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Abstract: The purpose of the article is to study about homomorphism and anti-
homomorphism of spherical cubic bi-ideals of Gamma near-rings R1 and R2. If
φ : R1 −→ R2 be a gamma homomorphism and (C U s1 , R1), (C U s2 , R2) are spher-
ical cubic bi-ideals of gamma near-rings R1 and R2.Then the image (φ(C U s1), R2)
and pre-image (φ−1(C U s2), R1) are also spherical cubic bi-ideals of gamma near-
rings R2 and R1. If φ : R1 −→ R2 be an epimorphism of gamma near-rings R1

and R2 and (C U s2 ,R2) is a SCS of R2 such that (φ−1(C U s2),R1) is a SCBI of
R1, then (C U s2 ,R2) is a SCBI of R2.
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1. Introduction
The notion of fuzzy set was introduced by Zadeh [18] in 1965. It is identified

as a better tool for the scientific study of uncertainty, and came as a boost to the
researchers working in the field of uncertainty. Many extensions and generalizations
of fuzzy set was conceived by a number of researchers and a large number of real-
life applications were developed in a variety of areas. In addition to this, parallel
analysis of the classical results of many branches of Mathematics were also carried
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out in the fuzzy settings. Properties of fuzzy ideals in near-rings was studied by
Hong et al. [9]. The monograph by Chinnadurai [1] gives a detailed discussion
on fuzzy ideals in algebraic structures. Fuzzy ideals in Gamma near-ring R was
discussed by Jun et al. [10, 11] and Satyanarayana [15]. Meenakumari and Tamizh
chelvam[14] have defined fuzzy bi-ideals in gamma near-rings and established some
properties of this structure. Srinivas and Nagaiah [16] have proved some results on
T -fuzzy ideals of Γ -near-rings. Jun [12] introduced a new notion called a cubic set
and investigated several properties. Thillaigovindan et al. [17] worked on interval
valued fuzzy ideals of near-rings. Chinnadurai et al. [2, 3] discussed cubic ideals
of Γ -near rings and homomorphism and anti- homomorphism of cubic ideals of
near-rings. Kahraman and Gundogdu [13] introduced spherical fuzzy sets as an
extension of picture fuzzy sets. Chinnadurai et al. [4] discussed interval-valued
fuzzy ideals of gamma near-rings. Chinnadurai et al. [5, 6, 7, 8] discussed T -
fuzzy, spherical fuzzy, spherical interval-valued fuzzy and spherical cubic bi-ideals
of gamma near-rings. In this research work, we discuss the homomorphism and
anti-homomorphism of spherical cubic bi-ideals of Gamma near-rings R1 and R2,
establish some of its properties.

2. Preliminaries

In this section we present some definitions which are used in this research.
Let R be a near-ring and Γ be a non-empty set such that R is a Gamma near-ring.
A subgroup H of (R,+) is a bi-ideal if and only if HΓRΓH ⊆ H.
Let R be a nonempty set. By a cubic set in R we mean a structure
A = {u,A(u), λ(u)|u ∈ R} in which A is an interval-valued fuzzy set in R and λ
is a fuzzy set in R. A cubic set is simply denoted by A =< A, λ >.
A fuzzy set µ ofR to be fuzzy bi-ideal of gamma near-ringR if the given conditions
are satisfied

(i) µ(u− v) ≥ min{µ(u), µ(v)},
(ii) µ(uαvβw) ≥ min{µ(u), µ(w)},

for all u, v, w ∈ R and α, β ∈ Γ .
A spherical fuzzy set Ãs of the universe of discourse U is given by,
Ãs = {u, (µ̃(u), ν̃(u), ξ̃(u))|u ∈ U} where µ̃(u) : U −→ [0, 1], ν̃(u) : U −→ [0, 1]

and ξ̃(u) : U −→ [0, 1] and 0 ≤ µ̃2(u) + ν̃2(u) + ξ̃2(u) ≤ 1, u ∈ U .

For each u, the numbers µ̃(u), ν̃(u) and ξ̃(u) are the degrees of membership,non-

membership and hesitancy of u to Ãs, respectively.
A spherical fuzzy set(SFS) As = (µ, ν, ξ), where µ : R −→ [0, 1], ν : R −→ [0, 1]
and ξ : R −→ [0, 1] of R is said to be a spherical fuzzy bi-ideal of R if the following
conditions are satisfied
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(i) µ(u− v) ≥ min{µ(u), µ(v)},
(ii) ν(u− v) ≥ min{ν(u), ν(v)},
(iii) ξ(u− v) ≤ max{ξ(u), ξ(v)},
(iv) µ(uαvβw) ≥ min{µ(u), µ(w)},
(v) ν(uαvβw) ≥ min{ν(u), ν(w)},
(vi) ξ(uαvβw) ≤ max{ξ(u), ξ(w)},

for all u, v, w ∈ R and α, β ∈ Γ .
A spherical cubic set (SCS) in R is defined by C U s = {< u,As(u), µ(u) >,<
u,Bs(u), ν(u) >,< u,Cs(u), ξ(u) > |u ∈ R}, where As, Bs, Cs are interval-valued
spherical sets in R and µ, ν, ξ are spherical fuzzy sets in R.
A spherical cubic set C U s = {< u,As(u), µ(u) >,< u,Bs(u), ν(u) >,< u,Cs(u),
ξ(u) > |u ∈ R} is simply denoted by C U s = {< As, µ >,< Bs, ν >, < Cs, ξ >}.
A spherical cubic set C U s = {< u,As(u), µ(u) >,< u,Bs(u), ν(u) >,< u,Cs(u),
ξ(u) > |u ∈ R} is said to be a spherical cubic bi-ideal(SCBI) of gamma near-ring
if the following conditions are satisfied

(i) As(u− v) ≥ mini{As(u),As(v)}, µ(u− v) ≤ max{µ(u), µ(v)},
(ii) Bs(u− v) ≥ mini{Bs(u),Bs(v)}, ν(u− v) ≤ max{ν(u), ν(v)},
(iii) Cs(u− v) ≤ maxi{Cs(u),Cs(v)}, ξ(u− v) ≥ min{ξ(u), ξ(v)},
(iv) As(uαvβw) ≥ mini{As(u),As(w)}, µ(uαvβw) ≤ max{µ(u), µ(w)},
(v) Bs(uαvβw) ≥ mini{Bs(u),Bs(w)}, ν(uαvβw) ≤ max{ν(u), ν(w)},
(vi) Cs(uαvβw) ≤ maxi{Cs(u),Cs(w)}, ξ(uαvβw) ≥ min{ξ(u), ξ(w)},

for all u, v, w ∈ R and α, β ∈ Γ , where As : R −→ D[0, 1], Bs : R −→ D[0, 1] and
Cs : R −→ D[0, 1]. Here D[0, 1] denotes the family of closed subintervals of [0, 1]
and µ : R −→ [0, 1], ν : R −→ [0, 1] and ξ : R −→ [0, 1].
A gamma near-ring homomorphism is a mapping φ from a gamma near-ring R1

into a gamma near-ring R2, that is φ : R1 −→ R2 such that

(i) φ(u− v) = φ(u)− φ(v), for all u, v ∈ R1.

(ii) φ(uαvβw) = φ(u)αφ(v)βφ(w), for all u, v, w ∈ R1 and α, β ∈ Γ .
A gamma near-ring anti-homomorphism is a mapping φ from a gamma near-ring
R1 into a gamma near-ring R2, that is φ : R1 −→ R2 such that

(i) φ(u− v) = φ(v)− φ(u), for all u, v ∈ R1.

(ii) φ(uαvβw) = φ(w)αφ(v)βφ(u), for all u, v, w ∈ R1 and α, β ∈ Γ .

3. Homomorphism of Spherical Cubic bi-ideals of Gamma near-rings

In this section, we study about the properties of spherical cubic bi-ideals of
gamma near-rings using homomorphism.

Definition 3.1. Let φ be a mapping from a set R1 to a set R2. Let
C U s1 = {< u,As1(u), µ1(u) >,< u,Bs1(u), ν1(u) >,< u,Cs1(u), ξ1(u) > |u ∈ R}
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be a SCS in R1 and C U s2 = {< u,As2(u), µ2(u) >,< u,Bs2(u), ν2(u) >,<
u,Cs2(u), ξ2(u) > |u ∈ R} be a SCS in R2. Then,
(i) The image φ(C U s1) = {< φ(As1), φ(µ1) >,< φ(Bs1), φ(ν1) >,< φ(Cs1), φ(ξ1) >
} is a SCS in R2 defined by

φ(As1)(u) =

 sup
v∈φ−1(u)

As1(v), if φ−1(u) 6= ∅

0, otherwise.

φ(µ1)(u) =

 inf
v∈φ−1(u)

µ1(v), if φ−1(u) 6= ∅

1, otherwise.

φ(Bs1)(u) =

 sup
v∈φ−1(u)

Bs1(v), if φ−1(u) 6= ∅

0, otherwise.

φ(ν1)(u) =

 inf
v∈φ−1(u)

ν1(v), if φ−1(u) 6= ∅

1, otherwise.

φ(Cs1)(u) =

 inf
v∈φ−1(u)

Cs1(v), if φ−1(u) 6= ∅

1, otherwise.

φ(ξ1)(u) =

 sup
v∈φ−1(u)

ξ1(v), if φ−1(u) 6= ∅

0, otherwise.

(ii) The pre-image φ−1(C U s2) = {< (φ−1(As2), φ
−1(µ2)) >,< (φ−1(Bs2), φ

−1(ν2))
>,< (φ−1(Cs2), φ

−1(ξ2)) >} is a SCS in R1 defined by
φ−1(C U s2)(u) = {< (φ−1(As2(u)), φ−1(µ2(u))) >,< (φ−1(Bs2(u)), φ−1(ν2(u))) >
,< (φ−1(Cs2(u)), φ−1(ξ2(u))) >} = {< (As2(φ(u)), µ2(φ(u))) >,< (Bs2(φ(u)), ν2
(φ(u))) >,< (Cs2(φ(u)), ξ2(φ(u))) >}.
Example 3.2. Let R = {0, 1, 2, 3} with binary operation “ + ” on R, Γ = {0, 1}
and R× Γ ×R −→ R be a mapping. We define SCS in R as

Table 3.1
R As µ
0 (0.3, 0.7) 0.9
1 (0.4, 0.6) 0.8
2 (0.5, 0.7) 0.4
3 (0.6, 0.8) 0.5

R Bs ν
0 (0.3, 0.7) 0.8
1 (0.2, 0.5) 0.6
2 (0.1, 0.4) 0.6
3 (0.4, 0.6) 0.7

R Cs ξ
0 (0.1,0.2) 0.4
1 (0.4, 0.7) 0.3
2 (0.3, 0.6) 0.7
3 (0.4, 0.8) 0.9
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Then C U s is a SCBI of R using homomorphism.

Theorem 3.3. Let φ : R1 −→ R2 be a gamma homomorphism and (C U s1 ,R1)
be a SCBI of R1. Then the image (φ(C U s1),R2) is also a SCBI of R2.
Proof. Let u, v, w ∈ R1 and α, β ∈ Γ . Since φ is a gamma homomorphism and
C U s1 is a SCBI of R1, we have

(i) φ(As1)(u− v) = sup
w∈φ−1(u−v)

As1(w)

= sup
φ(w)=u−v

As1(w)

= sup
φ(u)=u,φ(v)=v

As1(u− v)

≥ sup
φ(u)=u,φ(v)=v

(mini{As1(u),As1(v)})

= mini{ sup
φ(u)=u

As1(u), sup
φ(v)=v

As1(v)}

= mini{φ(As1)(u), φ(As1)(v)},
φ(µ1)(u− v) = inf

w∈φ−1(u−v)
µ1(w)

= inf
φ(w)=u−v

µ1(w)

= inf
φ(u)=u,φ(v)=v

µ1(u− v)

≤ inf
φ(u)=u,φ(v)=v

(max{µ1(u), µ1(v)})

= max{ inf
φ(u)=u

µ1(u), inf
φ(v)=v

µ1(v)}

= max{φ(µ1)(u), φ(µ1)(v)},
(ii) φ(Bs1)(u− v) = sup

w∈φ−1(u−v)
Bs1(w)

= sup
φ(w)=u−v

Bs1(w)

= sup
φ(u)=u,φ(v)=v

Bs1(u− v)

≥ sup
φ(u)=u,φ(v)=v

(mini{Bs1(u),Bs1(v)})

= mini{ sup
φ(u)=u

Bs1(u), sup
φ(v)=v

Bs1(v)}

= mini{φ(Bs1)(u), φ(Bs1)(v)},
φ(ν1)(u− v) = inf

w∈φ−1(u−v)
ν1(w)

= inf
φ(w)=u−v

ν1(w)

= inf
φ(u)=u,φ(v)=v

ν1(u− v)

≤ inf
φ(u)=u,φ(v)=v

(max{ν1(u), ν1(v)})
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= max{ inf
φ(u)=u

ν1(u), inf
φ(v)=v

ν1(v)}

= max{φ(ν1)(u), φ(ν1)(v)},

(iii) φ(Cs1)(u− v) = inf
w∈φ−1(u−v)

Cs1(w)

= inf
φ(w)=u−v

Cs1(w)

= inf
φ(u)=u,φ(v)=v

Cs1(u− v)

≤ inf
φ(u)=u,φ(v)=v

(maxi{Cs1(u),Cs1(v)})

= maxi{ inf
φ(u)=u

Cs1(u), inf
φ(v)=v

Cs1(v)}

= maxi{φ(Cs1)(u), φ(Cs1)(v)},
φ(ξ1)(u− v) = sup

w∈φ−1(u−v)
ξ1(w)

= sup
φ(w)=u−v

ξ1(w)

= sup
φ(u)=u,φ(v)=v

ξ1(u− v)

≥ sup
φ(u)=u,φ(v)=v

(min{ξ1(u), ξ1(v)})

= min{ sup
φ(u)=u

ξ1(u), sup
φ(v)=v

ξ1(v)}

= min{φ(ξ1)(u), φ(ξ1)(v)},

(iv) φ(As1)(uαvβw) = sup
w∈φ−1(uαvβw)

As1(w)

= sup
φ(w)=uαvβw

As1(w)

= sup
φ(u)=u,φ(w)=w

As1(uαvβw)

≥ sup
φ(u)=u,φ(w)=w

(mini{As1(u),As1(w)})

= mini{ sup
φ(u)=u

As1(u), sup
φ(w)=w

As1(w)}

= mini{φ(As1)(u), φ(As1)(w)},
φ(µ1)(uαvβw) = inf

w∈φ−1(uαvβw)
µ1(w)

= inf
φ(w)=uαvβw

µ1(w)

= inf
φ(u)=u,φ(w)=w

µ1(uαvβw)

≤ inf
φ(u)=u,φ(w)=w

(max{µ1(u), µ1(w)})

= max{ inf
φ(u)=u

µ1(u), inf
φ(w)=w

µ1(w)}

= max{φ(µ1)(u), φ(µ1)(w)},
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(v) φ(Bs1)(uαvβw) = sup
w∈φ−1(uαvβw)

Bs1(w)

= sup
φ(w)=uαvβw

Bs1(w)

= sup
φ(u)=u,φ(w)=w

Bs1(uαvβw)

≥ sup
φ(u)=u,φ(w)=w

(mini{Bs1(u),Bs1(w)})

= mini{ sup
φ(u)=u

Bs1(u), sup
φ(w)=w

Bs1(w)}

= mini{φ(Bs1)(u), φ(Bs1)(w)},
φ(ν1)(uαvβw) = inf

w∈φ−1(uαvβw)
ν1(w)

= inf
φ(w)=uαvβw

ν1(w)

= inf
φ(u)=u,φ(w)=w

ν1(uαvβw)

≤ inf
φ(u)=u,φ(w)=w

(max{ν1(u), ν1(w)})

= max{ inf
φ(u)=u

ν1(u), inf
φ(w)=w

ν1(w)}

= max{φ(ν1)(u), φ(ν1)(w)},

(vi) φ(Cs1)(uαvβw) = inf
w∈φ−1(uαvβw)

Cs1(w)

= inf
φ(w)=uαvβw

Cs1(w)

= inf
φ(u)=u,φ(w)=w

Cs1(uαvβw)

≤ inf
φ(u)=u,φ(w)=w

(maxi{Cs1(u),Cs1(w)})

= maxi{ inf
φ(u)=u

Cs1(u), inf
φ(w)=w

Cs1(w)}

= maxi{φ(Cs1)(u), φ(Cs1)(w)},
φ(ξ1)(uαvβw) = sup

w∈φ−1(uαvβw)

ξ1(w)

= sup
φ(w)=uαvβw

ξ1(w)

= sup
φ(u)=u,φ(w)=w

ξ1(uαvβw)

≥ sup
φ(u)=u,φ(w)=w

(min{ξ1(u), ξ1(w)})

= min{ sup
φ(u)=u

ξ1(u), sup
φ(w)=w

ξ1(w)}

= min{φ(ξ1)(u), φ(ξ1)(w)}.
Hence the image (φ(C U s1),R2) is a SCBI of R2.

Theorem 3.4. Let φ : R1 −→ R2 be a gamma homomorphism and (C U s2 ,R2)
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be a SCBI of R2. Then the pre-image (φ−1(C U s2),R1) is also a SCBI of R1.
Proof. Let u, v, w ∈ R1 and α, β ∈ Γ . Since φ is a gamma homomorphism and
(C U s2 ,R2) is a SCBI of R2, we have

(i) φ−1(As2)(u− v) = As2(φ(u− v))
= As2(φ(u)− φ(v))
≥ mini{As2(φ(u)),As2(φ(v))}
= mini{φ−1(As2)(u), φ−1(As2)(v)},

φ−1(µ2)(u− v) = µ2(φ(u− v))
= µ2(φ(u)− φ(v))
≤ max{µ2(φ(u)), µ2(φ(v))}
= max{φ−1(µ2)(u), φ−1(µ2)(v)},

(ii) φ−1(Bs2)(u− v) = Bs2(φ(u− v))
= Bs2(φ(u)− φ(v))
≥ mini{Bs2(φ(u)),Bs2(φ(v))}
= mini{φ−1(Bs2)(u), φ−1(Bs2)(v)},

φ−1(ν2)(u− v) = ν2(φ(u− v))
= ν2(φ(u)− φ(v))
≤ max{ν2(φ(u)), ν2(φ(v))}
= max{φ−1(ν2)(u), φ−1(ν2)(v)},

(iii) φ−1(Cs2)(u− v) = Cs2(φ(u− v))
= Cs2(φ(u)− φ(v))
≤ maxi{Cs2(φ(u)),Cs2(φ(v))}
= maxi{φ−1(Cs2)(u), φ−1(Cs2)(v)},

φ−1(ξ2)(u− v) = ξ2(φ(u− v))
= ξ2(φ(u)− φ(v))
≥ min{ξ2(φ(u)), ξ2(φ(v))}
= min{φ−1(ξ2)(u), φ−1(ξ2)(v)},

(iv) φ−1(As2)(uαvβw) = As2(φ(uαvβw))
= As2(φ(u)αφ(v)βφ(w)
≥ mini{As2(φ(u)),As2(φ(w))}
= mini{φ−1(As2)(u), φ−1(As2)(w)},

φ−1(µ2)(uαvβw) = µ2(φ(uαvβw))
= µ2(φ(u)αφ(v)βφ(w)
≤ max{µ2(φ(u)), µ2(φ(w))}
= max{φ−1(µ2)(u), φ−1(µ2)(w)},

(v) φ−1(Bs2)(uαvβw) = Bs2(φ(uαvβw))
= Bs2(φ(u)αφ(v)βφ(w)
≥ mini{Bs2(φ(u)),Bs2(φ(w))}
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= mini{φ−1(Bs2)(u), φ−1(Bs2)(w)},
φ−1(ν2)(uαvβw) = ν2(φ(uαvβw))

= ν2(φ(u)αφ(v)βφ(w)
≤ max{ν2(φ(u)), ν2(φ(w))}
= max{φ−1(ν2)(u), φ−1(ν2)(w)},

(vi) φ−1(Cs2)(uαvβw) = Cs2(φ(uαvβw))
= Cs2(φ(u)αφ(v)βφ(w)
≤ maxi{Cs2(φ(u)),Cs2(φ(w))}
= maxi{φ−1(Cs2)(u), φ−1(Cs2)(w)},

φ−1(ξ2)(uαvβw) = ξ2(φ(uαvβw))
= ξ2(φ(u)αφ(v)βφ(w)
≥ min{ξ2(φ(u)), ξ2(φ(w))}
= min{φ−1(ξ2)(u), φ−1(ξ2)(w)}.

Hence the pre-image (φ−1(C U s2),R1) is a SCBI of R1.

Theorem 3.5. Let φ : R1 −→ R2 be an epimorphism of gamma near-rings R1

and R2. If (C U s2 ,R2) is a SCS of R2 such that (φ−1(C U s2),R1) is a SCBI of
R1, then (C U s2 ,R2) is a SCBI of R2.
Proof. Let u, v, w ∈ R2 and α, β ∈ Γ , and take φ(x) = u, φ(y) = v, φ(z) = w, for
some x, y, z ∈ R1, we have

(i) As2(u− v) = As2(φ(x)− φ(y)) = As2(φ(x− y))
= φ−1(As2)(x− y)
≥ mini{φ−1(As2)(x), φ−1(As2)(y)}
= mini{As2(φ(x)),As2(φ(y))}
= mini{As2(u),As2(v)},

µ2(u− v) = µ2(φ(x)− φ(y)) = µ2(φ(x− y))
= φ−1(µ2)(x− y)
≤ max{φ−1(µ2)(x), φ−1(µ2)(y)}
= max{µ2(φ(x)), µ2(φ(y))}
= max{µ2(u), µ2(v)},

(ii) Bs2(u− v) = Bs2(φ(x)− φ(y)) = Bs2(φ(x− y))
= φ−1(Bs2)(x− y)
≥ mini{φ−1(Bs2)(x), φ−1(Bs2)(y)}
= mini{Bs2(φ(x)),Bs2(φ(y))}
= mini{Bs2(u),Bs2(v)},

ν2(u− v) = ν2(φ(x)− φ(y)) = ν2(φ(x− y))
= φ−1(ν2)(x− y)
≤ max{φ−1(ν2)(x), φ−1(ν2)(y)}
= max{ν2(φ(x)), ν2(φ(y))}
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= max{ν2(u), ν2(v)},
(iii) Cs2(u− v) = Cs2(φ(x)− φ(y)) = Cs2(φ(x− y))

= φ−1(Cs2)(x− y)
≤ maxi{φ−1(Cs2)(x), φ−1(Cs2)(y)}
= maxi{Cs2(φ(x)),Cs2(φ(y))}
= maxi{Cs2(u),Cs2(v)},

ξ2(u− v) = ξ2(φ(x)− φ(y)) = ξ2(φ(x− y))
= φ−1(ξ2)(x− y)
≥ min{φ−1(ξ2)(x), φ−1(ξ2)(y)}
= min{ξ2(φ(x)), ξ2(φ(y))}
= min{ξ2(u), ξ2(v)},

(iv) As2(uαvβw) = As2(φ(x)αφ(y)βφ(z)) = As2(φ(xαyβz))
= φ−1(As2)(xαyβz)
≥ mini{φ−1(As2)(x), φ−1(As2)(z)}
= mini{As2(φ(x)),As2(φ(z))}
= mini{As2(u),As2(w)},

µ2(uαvβw) = µ2(φ(x)αφ(y)βφ(z))
= µ2(φ(xαyβz))
= φ−1(µ2)(xαyβz)
≤ max{φ−1(µ2)(x), φ−1(µ2)(z)}
= max{µ2(φ(x)), µ2(φ(z))}
= max{µ2(u), µ2(w)},

(v) Bs2(uαvβw) = Bs2(φ(x)αφ(y)βφ(z))
= Bs2(φ(xαyβz))
= φ−1(Bs2)(xαyβz)
≥ mini{φ−1(Bs2)(x), φ−1(Bs2)(z)}
= mini{Bs2(φ(x)),Bs2(φ(z))}
= mini{Bs2(u),Bs2(w)},

ν2(uαvβw) = ν2(φ(x)αφ(y)βφ(z))
= ν2(φ(xαyβz))
= φ−1(ν2)(xαyβz)
≤ max{φ−1(ν2)(x), φ−1(ν2)(z)}
= max{ν2(φ(x)), ν2(φ(z))}
= max{ν2(u), ν2(w)},

(vi) Cs2(uαvβw) = Cs2(φ(x)αφ(y)βφ(z))
= Cs2(φ(xαyβz))
= φ−1(Cs2)(xαyβz)
≤ maxi{φ−1(Cs2)(x), φ−1(Cs2)(z)}
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= maxi{Cs2(φ(x)),Cs2(φ(z))}
= maxi{Cs2(u),Cs2(w)},

ξ2(uαvβw) = ξ2(φ(x)αφ(y)βφ(z))
= ξ2(φ(xαyβz))
= φ−1(ξ2)(xαyβz)
≥ min{φ−1(ξ2)(x), φ−1(ξ2)(z)}
= min{ξ2(φ(x)), ξ2(φ(z))} = min{ξ2(u), ξ2(w)}.

Hence (C U s2 ,R2) is a SCBI of R2.

4. Anti-Homomorphism of Spherical Cubic Bi-ideals of Gamma Near-
rings

In this section, we study the properties of SCBI ofR using anti-homomorphism.

Theorem 4.1. Let φ : R1 −→ R2 be a gamma anti-homomorphism and (C U s1 ,R1)
be a SCBI of R1, then the image (φ(C U s1),R2) is also a SCBI of R2.
Proof. Since φ is a gamma anti-homomorphism and C U s1 is a SCBI of R1. Then
we can easily seen that the image (φ(C U s1),R2) is a SCBI of R2.

Theorem 4.2. Let φ : R1 −→ R2 be a gamma anti-homomorphism and (C U s2 ,R2)
be a SCBI of R2, then the pre-image (φ−1(C U s2),R1) is also a SCBI of R1.
Proof. Since φ is a gamma anti-homomorphism and (C U s2 ,R2) is a SCBI of R2.
Then we can easily seen that the pre-image (φ−1(C U s2),R1) is a SCBI of R1.

Theorem 4.3. Let φ : R1 −→ R2 be an onto anti-homomorphism of gamma
near-rings R1 and R2. If (C U s2 ,R2) is a SCS of R2 such that (φ−1(C U s2),R1)
is a SCBI of R1, then (C U s2 ,R2) is a SCBI of R2.
Proof. Let u, v, w ∈ R2 and take φ(x) = u, φ(y) = v and φ(z) = w, for some
x, y, z ∈ R1. Then we can easily seen that (C U s2 ,R2) is a SCBI of R2.
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