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Abstract: Though congruences have their limitations, they have significant impor-
tance in the field of number theory and helps in proving many interesting results.
Thus, this article has adopted the technique and properties of congruences to iden-
tify and prove a set of congruent properties for integer partition. The partition
of a positive integer is a way of expressing the number as a sum of positive in-
tegers. One such partitions known as regular bipartition triple are discussed in
this article. New congruences modulo even integers and modulo prime (p ≥ 5)
powers are derived for (2, β)−regular bipartition triples. Also infinite families of
congruences modulo 2 for some (2, β)−regular bipartition triples are derived. The
theorems stated in this article are proved using the q−series notation and some
of the prominent results such as Euler’s pentagonal number theorem and Jacobi’s
triple product identities. There are certain lemmas which are derived using these
results that help in proving the major results of this article.
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1. Introduction
A partition α of an integer n > 0 is a non - increasing sequence of positive

integers α1, α2, α3, . . . , αk such that, n = α1 + α2 + α3 + · · ·+ αk. p(n) represents
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the number of partitions of n > 0 and its generating function is given by

∞∑
n=0

p(n)qn =
1

f1
,

where for any positive integer a, fa is defined by

fa = (qa; qa)∞ =
∞∏
m=1

(1− qam), |q| < 1.

For an integer ` > 1, a partition is said to be `-regular if none of its parts is divisible
by `. Let b`(n) denote the number of `-regular partitions of n, then the generating
function for the number of `-regular partitions of n is given by

∞∑
n=0

b`(n)qn =
f`
f1
.

A k-tuple of partitions of n is (η1, η2, η3, . . . , ηk) such that

n = |η1|+ |η2|+ |η3|+ · · ·+ |ηk|.

where |ηi| is the sum of all parts in partition ηi. A 2-tuple partition is called a
bipartition and a 3-tuple partition is called partition triple. An `-regular bipartition
of n is an ordered pair (η1, η2) of `-regular partition if the sum of all the parts of
η1 and η2 is equal to n. Let, B`(n) denote the number of `-regular bipartitions of
n, then its generating function is given by

∞∑
n=0

B`(n)qn =
f 2
`

f 2
1

.

For integers α, β ≥ 0, an (α, β)-regular bipartition of n is a bipartition (η1, η2) of
n such that η1 is an α-regular partition and η2 is a β-regular partition. If Bα,β(n)
denotes the number of (α, β)-regular bipartition of n, then the corresponding gen-
erating function is given by

∞∑
n=0

Bα,β(n)qn =
fαfβ
f 2
1

.

A partition triple (η1, η2, η3) of a positive integer n is called an `-regular partition
triple if each of η1, η2, η3 is an `-regular partition. If BT`(n) denotes the number
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of `-regular partition triple of positive integer n, then the generating function is
given by

∞∑
n=0

B`(n)qn =
f 3
`

f 3
1

.

If BTα,β(n) denotes the number of (α, β)-regular bipartition triples of the positive
integer n, then the corresponding generating function is given by

∞∑
n=0

BTα,β(n)qn =
f 3
αf

3
β

f 6
1

. (1.1)

Congruences for partitions have been studied well for a long time. The simplest
and the most beautiful congruence properties of p(n), n ≥ 0 are the Ramanujan’s
congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7), and

p(11n+ 6) ≡ 0 (mod 11).

These congruences and the subsequent study of partition congruences for p(n) have
motivated mathematicians to study congruences for special classes of partitions,
such as for `-regular partitions, bipartitions, and so on.

Lin [5, 6] proved several infinite families of congruences modulo 3 for B4,4(n)
and B7,7(n) and gave characterisations of B4,4(n) modulo 2 and 4. Dai [3] examined
the behaviour of B4,4(n) modulo 8 and found several infinite families of congruences
modulo 8 for B4,4(n). Dou [4] established infinite family of congruences modulo 11
for B3,11(n). For α ≥ 2 and n ≥ 0, Lin [7] proved an infinite family of congruences
modulo 3 for 13-regular bipartition of n. The aim of this paper is to study families
of congruences modulo even integers and modulo powers of prime p ≥ 5 for (2, β)-
regular bipartition triples.
The following notations are used in this paper. Ramanujan’s general theta function,
f(a, b) is given by

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Jacobi’s triple product identity is given by

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞,
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from which we get

Ψ(q) = f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

f(−q) = f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

In this paper, we prove the following results.

Theorem 1. For all integers n > 0,

BT2,3(3n+ 1) ≡ 0 (mod 2), (1.2)

BT2,3(3n+ 2) ≡ 0 (mod 2), (1.3)

BT2,3(9n+ 4) ≡ 0 (mod 2), (1.4)

BT2,3(9n+ 7) ≡ 0 (mod 2), (1.5)

BT2,3(3n+ 2) ≡ 0 (mod 23), and (1.6)

BT2,3(9n+ 6) ≡ 0 (mod 23). (1.7)

Theorem 2. For all integers n > 0,

BT2,3(3n+ 1) ≡ 0 (mod 6) and (1.8)

BT2,3(3n+ 2) ≡ 0 (mod 24). (1.9)

Theorem 3. For all integers n ≥ 0 and β ≥ 0,

BT2,3

(
32β+1n+ 3

9β − 1

8

)
≡ BT2,3(3n) (mod 22). (1.10)

Theorem 4. For any prime p ≥ 5,

f(−q3) =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

q
5k(k+1)

2 f

(
−q

5p2+(10k+1)p
2 , −q

5p2−(10k+1)p
2

)
+(−1)

±p−1
6 q

p2−1
8 f(−q3p2).

(1.11)
Theorem 5. For any prime p ≥ 5, β ≥ 0 and n ≥ 0,

∞∑
n=0

BT2,3

(
p2βn+

p2β − 1

24

)
qn ≡ f 3(−q3) (mod 2).
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Theorem 6. For any prime p ≥ 5, β ≥ 1, and n ≥ 0,

BT2,3

(
p2βn+

(24i+ p)p2β−1 − 1

24

)
≡ 0 (mod 2), 1 ≤ i ≤ p− 1.

Theorem 7. For any prime p ≥ 5, β ≥ 0, n ≥ 0 and j ∈ Z such that

1 ≤ j ≤ p− 1 and
(

24j+1
p

)
= −1 such that j 6≡ 5k2+k

2
(mod p)

BT2,3

(
p2β+1n+

(24j + 1)p2β − 1

24

)
≡ 0 (mod 2).

We can generalise the above results as well, to the following.

Theorem 8. For primes pi, where i = 1, 2, . . . , r with pi ≥ 5, r ≥ 0, and n ≥ 0,

∞∑
n=0

BT2,3

(
r∏
s=1

p2sn+

∏r
s=1 p

2
s − 1

24

)
qn ≡ f 3(−q3) (mod 2).

Here,
∏0

s=1 p
2
s = 1.

Theorem 9. For primes pk, k = 1, 2, . . . , r with pi ≥ 5, r ≥ 1, and n ≥ 0,

BT2,3

(
r∏
s=1

p2sn+
(24i+ pr)

∏r−1
s=1 p

2
spr − 1

24

)
≡ 0 (mod 2), (1.12)

where 1 ≤ i ≤ pr − 1. Also,

BT2,3

(
r−1∏
s=1

p2sprn+
(24j + 1)

∏r−1
s=1 p

2
s − 1

24

)
≡ 0 (mod 2), (1.13)

where 0 ≤ j ≤ pr − 1 such that
(

24j+1
pr

)
= −1.

Theorem 10. For β ≥ 3 and δ ∈ N such that (12δ+1)c2 is a quadratic non-residue
modulo p,∀c ∈ N. If there exists some prime p(≥ 5)|β then

BT2,β(pn+ δ) ≡ 0 (mod p), ∀n ≥ 0.

Theorem 11. If β ≥ 3, pr|β for p ≥ 5 and r ≥ 2 then ∀n ∈ N,

BT2,β(pn+ δ) ≡ 0 (mod p2),



6 South East Asian J. of Mathematics and Mathematical Sciences

where δ ∈ N such that (12δ + 1)c2 is a quadratic non-residue modulo p2 ∀ c ∈ N.

Theorem 12. If β ≥ 3, pr|β for p ≥ 5 and r ≥ 3 then ∀n ∈ N,

BT2,β(pn+ δ) ≡ 0 (mod p3),

where ∀ δ. c ∈ N such that (12δ + 1)c2 is a quadratic non-residue modulo p3.
The rest of the paper is as follows: in Section 2 we state some preliminary

results that we will use to prove the above theorems in Section 3. Finally, we close
the paper with some concluding remarks in Section 4.

2. Preliminaries
Euler’s pentagonal number theorem gives us

(q; q)∞ =
∞∑
m=1

(−1)mq

(
3
2
m2− 1

2
m

)
, (2.14)

from which we get

(qp; qp)∞ =
∞∑
m=1

(−1)mq

(
3
2
m2− 1

2
m

)
p

. (2.15)

Lemma 1. [1, Lemma 2.2] The following 3-dissections hold true

f2
f 2
1

=
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

, (2.16)

f 2
1

f2
=
f 2
9

f18
− 2q

f3f
2
18

f6f9
(2.17)

f 2
2

f1
=
f6f

2
9

f3f18
+ q

f 2
18

f9
and (2.18)

f 3
1 = f3a(q3)− 3qf 3

9 , (2.19)

where a(q) =
∑∞

m,n=−∞ q
m2+mn+n2

= 1 + 6
∑∞

n=0

(
q3n+1

1−q3n+1 − q3n+2

1−q3n+2

)
.

Lemma 2. [1] We have the following from the binomial theorem.

f 2
k ≡ f2k (mod 2), (2.20)

f 4
k ≡ f 2

2k (mod 4), (2.21)

f 8
k ≡ f 4

2k (mod 8). (2.22)
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Lemma 3. [8, Lemma 4.2] For any non negative integer b and any prime p,

(qp; qp)b∞ ≡ (qbp; qbp)∞ (mod p) (2.23)

Lemma 4. [2, Equation (1.17)] For any prime p ≥ 3 and integer r ≥ 2,

(q; q)np
r

∞ ≡ (qp; qp)np
r−1

∞ (mod p2), where n ∈ N. (2.24)

Lemma 5. [2, Equation (1.19)] For any prime p ≥ 3 and integer r ≥ 3,

(q; q)np
r

∞ ≡ (qp; qp)np
r−1

∞ (mod p3), where n ∈ N (2.25)

Remark 1. For n ≥ 0,
∑∞

n=0BT2,3(n)qn ≡ f 3(−q3) (mod 2).

Theorem 13. [9, Theorem 2.1] For any prime p 6= 2,

Ψ(q) =

p−3
2∑

k=0

f

(
q

p2+(2k+1)p
2 , q

p2−(2k+1)p
2

)
+ q

p2−1
8 Ψ(qp

2

).

Furthermore, for 0 ≤ k ≤ p−3
2
, k2+k

2
6≡ p2−1

8
(mod p).

Remark 2. For any prime p ≥ 5,

±p− 1

6
≡

{
p−1
6
, p ≡ 1 (mod 6),

−p−1
6
, p ≡ −1 (mod 6).

Theorem 14. [9, Theorem 2.2] For any prime p ≥ 5,

f(−q) =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
k(3k+1)

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+(−1)

±p−1
6 q

p2−1
24 f(−qp2).

Furthermore, for −p−1
2
≤ k ≤ p−1

2
, k(3k+1)

2
6≡ p2−1

2
(mod p).

3. Proof of Theorems

Proof of Theorem 1. Substituting α = 2 and β = 3 in equation (1.1) we get,

∞∑
n=0

BT2,3(n)qn =
f 3
2 f

3
3

f 6
1

=

(
f2
f 2
1

)3

f 3
3 , (3.26)

∞∑
n=0

BT2,3(n)qn ≡ f 3
3 (mod 2). (3.27)
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By extracting the terms containing q3n+1, dividing throughout by q and later re-
placing q by q

1
3 in (3.27) we get,

∞∑
n=0

BT2,3(3n+ 1)qn ≡ 0 (mod 2).

Similarly, dividing throughout by q2 for those extracted terms containing q3n+2 and
then replacing q by q

1
3 in (3.27) we get,

∞∑
n=0

BT2,3(3n+ 2)qn ≡ 0 (mod 2)

This gives us the congruence (1.2) and (1.3).
By writing (1.1) modulo 22, we get

∞∑
n=0

BT2,3(n)qn ≡ f 3
3

f2
f 2
1

(mod 22), (3.28)

∞∑
n=0

BT2,3(n)qn ≡
[
f 2
3 f

4
6 f

6
9

f18
+ 2qf6f

3
9

]
(mod 22). (3.29)

By extracting the terms involving the (3n+2)th powers of q and dividing throughout

by q and later replacing q by q
1
3 in (3.29) we get

∞∑
n=0

BT2,3(3n+ 1)qn ≡ 2f2f
3
3 (mod 22). (3.30)

By extracting the terms involving the (3n + 1)th and (3n + 2)th powers of q and

dividing throughout by q and q2 respectively and later replacing q by q
1
3 in (3.30)

we arrive at the congruences (1.4) and (1.5).
Furthermore, by writing (1.1) modulo 23, we get

∞∑
n=0

BT2,3(n)qn ≡ f 3
3

(
f2
f 2
1

)3

(mod 23) ≡ f 4
6 f

2
9

f 5
3 f18

+ 6q
f 3
6 f

2
18

f 4
3 f9

(mod 23). (3.31)

By extracting the terms involving the (3n+2)th powers of q and dividing throughout

by q2 and later replacing q by q
1
3 in (3.29) we get the congruence (1.6). Further it

follows from (3.31) that

∞∑
n=0

BT2,3(3n)qn ≡ f 4
2 f

3
3

f 5
1 f6

(mod 23) ≡ f 2
3

f6

(
f3 a(q3)− 3qf 3

9

)
(mod 23). (3.32)
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By extracting the terms involving the (3n+2)th powers of q and dividing throughout

by q2 and later replacing q by q
1
3 in (3.32) we arrive at the congruence (1.7).

Remark 3. From the above proof, we get more generally,

∞∑
n=0

BT2,3k(n)qn ≡ f 3
3k (mod 2).

So, congruences (1.2) and (1.3) are true for BT2,3k(3n + 1) and BT2,3k(3n + 2)
respectively.

The proof of Theorem 2 is exactly similar to the above proof, so for the sake of
brevity we omit the details here.

Proof of Theorem 3. Extracting 3n from (3.28) and applying (2.20) we get,

∞∑
n=0

BT2,3(3n)qn ≡ f 2
2 f

2
3

f1f6
(mod 4), (3.33)

≡ f3f
2
9

f18
+ q

f 2
18f

2
3

f9f6
(mod 4). (3.34)

By extracting the terms involving (3n+ 1)th powers of q in (3.34) we have,

∞∑
n=0

BT2,3(9n+ 3)qn ≡ f 2
6 f

2
1

f3f2
(mod 4), (3.35)

≡ f 2
6 f

2
9

f3f18
+ 2q

f3f
2
18

f6f9
(mod 4). (3.36)

By extracting the terms involving (3n)th powers of q in (3.36) we have,

∞∑
n=0

BT2,3(27n+ 3)qn ≡ f 2
2 f

2
3

f1f6
(mod 4) ≡

∞∑
n=0

BT2,3(3n)qn (mod 4) (3.37)

Now by iterating n in (3.34) by 9n+ 1 we arrive at the congruence (1.10).
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Proof of Theorem 4.

f(−q3) =
∞∑

n=−∞

(−1)nq
n(5n+1)

2

=

p−1
2∑

k=− p−1
2

∞∑
n=−∞

(−1)pn+kq
5p2n2+10pnk+5k2+pn+k

2

=

p−1
2∑

k=− p−1
2

(−1)kq
k(5k+1)

2

∞∑
n=−∞

(−1)nq
5p2n2+(10k+1)pn

2

=

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
k(5k+1)

2

∞∑
n=−∞

(−1)nq
5p2n2+(10k+1)pn

2

+ (−1)
±p−1

6 q
p2−1

8

∞∑
n=−∞

(−1)nq3p
2 n(5n+1)

2

=

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
k(5k+1)

2

∞∑
n=−∞

(−1)nq
5p2n2+(10k+1)pn

2 + (−1)
±p−1

6 q
p2−1

8 f(−q3p2)

=

p−1
2∑

k=− p−1
2

k 6=±p−1
6

q
5k(k+1)

2 f

(
−q

5p2+(10k+1)p
2 , −q

5p2−(10k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
8 f(−q3p2)

Proof of Theorem 5. We prove the theorem by induction on β. When β = 0
we arrive at Remark 1. Suppose the above theorem holds true for β. Then using
Theorem 4, we have

∞∑
n=0

BT2,3

(
p2β
(
pn+

p2 − 1

24

)
+
p2β − 1

24

)
qn =

∞∑
n=0

BT2,3

(
p2β+1n+

p2β+2 − 1

24

)
qn

≡ f 3(−q3p) (mod 2). (3.38)

∞∑
n=0

BT2,3

(
p2β
(
p2n+

p2 − 1

24

)
+
p2β − 1

24

)
qn =

∞∑
n=0

BT2,3

(
p2β+2n+

p2β+2 − 1

24

)
qn

≡ f 3(−q3) (mod 2). (3.39)
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Therefore, the theorem holds true for β + 1.

Proof of Theorem 6. By using (3.38) for the values of i = 1, 2, 3, . . . , p − 1 we
get,

BT2,3

(
p2β+1(pn+ i) +

p2β+2 − 1

24

)
≡ 0 (mod 2). (3.40)

Proof of Theorem 7. Since we have j 6≡ 5k2+k
2

(mod p) for |k| ≤ p−1
2

, with the
help of Theorems 4 and 5 it can be shown that

BT2,3

(
p2β(pn+ j) +

p2β − 1

24

)
≡ 0 (mod 2).

Proof of Theorem 8. We prove the theorem by induction on r. From theorem
5, for r = 0 we have

∞∑
n=0

BT2,3

(
0∏
s=1

p2sn+

∏0
s=1 p

2
s − 1

24

)
qn ≡ f 3(−q3) (mod 2).

Now, from Theorem 4, for a prime pr+1 ≥ 5 we have

∞∑
n=0

BT2,3

(
r∏
s=1

p2s

(
p2r+1n+

p2r+1 − 1

24

)
+

∏r
s=1 p

2
s − 1

24

)
qn

=
∞∑
n=0

BT2,3

(
r+1∏
s=1

p2sn+

∏r+1
s=1 p

2
s − 1

24

)
qn

≡ f 3(−q3) (mod 2).

This completes the proof.

Proof of Theorem 9. From application of Theorems 4 and 8 we get equation
(1.12). The proof of equation (1.13) is similar to the proof of Theorem 7, so we
omit it here.

Proof of Theorem 10. From (1.1), we have

∞∑
n=0

BT2,β(n)qn =
(q2; q2)

3 (
qβ; qβ

)3
(q; q)6

. (3.41)

Since p|β implies β = m1p for some m1 ∈ N. Hence by incorporating Lemma 3 we
get,

∞∑
n=0

BT2,β(n)qn =
(q2; q2)

3
(qp; qp)3m1

(q; q)6
(mod p). (3.42)
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With the help of Euler’s pentagonal number theorem (2.14) and (2.15), the above
equation can be reduced to

∞∑
n=0

BT2,β(n)q
n =

[ ∞∑
t1=1

(−1)t1q2(
3
2 t

2
1− 1

2 t1)

]3 [ ∞∑
t2=1

(−1)t2qp
r( 3

2 t
2
2− 1

2 t2)

]3m1
[ ∞∑
l=1

p(l)ql

]3
(mod p).

(3.43)

Suppose there exists t1, t2 and l such that the powers of q add up to pn+ δ then

δ ≡ 3t21 − t1 (mod p),

12δ + 1 ≡ 36t21 − 12t1 + 1 (mod p),

(12δ + 1)c2 ≡ (36t21 − 12t1 + 1)c2 (mod p),

(12δ + 1)c2 ≡ [(6t1 + 1)c]2 (mod p). (3.44)

The congruence (3.44) contradicts the fact that (12δ + 1)c2 is a quadratic non
residue modulo p. This proves the theorem.

The proofs of Theorems 11 and 12 are exactly similar to the proof of Theorem
10, but with an application of Lemmas 4 and 5 respectively, so we omit the details
here.

4. Concluding Remarks
We have only done a basic study of the possible congruences for BT2,3(n). It is

hoped that more general results can be found. For instance, experiments suggest
that congruences similar to the ones stated in Theorem 1 are true for BT2,6 and
BT2,9. This suggests the following open questions.

Question 1. Can the congruences in Theorems 1 and 2 be generalized for BT2,3k(n),
for n ≥ 0 and k > 1?

Question 2. Can the results of the type of Theorems 5-9 be extended for other
cases of BTα,β(n), for n ≥ 0?
We close the paper with the following conjecture.

Conjecture 1. For all n ≥ 0 and k > 1, we have BT2,3k(kn) ≡ BT2,3(n) (mod 2).
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