(—s).

By means of Ramanujan’s master theorem, we obtain the following Mellin trans-
formation and Mellin Barnes type integral representation.

Theorem 4.2. For the extended generalized T-Gauss’ hypergeometric function, we
have the following Mellin transformation representation of the first kind for the
function (3.2) as :

M{uRqul}(al7a27 "7auaﬁ17627 --76@;7—;2;297 Q)}

= F(s>(a1)s{uR;{;kl}(al + S, 02, ..y Oy, ﬂla 627 ty 6’07 T,2:D, Q)} (41)

Proof. To obtain the Mellin Transform, we multiply both sides of (3.2) by 7!
and then integrate with respect to t over integral [0,00) as follows :

0o v {kl} X . . n
_ / pa-1 <<a1)nH By, (a1 +n7, B — ajy1) z_) "
0

o Blag =) nl
v ik
Bl (@er + 07, B — aga) on >
=1 (ajt1, By — ajr1) n:Jo
using result (ay), = % in (4.2), we get

dt, (4.3)

1 Bl (@1 + 07 ) = aj4) 20 /oo 1D +n)

o Bl i =) nl [(ay)

using the result [5, p. 16, eq. (1.110)] given by

/ t (o +n)dt = T(ay + s +n)[(s)
0

in (4.3), we get

v k o
H ng}q}; (@541 417, 55 = aj1) T(s)(on + 5) (o + s +mn)2"
o BlogeBj—aja)  Tla)(on+s) & !
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v k o
B({ ,l} (aj+1 + 07, B — ajy1) C(ag + s)p2"™
sy

CVJ+17 B] - CY]+1)

7j=1 n=0
L x v BU (a0 + 07, B — i) o
= P(s)ar)s Z(Oq 5 H B(aji1, B; — aji1) n!

n=0 j=1
= F(S)(OZl)S{uRq{;kl}(al + S, Qg ey Qy, ﬁla /827 sy /6117 T525D, Q)}
Hence the proof is completed.
Theorem 4.3. The Mellin Barnes type integral representation of the function
(3.2) is given by

uRikl}<Oél7Oé27 "7au7617ﬁ27 ..,ﬁv,T;Z;p, q)

( f v B (CVJ—H sT,8;—0 )T (a1 —s)[(s)(—z) " *ds
271'[, L1 j= (a]76] O‘j)r‘(al) ’

1
(U =v+ 1,%(ﬁ]) > 3?(04]-“ >07=12.¢q; 3%(041) > O)

v B (a] s7,8;—a;)T(s)(—z) " %ds
27rL ng Jj=

1 B(ay,B85—a;) !
= (u=v,R(B;) >R(e; >0;5=1,2,.,q) (4.4)
T'(8:) Oé'—S’T,ﬁ r—a; )I'(s)(—2z)"%ds
27rL fLS i=1 I'(8;—sT) H] 1 : B(O‘jjb]-kr]a]) !

(r=v—uu<v,R(Br;) >R(ey) > 0;i = 1,2,.,7;R(B;) > 0)

\

where L;; 1=1,2,3 are Mellin Barnes type contours from —ioco to +ioco with the
usual in-dentations in order to seperate one set of polar from the other set of poles
i the integrand.

Proof. The result follows rather directly upon using the Ramanujan’s Master the-
orem and the inversion Mellin transform.

5. Further Results

Definition 5.1. For suitably constrained (real or complex) parameters o; , j=1,2,..,u;
Bi , 1=1,2,..,v, we defined the extended generalized T-Gauss’ hypergeometric func-
tions by

uRz{;kl}((ala kl)a "'(aua ku)v ﬁla ceey B’U? T,Z2;D, Q)
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(

k
Zoo (Oé ) H'U B({pfq})(aj+1+kj+1n77/3j7aj+1) P
n=0\"1/kin 1 Lj=1 Blajt1,8j—aj+1) nl?

(2] < Lu=v+1R(3,) > Rlas1) > 0)

{k}
zoo Hv B(pqu)(aj+kjnr,ﬁjfaj) n
n=0 11j=1 B(aj,B5—aj) 1

- (z € C,u =, ére(ﬁj; > R(a;) > 0) (5.1)

{ki}
Zoo Hr 1 Hu B(p,lq)(ajJrkjnT’rBjJrr*O‘j) 2"
n=0 L Li=1 (8;)n~ j=1 B(aj,Bj4r—ay) n!?

(zeCr=v—u,u<v,R(Brs; > R(a;) > 0))

\

where the new parameters ky € {0,1},k;,j = 1,2,..,u are non-negative integers.
Obviously (5.1) reduces to (3.2), whenever k; = 1,7 = 1,2, ..,u. To illustrate its
advantages, we first consider the following function.

> {kl} n

{ki} L k o _ § : Bp.g (a2 + kgnt, 81 — a?) A

2Rl [(ah 1)7 (aQa 2)7 617 T2 D, Q] nzo(al)n- B(Oég, Bl — a2) ol .
(5.2)

Its integral representation can be written as :

QRyCl}[(ala kl)a <a2’ k2>7 ﬁl) 725D, Q]

— 1 1 Q2 — B1—aa— 0T D q
- B(O‘%ﬁl_%)/o (1 —t) -zt n)e({k}, — — 1)dt (5.3)

(R(B1) > R(az) > 0;min{R(p), R(q)} > 0;p = ¢ = 0,arg|l — z[ <m)

6. Concluding Remarks

In this paper, the authors have first introduced a new extension of 7-Gauss’
hypergeometric function and investigated some properties of these extended func-
tions. Motivated mainly by the results of [8], we are working in establishing closed
integral expressions for the Mathieu-type a-series and for the associated alternating
versions whose terms contain this newly formed extended 7-Gauss’ hypergeometric
functions with related contiguous functional relations. Also in the light of tech-
niques used by Parmar and Saxena ([7] and [9]), this study can be further extended
in the field of the incomplete generalized 7 hypergeometric and second 7- Appell
functions.
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