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Abstract: The objective of the present study is to derive the analytical expression
for deformation field in an orthotropic elastic medium by using repeated character-
istics values as a result of inclined line-load . For the procedure the method of equal
characteristics value and Fourier transformation is used. To represent graphically,
the elastic constants for two distinct elastic materials have been considered. To see
the effect of inclination, the variations in displacements and stresses for different
values of inclination i.e. at δ = 00, 300, 600, 900 have been depicted graphically. It
is found that normal and tangential loading influence the displacement and stresses
significantly for distinct material.
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1. Introduction
Although it is almost impossible to predict an Earthquake, but with the study of

seismology and identifying rock properties, seismologists can find out which is the
most affected zone of earthquakes. In theoretical aspects, mathematical modeling
plays an important role in order to understand Seismology and related phenom-
ena. With the help of an appropriate model one can analyze the effect of loading,
irregularities etc on deformation in distinct media which can proved to be helpful
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in issuing a real time warning and excessive damage can be prevented. Due to
continuous changes in the interior of the earth, scientists have been giving keen
attention to the field of seismology and its related problems. Thus, plane strain
deformation problem and anti-plane strain deformation problem have become of
much concern to the researchers due to their applications in various fields such as
seismological research, geophysics, engineering etc. To examine the rocks around
mining tremors and earth crust’s drilling, the study of line- loading causing defor-
mation has proven to be very useful. This study can also be helpful for theoretical
understanding of seismic sources.

Maruyama [14] and Love [10] derived the analytical expressions for deformation
as a result of line source and strike-slip fault of infinite length respectively in an
isotropic elastic medium respectively. Garg et al. [5] studied anti plane strain
deformation as a representation of seismic source. Authors concluded that the
displacements are affected by both source and dip of the faults.

To resolve the problem of plane strain deformation, eigen value technique has
been proved much qualifying and used by many researchers. Singh et al. [17]
premeditated the case of static deformation of a monoclinic elastic medium and
derived the analytical expressions for deformation in a transformed domain for
distinct eigen values. Madan and Gaba [12] obtained the analytical expressions
considering the elastic medium with the properties of transversely isotropic half-
space. Further Madan et al. [13] derived the analytical expressions for deformation
field for imperfect interface.

Many researchers such as Kar et al. [7], Selim [15], Acharya and Roy [1], Kumar
et al. [8] etc. studied the plane strain problem for distinct medium using eigen
value approach. Kumari and Madan [9] also studied the plane strain problem
and derived the analytical expressions for deformation field due to seismic sources
with imperfect interface. Wenwang et al. [19] studied the elastic field considering
an isotropic elastic medium due to dislocation loops for dislocation and force-like
model. In the absence of initial compressive stress Garg et al. [6] solved the
plane strain deformation problem by considering distinct eigen values and derive
the deformation field due to line-loading and studied the effect graphically.Most
of these studies considered the case of distinct eigen values. Selim and Ahmed
[16] studied the effect of inclined line-load for an elastic medium stressed initially
and derived the set of mathematical expressions for displacements and stresses.
Particular case of the results obtained in the paper was contradicted by Chugh
et al. [2] by proving that the eigen value does not remain distinct for a stress
free elastic medium. With repeated eigen values, Madan et al. [11] studied the
deformation for transversely isotropic elastic medium.
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The upper layer of Earth is termed as Earth’s crust which is acknowledged to
have an orthorhombic symmetry. The combination of vertical cracks with hori-
zontal axis of symmetry caused orthorhombic symmetry. If any plane of the or-
thorhombic symmetry is horizontal, then the resulting symmetry is defined as or-
thotropic symmetry. The Earth is considered to be orthotropic in nature, (Dziewon-
ski and Anderson [4]), therefore for improved estimation, in this paper we have
considered an orthotropic elastic medium and derived the deformation field for the
case of repeated characteristics values. The calculation is made simpler by applying
Fourier transformation technique and matrix method.

The boundary condition for normal and tangential loading is used to obtain the
mathematical expressions for displacements and stresses and examined the effect of
inclined line-load. To show the variation in displacements and stresses, graphical
representation of deformation at different angles of inclination δ = 00, 300, 600, 900

has been done. It has been observed that the displacements and stresses are in-
fluenced by different loading and variation in displacements also depends on the
properties of distinct rock forming materials. The results obtained here are theo-
retical but can be proved to be very helpful to experimental research of engineering
problems, crystal physics, geophysics and geodynamics which is certainly the most
interesting geophysical research. Our study is aimed at better understanding of
the role of loading in the plane strain deformation problem.

2. Basic Theory and Equations
As most of the earthquakes are sufficiently large, thus two dimensional ap-

proximation is well justified in the study of earthquakes and related phenomena.
Therefore in this case we have considered plane strain model, parallel to xy-plane,
the non-zero stresses for an orthotropic elastic medium can be written as:

s11 = m11
∂u

∂x
+m12

∂v

∂y
(1)

s22 = m12
∂u

∂x
+m22

∂v

∂y
(2)

s33 = m13
∂u

∂x
+m23

∂v

∂y
(3)

s12 = m66(
∂u

∂x
+
∂v

∂y
) (4)

Garg et al. [16] gives the equilibrium equations for plane strain deformation prob-
lem considering an orthotropic elastic half-space:

m11
∂2u

∂x2
+m66

∂2u

∂y2
+ (m66 +m12)

∂2v

∂x∂y
= 0 (5)
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(m66 +m12)
∂2u

∂x∂y
+m66

∂2v

∂x2
+m22

∂2v

∂y2
= 0 (6)

Using Fourier transformation on equilibrium equation (5) and (6) to avoid unnec-
essary mathematical complications (Debnath [3]), we find:

m11
d2ū

dx2
− s2m66ū+ (m66 +m12)(−is)dv̄

dx
= 0 (7)

(m66 +m12)(−is)dū
dx

+m66
d2v̄

dx2
+m22(−s2v̄) = 0 (8)

where s being the Fourier transform parameter.
The equations (7) and (8) are unified in the following vector-matrix equation.

T1
d2W

dx2
− isT2

dW

dx
− s2T3W = 0 (9)

where

T1 =

(
m11 0

0 m66

)
, T2 =

(
0 m66 +m12

m66 +m12 0

)
, T3 =

(
m66 0

0 m22

)
,W =

(
ū
v̄

)
(10)

Here T1, T2 and T3 represents the symmetric matrices. Let solution of equation (9)
is

W (x, s) = C(s)e∆x (11)

where C(s)is a 2*1 type matrix and ∆ being a parameter. Using equation (9) and
equation (11), the characteristic equation is

(m11m66)∆4 − (m11m22 − 2m66m12 −m2
12)s2∆2 + (m66m22)s4 = 0 (12)

As we have considered the case of repeated eigen values, where the eigen values
has been obtained by solving characteristics equation (12) i.e.:
∆=±α|s|,±α|s|
with

∆1 = ∆2 = α|s|,∆3 = ∆4 = −α|s| (13)

where α =
m11m22 − 2m66m12 −m2

12

2m11m66
The corresponding eigen vectors for ∆1, ∆2, ∆3 and ∆4 can be obtained by

solving the characteristics equations
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(∆2T1 − i∆sT2 − s2T3)V (s) = 0
where T1, T2 and T3 are given in equation (10). The corresponding eigen vectors
are found to be

V1 =

[
M
1

]
, V2 =

[
A4

s2
+ xM

A5

k2
+ x

]
V3 =

[
−M

1

]
, V4 =

[
A4

s2
− xM

A5

k2
+ x

]
(14)

where

M =i
α(m66 +m12)

α2m11 −m66

, A1 = α2m11 −m66, A2 = iα(m66 +m12), A3 = α2m66 −m22

A4 =
MA3 + A2

A1A3 − A2
2

, A5 =
MA2 + A1

A1A3 + A2
2

(15)

Therefore for the case of orthotropic elastic medium, we can write the solution of
matrix equation (9) in the form:

U(x, s) = G1V1e
α|s|x +G2V2e

α|s|x +G3V3e
−α|s|x +G4V4e

−α|s|x (16)

where G1, G2, G3 and G4 are constants to be determined using boundary conditions
for normal and tangential loading. Using the values of eigen vectors from equation
(14), the inversion of equation (16) gives the displacements and stresses in integral
form as:

u(x, y) =
1

2π

∞∫
−∞

[(
MG1 +

(
A4

s2
+ xM

)
G2

)
eα|s|x +

(
−MG3 +G4

(
A4

s2
− xM

))
e−α|s|x

]
e−isyds

v(x, y) =
1

2π

∞∫
−∞

[(
G1 +G2

(
A5

s2
+ x

))
eα|s|x +

(
G3 +G4

(
A5

s2
+ x

))
e−α|s|x

]
e−isyds

s11(x, y) =
1

2π

∞∫
−∞

[
G1(Mαm11|s| − ism12) +G2

(
αm11

A4

|s|
− im12

A5

s
+ xMαm11|s|−

isxm12 +Mm11) e
α|s|x +G3(Mαm11|s| − ism12) +G4

(
−αm11

A4

|s|
− im12

A5

s

+ xMαm11|s| − isxm12 −Mm11

)
e−α|s|x

]
e−isyds

s12(x, y) =
m66

2π

∞∫
−∞

[
G1 (−isM + α|s|) +G2

(
−iA4

s
+ α

A5

|s|
− isxM + α|s|x+ 1

)
eα|s|x+

G3 (isM − α|s|) +G4

(
−iA4

s
− αA5

|s|
+ isxM − α|s|x+ 1

)
e−α|s|x

]
e−isyds

(17)
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3. Formulation and Solution of the Problem

In the present plane-strain deformation problem parallel to xy-plane, we have
considered an infinite elastic half-space with orthotropic symmetry. The medium is
assumed to be free from initial compressive stress. In the problem x-axis is acting
vertically downwards. Let an inclined line-load (LI) per unit length be acting on
z-axis and the angle of inclination with x-axis is denoted by δ (figure 1). The
resulting closed form analytical expressions for deformation field at any point of
the medium due to loading shall be calculated using boundary conditions of normal
and tangential loading. For the purpose, we have considered an the elastic medium
consisting of Medium 1 (x > 0) and Medium 2 (x < 0).

Figure 1: A vertical line load

The displacement and stress field due to loading are
For Medium 1:

u1(x, y) =
1

2π

∞∫
−∞

(
−MG3 +G4

(
A4

s2
− xM

))
e−α|s|xe−isyds

v1(x, y) =
1

2π

∞∫
−∞

(
G3 +G4

(
A5

s2
+ x

))
e−α|s|xe−isyds

s1
11(x, y) =

1

2π

∞∫
−∞

(
G3(Mα|s|m11 − ism12) +G4

(
−αm11

A4

|s|
− im12

A5

s
+ xMαm11|s|

−isxm12 −Mm11)
)
e−α|s|xe−isyds
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s1
12(x, y) =

m66

2π

∞∫
−∞

G3 (isM − α|s|) +G4

(
−iA4

s
− αA5

|s|
+ isxM − α|s|x+ 1

)
e−α|s|xe−isyds

(18)

For Medium 2 :

u2(x, y) =
1

2π

∞∫
−∞

(
MG1 +

(
A4

s2
+ xM

)
G2

)
eα|s|xe−isyds

v2(x, y) =
1

2π

∞∫
−∞

(
G1 +G2

(
A5

s2
+ x

))
eα|s|xe−isyds

s2
11(x, y) =

1

2π

∞∫
−∞

(
G1(Mα|s|m11 − ism12) +G2

(
αm11

A4

|s|
− im12

A5

s
+ xMαm11|s|

−isxm12 +Mm11)) e
α|s|xe−isyds

s2
12(x, y) =

m66

2π

∞∫
−∞

G1 (−isM + α|s|) +G2

(
−iA4

s
+ α

A5

|s|
− isxM + α|s|x+ 1

)
eα|s|xe−isyds

(19)

3.1. Line-Load acting Vertically

Applying a vertical line-load LN , per unit length, acting on the interface x=0,
along the z-axis (figure 1). Let at x=0, the boundary conditions be:

u1(x, y)− u2(x, y) =0,

v1(x, y)− v2(x, y) =0,

s1
11(x, y)− s2

11(x, y) =− LNδ(y),

s1
12(x, y)− s2

12(x, y) =0.

(20)

δ(y): Dirac delta function that satisfies the following properties

∞∫
−∞

δ(y)dy = 1, δ(y) =
1

2π

∞∫
−∞

e−isyds (21)
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Applying boundary conditions (20) into the equations (18) and (19) we obtain the
following values of elastic constants.

G1 = LNδ(y)B1

[
1

|s|
− 1

s

]
,

G2 = LNδ(y)
[
B1(|s| − s)−B2(s2 − |s|)

]
,

G3 = −LNδ(y)B3

[
1

|s|
− 1

s

]
,

G4 = −LNδ(y)
[
B3(|s| − s)−B2(s2 − |s|)

]
,

(22)

where

B1 =
A5(MA5 + A4)

2αm11(M2A2
5 − A2

4)
, B2 =

M

2α2m11(M2A2
5 − A2

4)
, B3 =

A5(MA5 − A4)

2αm11(M2A2
5 − A2

4)
.

Now using the values of elastic constants from equation (22) in to the equations
(18)-(19) and using Wolfram Mathematica for integral calculations, we obtain the
following analytical expressions of displacements and stresses for vertical line-load.

uN(x, y) =
LNδ(y)

2π

[
−B1(MA5 ∓ A4)

(
log(α2x2 + y2)∓ 2i tan−1

( y

αx

))
+B2A4

(−iy ∓ αx
α2x2 + y2

)
∓ 2xM

(
−B1

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+B2
−2iy(3α2x2 − y2)∓ 2αx(α2x2 − 3y2)

(α2x2 + y2)3

)]
(23)

vN(x, y) =
LNδ(y)

2π

[
B1(A4 ∓ A5)

(
log(α2x2 + y2))∓ 2i tan−1

( y

αx

))
+B2A5

(−iy ∓ αx
α2x2 + y2

)
+ 2x

(
±B1

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+B2
−2iy(3α2x2 − y2)∓ 2αx(α2x2 − 3y2)

(α2x2 + y2)3

)]
(24)

sN11(x, y) =
LNδ(y)

2π

[
2M1
±αx+ iy

α2x2 + y2
+ 2M2

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+ 4M3
αx(α2x2 − 3y2) + it(3α2x2 − y2)

(α2x2 + y2)3

− 12M4
(α4x4 − 6α2x2y2 + y4)± 4iyαx(α2x2 − y2)

(α2x2 + y2)4

]
(25)
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sN12(x, y) =
LNδ(y)

2π

[
2M5
±αx+ iy

α2x2 + y2
+ 2M6

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+ 4M7
αx(α2x2 − 3y2) + it(3α2x2 − y2)

(α2x2 + y2)3

− 12M8
(α4x4 − 6α2x2y2 + y4)± 4iyαx(α2x2 − y2)

(α2x2 + y2)4

]
(26)

where
M1 = B1(Mαm11 + im12 − αm11A5 −m12),
M2 = −Mm11B1 ∓ αm11A4B2 − im12A5B2,
M3 = xMαm11B1 + ixm12B1 ±Mm11B2,
M4 = xMαm11B2 − ixm12B2,
M5 = −B1(iM − α± iA4 + αA5),M6 = ±B1 − iA4B2 ∓ αA5B2,
M7 = −ixMB1 − xαB1 −B2,
M8 = ∓(ixMB2 + xαB2).

The superscript (N) is used to show the deformation due to vertical loading LN
and superscript (T) is used to show the deformation due to tangential loading LT .

3.2. Line-Load acting Horizontally

Here we apply a line-load (LT , per unit length),that is acting at the origin in
the positive y-direction (figure 2). At x=0, let the required boundary conditions
be:

Figure 2: A horizontal line-load
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u1(x, y)− u2(x, y) =0,

v1(x, y)− v2(x, y) =0,

s1
11(x, y)− s2

11(x, y) =0,

s1
12(x, y)− s2

12(x, y) =− LT δ(y).

(27)

Applying boundary conditions (27) into the equations (18) and (19) we obtain the
following values of elastic constants.

G1 = −LT δ(y)C1

[
αA5

[
1

|s|
− 1

s

]
+M

[
1− s

|s|

]]
,

G2 = 2LT δ(y)M
[
αC1[|s| − s] + C2[s2 − s|s|]

]
,

G3 = −LT δ(y)C3

[
αA5

[
1

|s|
− 1

s

]
+M

[
1− s

|s|

]]
,

G4 = −2LT δ(y)M
[
αC3[|s| − s] + C2[s2 − s|s|]

]
,

(28)

where C1 =
MA5 + A4

2α2(M2A2
5 − A2

4)
, C2 =

M

2α2(M2A2
5 − A2

4)
, C3 =

MA5 − A4

2α2(M2A2
5 − A2

4)
.

Now using the values of elastic constants from equation (28) in to the equations
(18) - (19) and using Wolfram Mathematica for integral calculations, we obtain the
following analytical expressions of displacements and stresses for horizontal line
load.

uT (x, y) =− LT δ(y)

2π

[
±MC1(A5 − A4)

(
− log(α2x2 + y2))± 2i tan−1

( y

αx

))
+ 2M(C2A5 −MC1)

(αx+ iy)

(α2x2 + y2)
− 2xM2

(
C1

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+ C2
2iy(3α2x2 − y2)± 2αx(α2x2 − 3y2)

(α2x2 + y2)3

)]
(29)

vT (x, y) =− LT δ(y)

2π

[
C1(A5 ± A4)

(
− log(α2x2 + y2))± 2i tan−1

( y

αx

))
+ 2(MC1 − C2A5)

(αx+ iy)

(α2x2 + y2)
± 2xM

(
C1

(α2x2 − y2) + 2iαxy

(α2x2 + y2)2

+ C2
2iy(3α2x2 − y2) + 2αx(α2x2 − 3y2)

(α2x2 + y2)3

)]
(30)

sT11(x, y) =
LT δ(y)

2π

[
2M I

1

±αx+ iy

α2x2 + y2
+ 2M I

2

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+ 4M I
3

αx(α2x2 − 3y2) + it(3α2x2 − y2)

(α2x2 + y2)3
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− 12M I
4

(α4x4 − 6α2x2y2 + y4)± 4iyαx(α2x2 − y2)

(α2x2 + y2)4

]
(31)

sT12(x, y) =
LT δ(y)

2π

[
2M I

5

±αx+ iy

α2x2 + y2
+ 2M I

6

(α2x2 − y2)± 2iαxy

(α2x2 + y2)2

+ 4M I
7

αx(α2x2 − 3y2) + it(3α2x2 − y2)

(α2x2 + y2)3

− 12M I
8

(α4x4 − 6α2x2y2 + y4)± 4iyαx(α2x2 − y2)

(α2x2 + y2)4

]
(32)

where
M I

1 = αC1A4m11M + iC1m12A4 − αC1A4m11 ± iC1m12A5,
M I

2 = −iαC1M
2m11 + αm11C2A4 − iMm12 ∓ im12A5C2 + C1Mm11,

M I
3 = ±xαMm11C1 ± ixm12C1 −Mm11C2,

M I
4 = ∓xαMm11C2 ± ixm12C2,

M I
5 = ∓iMC1A4 − αC1A4 ∓ iC1A4 + αC1A5,

M I
6 = iC1M

2 + αMC1 − iC2A4 ± αC2A5 ∓ C1,
M I

7 = ∓C2 − ixMC1 − xαC1,
M I

8 = ixMC2 + xαC2.

3. Inclined Line Load
When an inclined line load LI is applied (figure 3), we have the following rela-

tions with normal and tangential loading: LN = LI cos δ,LT = LI sin δ.

Figure 3: An inclined line load
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The final formulated problem of deformation due to inclined line load is:

uI(x, y) = uN(x, y) + uT (x, y)

vI(x, y) = vN(x, y) + vT (x, y)

sI11(x, y) = sN11(x, y) + sT11(x, y)

sI12(x, y) = sN12(x, y) + sT12(x, y)

(33)

The deformation due to vertical line load LN has been obtained in equations (23)-
(26) and the deformation due to tangential line load LT has been obtained in
equations (29)-(32).

4. Numerical Results and Discussion
In this section, we wish to examine the effect of inclined line-load LI on dis-

placement and stresses against the horizontal distance (y) in an infinite

Figure 4: (a) Normal displacement (u) and (b) Tangential displacements (v) against
the horizontal distance (y) at δ=00, 300, 600 and 900
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Figure 5: (a) Normal stress (s11) and (b) Tangential stress (s12) against the hori-
zontal distance (y) at δ=00, 300, 600 and 900

orthotropic elastic medium. As different rock forming materials have different prop-
erties and influence of loading also depends on different rock materials, therefore
for detailed observation of the variation in displacements and stresses due to load-
ing, we have computed graphical results by considering elastic constants for two
different materials Olivine [18] and Topaz [10].

As Olivine is most common mineral in earth’s crust, thus we have used the
value of elastic constants for olivine material in figure (4) and figure (5) i.e
m11 = 324.0,m22 = 198.0,m33 = 249.0,m12 = 59.0,m23 = 78.0,m31 = 79.0
m66 = 79.3,m44 = 66.7,m55 = 81.0 in terms of unit stress 1011dynes cm−2.

Figure 4(a) and 4 (b) depict comparison in variation of normal and tangential
displacements against the horizontal distance y influenced by distinct angle of in-
clination (δ = 00, 300, 600, 900) Comparison between stresses against the horizontal
distance y due to various angle of inclination has been done in figure 5(a) and 5(b),
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considering the rock properties of olivine materiel.

Figure 6: (a) Normal displacement (u) and (b) Tangential displacements (v) against
the horizontal distance (y) at δ=00, 300, 600 and 900

Topaz in rare silicate material which usually forms fractures and cavities of
igneous rocks, therefore in figure (6) and figure (7) we have used elastic constants
for Topaz material i.e
m11 = 2870,m22 = 3560,m33 = 3000,m12 = 1280,m23 = 900,m31 = 860
,m44 = 1100,m55 = 1350,m66 = 1330 in terms of unit stress 106dynes cm2

Figure (6) and figure (7), shows the variation in displacements and stresses at
different values of inclined line-load against the horizontal distance y for Topaz
material.
From these figures it is observed that the line-loading affect the displacement and
stresses significantly but the variation of minerals present in the medium also in-
fluence the deformation field.
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Figure 7: (a) Normal stress (s11) and (b) Tangential stress (s12) against the hori-
zontal distance (y) at δ=00, 300, 600 and 900

5. Conclusion

Two dimensional approximation is useful to study Earthquakes as most of the
Earthquakes are adequately large and shallow for eg. San Andreas Fault. Thus
we have considered a plane strain deformation problem and examined the effect of
loading on displacements and stresses for an orthotropic elastic medium that is free
from initial compressive stress. To obtain the analytical expressions for deforma-
tion we used the technique of equal characteristics value and Fourier transforma-
tion. With minor substitution, the results for isotropic and transversely isotropic
medium can also be derived.
The obtained graphical results clearly shows that the affect of distinct loading in
the variation of displacements and stresses varies as the rock material properties
changes. As the rock forming minerals of deep crust and upper mantle are different



404 South East Asian J. of Mathematics and Mathematical Sciences

therefore in the present study we have considered Olivine and Topaz materials for
graphical computations.
The graphical representation can proved to be helpful in experimental study of
analyzing field, mining tremors and also the study of loading is useful for the theo-
retical understanding of seismic and volcanic sources. The results are obtained by
considering orthotropic elastic half-space therefore this study may find applications
in geological and engineering problems.
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