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1. Introduction
In 2006, A. A. Kilbas et al. [14] published new book which is completely

dedicated on theory and applications of fractional differential equations. In their
innovation, they complemented on the concept of fractional differential equations
through various books and journals. They suggested many new results on the
theory of ordinary and partial differential equations. In systematic manner, they
presented various results including the existence and uniqueness of solutions for the
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Cauchy type and Cauchy problems involving nonlinear ordinary fractional differen-
tial equations, explicit solutions of linear differential equations and its correspond-
ing initial value problems by their reduction to Volterra integral equations with the
help of operational and compositional methods. Also, authors focused on different
applications of the one and multi-dimensional Laplace, Mellin and Fourier inte-
gral transforms in finding closed-form solutions of ordinary and partial differential
equations. Finally, they discussed sequential linear fractional differential equations
including a generalization of the classical Frobenius method.

The theorems on existence and uniqueness for ordinary differential equations
elaborated with special reference of Cauchy Type problems. They considered both
linear and nonlinear fractional differential equations in one dimensional and vec-
torial cases. Explicit and numerical solutions obtained for fractional differential
equations and boundary value problems with the reduction to Volterra integral
equations upon compositional relations and operational calculus. Further they ap-
plied Laplace, Mellin and Fourier integral transforms on distinct applications for
explicit solutions of linear differential equations involving Liouville, Caputo and
Riesz fractional derivatives with constant coefficients. In the fields of partial differ-
ential equations, they used Laplace and Fourier integral transforms for obtaining
closed form solutions of the Cauchy type and Cauchy problems for the fractional
diffusion wave and evolution equations. Moreover, the authors investigated se-
quential and non-sequential fractional order linear differential equations as well as
linear fractional order differential equations associated with the Riemann-Liouville
and Caputo derivatives. Further they developed interesting generalizations of the
classical Frobenius method for solving fractional differential equations with vari-
able coefficients and explicit solutions of fractional differential equations. At the
end, they systematically presented some important applications involving fractional
models.

H. M. Srivastava [19] introduced some parametric and argument variations of
the operators of fractional calculus and related special functions and integral trans-
formation. In his work, author investigated and closely examined k-gamma func-
tion and the corresponding k-Pochhammer symbol and k-Laplace transform, the
pathway integral version and the conformable or non-conformable version. The au-
thor concentrated on (k, s) extension of the operators of the traditional Riemann-
Liouville fractional calculus and such other familiar operators like Liouville-Caputo
fractional derivative operator, the Sumudu transform and the Pδ-version of the
classical Laplace transform, post-quantum or the (P , q)-version of the familiar ba-
sic quantum (or q) analysis, the parametric variation of the Bessel and related
functions. Also, the author focused on repeated use of classical Laplace transform
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operator L in order to effectively solve initial value problems including ordinary and
partial differential equations. Furthermore, H. M. Srivastava [20] presented a brief
elementary and introductory survey of the theory of the derivative and integral
operators of fractional calculus. The author used different applications especially
in developing solutions of certain interesting families like Fractional (Relaxation-
Oscillation) Ordinary Differential Equation, The Fractional (Diffusion-Wave) Par-
tial Differential Equation, Generalized Fractional Kinetic equations by using the
Laplace Transform and Sumudu Transform, Fractional Differential integral Op-
erators based upon the Cauchy-Goursat Integral Formula. H. M. Srivastava [21]
analyzed the widespread uses of the operators of fractional calculus that is both
fractional integrals and fractional derivatives in the modeling and analysis. They
commented on the large variety of applied scientific disciplines and real-world appli-
cations in physical, mathematical, biological, engineering and statistical sciences.
The author presented the theory and applications of the fractional-calculus op-
erators which depend upon the general Fox-Wright function and its extensively
related and potentially useful Mittag-Leffler type functions. Also, they discussed
the solutions of fractional Relaxation-Oscillation ordinary differential equation and
fractional Diffusion-Wave partial differential equation.

In recent decades, in many areas of science and engineering, a large number of
phenomena has been successfully modeled with the help of fractional derivatives
and integrals. Those fields are fluid mechanics, viscoelasticity, biology and physics.
The several researchers have applied various analytical and numerical methods to
solve fractional ordinary differential equations, integral equations and fractional
partial differential equations as per physical interest. Mostly further methods are
employed on fractional differential and integral equations and those are: Adomian
Decomposition Method (ADM), Variational Iteration Method (VIM), Fractional
Difference Method (FDM), Differential Transform Method (DTM), Homotopy Per-
turbation Method (HPM) and Sumudu decomposition method (SDM). Also, a few
classical solution methods include Laplace transform method, Sumudu transform
method, Fractional Green’s function method, Mellin transform method, method
of orthogonal polynomials, Galerkin Method and least square polynomial method.
Among these solution methods, the variational iteration method and the Adomian
decomposition method are the most reliable methods for solution of fractional
differential and integral equations, because they provide immediate and visible
symbolic terms of analytic solutions and numerical approximate solutions to both
linear and nonlinear differential equations without linearization or discretization
[28].

In 1998, J. H. He was the first to introduce a very powerful analytical tech-
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nique named as Variational iteration method (VIM) [8-11] for solving non-linear
equations. The iterations found by this method are valid both for small parameter
and also for very large parameter. Moreover, their first order approximations reach
extreme accuracy. This method provides convergent successive approximate series
solution and also may give the exact solution if such a solution exists. In some of
the applications, it is not possible to obtain the exact solution. For these types of
number cases, the approximations can be used for numerical purposes. This tech-
nique needs to construct a correctional functional for further identification by the
variational theory along with involvement of Lagrange multiplier and the multiplier
λ can be optimally recognized by variational theory. The application of restricted
variations in correction functional prepares it much easier to calculate the mul-
tiplier. The initial approximation can be freely chosen with unknown constants
which can be obtained through different methods.

As compared to other methods such as ADM, Galerkin method and HPM, VIM
which have not specific demands for nonlinear terms. J. H. He [12] recently men-
tioned some effective modifications to find the value of Lagrange’s multiplier. Now
he suggested an alternative technology to construct the iteration formulation that
is the well-known Laplace transform technology. Recently, many mathematicians
have applied Variational iteration method and its modifications to solve fractional
order partial differential equations [4, 5, 16, 18, 23, 26]. Nowadays, Sumudu trans-
form has been successfully employed on various fractional differential equations
and fractional partial differential equations for linear and nonlinear terms which
produces approximate analytical series solution [6, 13, 17]. S. Vilu et al. [22] pre-
sented a new approach for solution of delay differential equations (DDEs) which
is the combination of Sumudu transform and Variational iteration method (VIM).
They discussed a new idea in finding the unknown Lagrange multiplier with the
help of uncommon Sumudu transform alongside variational theory. Moreover, they
reduced the complexity of computational work in comparison with the conventional
approaches. M. Goyal et al. [7] applied mixture of Homotopy perturbation tech-
nique and Sumudu transform for solving time-fractional vibration equation. The
authors also commented on their technique that reduces time as well as size of the
computation when exact solution of a nonlinear differential equation is unknown.

In the early 1990s, K. Li et al. [15] introduced the Sumudu transform along
with interesting advantages over other integral transforms (Fourier, Laplace, etc.).
Especially the novelty of Sumudu transform provides convenience when solving dif-
ferential equations and which is ‘unity’ feature. The Sumudu transform is similar
to Laplace transform in terms of several examples shows its unique character. The
integral transform method originated in calculating a functions frequency compo-



Variational Iteration Method for Fractional Partial Differential Equations ... 353

nent. Today, most of them lost its original physics background, turning out to pure
mathematical tools appearing in all kind of engineering problems. Among them,
the Fourier transform is concerned with the primitive Fourier series. It has great
power in the field of frequency analysis. The Fourier’s transform with complex do-
main only considers the positive area which provides Laplace transform. It solves
various differential equations. Among different integral transform, the Sumudu
transform makes up the defects of the Fourier and Laplace transform for making
expressions form more intuitive. Meanwhile, we can realize directly the units of
results without complete the whole solutions when using the Sumudu transform.
Thus, we can transform from one domain into another much more conveniently for
the engineering problem itself.

S. A. Zahedi [27] determined analytical solution of time dependent nonlinear
partial differential equation using HAM, HPM and VIM. Among various analytical
methods like HPM, ADM, HAM, DTM, etc., VIM has been successfully employed
to get the analytical solution of time-fractional (linear or nonlinear) partial differen-
tial equations because this method gives successive rapidly convergent approxima-
tions of the exact solution without any restrictive assumptions or transformations
causing changes in the physical properties of the problem. Increase in numbers
of iterations leads to the explicit solution for the problem. Furthermore, the VIM
does not need small parameters in the equation so that it overcomes the limitations
that have risen in traditional perturbation methods.

The fundamental theme of this paper is to use coupling of correction functional
of Variational Iteration Method (VIM) and Sumudu transform. The authors D.
Ziane and M. H. Cherif [28] motivate us to implement Variational Iteration Method
coupled with Sumudu transform to solve linear and nonlinear partial differential
equations with time-fractional derivative of order α. In this paper, the Sumudu
transform is accepted to construct the variational iteration algorithm instead of
the traditional VIM. This novel combination may also be defined as He-Sumudu
method in literature. The new integral transform-Sumudu transform was applied
by G. K. Watugala [24] for solving differential equations in control engineering
problems.

In present paper, we have taken the literature review in the first section. We
have defined basic definitions of fractional calculus, Sumudu transform and prop-
erties of Sumudu transform in the second section. We have elaborated the scheme
of traditional Variational Iteration Method (VIM) in the third section. There is a
description of fractional Variational Iteration transform method in the fourth sec-
tion. We have explained convergence analysis of the VIM in the fifth section. We
have described comparative study of approximate and exact solution of the FPDEs
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in the sixth section and finally we briefly concluded summary of the paper in the
seventh section.

2. Preliminaries
The basic definitions of the fractional calculus, Sumudu transform and a few

properties of Sumudu transform are discussed in this section and these definitions
are useful for defining the proposed methodology of Sumudu Transform-Variational
iteration method.

Definition 2.1. [28] Let Ω = [a, b](−∞ < a < b < ∞) be a finite interval on
the real axis R : The Riemann-Liouville fractional integrals Iαa+f of order α ∈ C
(Re(α) > 0) is defined by

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− ξ)α−1f(ξ)dξ, t > 0, Re(α) > 0, (1)

I0
a+f(t) = f(t). (2)

Definition 2.2. [28] Let Re(α) > 0 and let n=[Re(α)]+1. If f(t) ∈ ACn[a, b]
then the Liouville-Caputo fractional derivatives Dα

t f(t) of order α exist almost
everywhere on [a, b]. If α 6∈ N, Dα

t f(t) is defined by

Dα
t f(t) = Jm−αDα

t f(t) =
1

Γ(m− α)

∫ t

a

(t− ξ)m−α−1f (m)(ξ)dξ, (3)

for m− 1 < α ≤ m, m ∈ N, t > 0.
If α 6∈ N, we obtain Dα

t f(t) = fn(t).
Moreover, the operator Dα

t satisfies the following basic properties.

Lemma 2.1. [18] Let m − 1 < α ≤ m, m ∈ N, f ∈ Cm
µ , µ ≥ −1 and γ > α− 1

then
1. Dα

t D
β
t f(t) = Dα+β

t f(t)

2. Dα
t x

γ = Γ(1+γ)
Γ(1+γ−α)

xγ−α

3. Dα
t I

α
t f(t) = f(t)

4. Iαt D
α
t f(t) = f(t)−

m∑
k=0

f (k)(0+)

(
tk

k!

)
, t > 0

In the present work, we applied Liouville-Caputo fractional derivative on traditional
initial and boundary conditions in the formulation of the physical problems.

Definition 2.3. [2] The Sumudu transform is defined over the set of functions

A = {f(t) : ∃M, τ1, τ2 > 0, f(t) < Me
t
τj , ift ∈ (−1)j × [0,∞)}, (4)
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which is defined through definite integral by using the following formula:

F (u) = S[f(t)] =
1

u

∫ ∞
0

e
−t
u f(t)dt, u ∈ (−τ1, τ2). (5)

There are various properties of the Sumudu transform are included in [2]. Some
selected properties of the Sumudu transform are as follows.
1.S{1} = 1,
2.S{tn} = unΓ(n+ 1), n > 0,
3.S{f(t)± g(t)} = S{f(t)} ± S{g(t)}.
Definition 2.4. [1] The Sumudu transform of Liouville-Caputo fractional deriva-
tive is defined as follows:

S{Dα
t f(x, t)} = u−αS{f(x, t)} −

m−1∑
k=0

u−α+kf (k)(x, 0), . . .m− 1 < α ≤ m. (6)

Definition 2.5. [3] The Mittag-Leffler function in one parameter which is a gen-
eralization of exponential function is defined as

Eα(t) =
∞∑
k=0

tk

Γ(kα + 1)
(α > 0). (7)

Definition 2.6. [14] A two-parameter function of the Mittag-Leffler type is defined
by the series expansion

Eα,β(t) =
∞∑
k=0

tk

Γ(kα + β)
(α > 0, β > 0). (8)

3. Basics of Variational Iteration Method (VIM)
This section deals with the idea of the variational iteration method [25] that is

based on constructing a correction functional by a general Lagrange multiplier λ.
The improvement of correction solution with respect to the initial approximation
or to the trial function is done by using the selection of Lagrange multiplier λ. The
basic idea of the variational method is described as follows. Consider the following
nonlinear equation:

Lu(t) +Nu(t) = g(t) (9)

Where L is a linear operator, N is a nonlinear operator and g(t) is a known analytic
function. According to the variational iteration method mentioned by J. H. He, we
can construct the following correction functional:

un+1(x, t) = un(x, t) +

∫ t

0

λ(τ)[Lun(τ) +Nũn(τ)− g(t)]dτ (10)
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Where λ is a general Lagrange multiplier which can be identified optimally via
variational theory and ũn(ξ) is considered as a restricted variation which means
δũn(ξ) = 0. Using this method, we first find the Lagrangian multiplier that will
be identified optimally via integration by parts. With available value of λ, then
several approximations un(x, t), n ≥ 0 follows immediately. The exact solution
may be constructed by using limit and which is the limiting value of approximate
solution. Ultimately, the exact solution is obtained by using series approximations
as u(x, t) = lim

n→∞
un(x, t).

4. Fractional Variational Iteration Transform Method (FVITM)

In this section, the extension of available method in the literature is suggested
by Ziane and Cherif [28] and it has been used for the utilization of another integral
transform which is Sumudu transform. Many mathematicians have successfully
applied such an integral transform in their work. We consider the general form of
linear and nonlinear partial differential equations with time-fractional derivative of
order α.

Dα
t u(x, t) +Ru(x, t) +Nu(x, t) = f(x, t), 1 < α ≤ 2 (11)

where Dα
t = ∂α

∂tα
=fractional order partial derivative,

subject to the initial conditions,

u(x, 0) = h(x), ut(x, 0) = g(x). (12)

Applying Sumudu transform on both sides of equation (11)
S{Dα

t u(x, t)}+ S{Ru(x, t)}+ S{Nu(x, t)} = S{f(x, t)}
Using the definition 2.4, we have
S{u(x,t)}

uα
− u(x,0)

uα
− ut(x,0)

uα−1 = S{f(x, t)} − S{Ru(x, t)} − S{Nu(x, t)}
Also, by using initial conditions (12), we obtain

S{u(x, t)} = h(x) + ug(x) + uαS{f(x, t)} − uαS{Ru(x, t)} − uαS{Nu(x, t)} (13)

Operating with the inverse Sumudu transform on both sides of equation (13), we
get

u(x, t) = h(x) + g(x)t+ S−1{uαS{f(x, t)}} − S−1{uαS{Ru(x, t)}}
− S−1{uαS{Nu(x, t)}} (14)

Applying ∂
∂t

on both sides of equation (14), we have
∂u
∂t

+ ∂
∂t
S−1{uαS{Ru(x, t)}}+ ∂

∂t
S−1{uαS{Nu(x, t)}}− ∂

∂t
S−1{uαS{f(x, t)}}−g(x) =
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0
The correction functional of the variational iteration method is defined by

un+1 = un −
∫ t

0

[
∂un
∂τ

+
∂

∂τ
S−1{uαS{Run(x, t)}}+

∂

∂τ
S−1{uαS{Nun(x, t)}}

− ∂

∂τ
S−1{uαS{f(x, t)}} − g(x)

]
dτ (15)

By Considering the given initial conditions (12), we can select the 0th approximation
u0 = h(x) + g(x)t. Further we use this selection into (15) we obtain the following
successive approximations
u0 = h(x) + g(x)t
u1 = u0 −

∫ t
0

[
∂u0
∂τ

+ ∂
∂τ
S−1{uαS{Ru0(x, t)}}+ ∂

∂τ
S−1{uαS{Nu0(x, t)}}

− ∂
∂τ
S−1{uαS{f(x, t)}} − g(x)

]
dτ

u2 = u1 −
∫ t

0

[
∂u1
∂τ

+ ∂
∂τ
S−1{uαS{Ru1(x, t)}}+ ∂

∂τ
S−1{uαS{Nu1(x, t)}}

− ∂
∂τ
S−1{uαS{f(x, t)}} − g(x)

]
dτ

u3 = u2 −
∫ t

0

[
∂u2
∂τ

+ ∂
∂τ
S−1{uαS{Ru2(x, t)}}+ ∂

∂τ
S−1{uαS{Nu2(x, t)}}

− ∂
∂τ
S−1{uαS{f(x, t)}} − g(x)

]
dτ

...

un+1 = un −
∫ t

0

[
∂un
∂τ

+
∂

∂τ
S−1{uαS{Run(x, t)}}+

∂

∂τ
S−1{uαS{Nun(x, t)}}

− ∂

∂τ
S−1{uαS{f(x, t)}} − g(x)

]
dτ (16)

The (n + 1)th order successive approximations produce the exact solution in the
closed form u(x, t) = lim

n→∞
un(x, t). Where the approximate series solution is writ-

ten as u(x, t) =
∞∑
n=0

un(x, t).

5. Convergence Analysis

Theorem 5.1. [25] Assume that y(t), yi(t) ∈ C[0, T ], i = 1, 2. . . , Then from equa-
tion (16), we get the true solution y(t) of solution sequences converge at the problem
(11) to (12).

6. Illustrative Applications
This section illustrates two numerical examples by applying Variational Iter-

ation Method (VIM) coupled with Sumudu transform for the Liouville-Caputo



358 South East Asian J. of Mathematics and Mathematical Sciences

fractional derivative to solve linear and nonlinear time-fractional partial differen-
tial equations.

Example 6.1. We consider the linear time-fractional partial differential equation
[28]

Dα
t u = uxx − 3u, 1 < α ≤ 2, 0 < x < π, t > 0 (17)

subject to the initial conditions,

u(x, 0) = 0, ut(x, 0) = 2cosx. (18)

After implementation of Sumudu transform and Inverse Sumudu transform along
with definition 2.4, we can construct the iteration formula by using equation (17)
to (18), we have
un+1 = un −

∫ t
0

[
∂un
∂τ
− ∂

∂τ
S−1{uαS{unxx(x, t)}}

+ ∂
∂τ
S−1{uαS{3un(x, t)}} − 2cosx

]
dτ

Also, we obtain the following approximations
u0 = cosx(2t)

u1 = u0 −
∫ t

0

[
∂u0
∂τ
− ∂

∂τ
S−1{uαS{u0xx(x, t)}}+ ∂

∂τ
S−1{uαS{3u0(x, t)}} − 2cosx

]
dτ

u1 = cosx(2t)−
∫ t

0

[
∂
∂τ

(cosx(2t))− ∂
∂τ
S−1{uαS{uxx(cosx(2t))}}

+ ∂
∂τ
S−1{uαS{3cosx(2t)}} − 2cosx

]
dτ

u1 = cosx(2t)−
∫ t

0

[
2cosx− ∂

∂τ
S−1{uαS{(−cosx(2t))}}

+ ∂
∂τ
S−1{uαS{3cosx(2t)}} − 2cosx

]
dτ

u1 = cosx(2t)−
∫ t

0

[
− ∂
∂τ
S−1{uαS{(−cosx(2t))}}+ ∂

∂τ
S−1{uαS{3cosx(2t)}}

]
dτ

u1 = cosx(2t)−
∫ t

0

[
∂
∂τ
S−1{uα2ucosx}}+ ∂

∂τ
S−1{uα6ucosx}}

]
dτ

u1 = cosx(2t)−
∫ t

0

[
∂
∂τ

2cosx
(

tα+1

Γ(α+2)

)
+ ∂

∂τ
6cosx

(
tα+1

Γ(α+2)

)]
dτ

u1 = cosx(2t)− 8cosx 1
Γ(α+2)

∫ t
0

[
∂
∂τ
tα+1

]
dτ

u1 = cosx(2t)− 8cosx tα+1

Γ(α+2)

u1 = cosx
(

2t− 8 tα+1

Γ(α+2)

)
u2 = cosx

(
2t− 8 tα+1

Γ(α+2)
+ 32 t2α+1

Γ(2α+2)

)
u3 = cosx

(
2t− 8 tα+1

Γ(α+2)
+ 32 t2α+1

Γ(2α+2)
− 128 t3α+1

Γ(3α+2)

)
...
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un = cosx
(

2t− 8 tα+1

Γ(α+2)
+ 32 t2α+1

Γ(2α+2)
− 128 t3α+1

Γ(3α+2)
+ · · ·+ (−1)n22n+1 tnα+1

Γ(nα+2)

)
The exact solution can be written as
u(x, t) = lim

n→∞
un(x, t)

whereas the approximate series solution is defined as

u(x, t) =
∞∑
n=0

un(x, t) = cosx
∞∑
k=0

(−1)k22k+1 tkα+1

Γ(kα + 2)

In particular for α = 2, the exact solution is given by

u(x, t) = lim
n→∞

un(x, t) = cosx
∞∑
k=0

(−1)k22k+1 t2k+1

Γ(2k + 2)

u(x, t) = cosx
∞∑
k=0

(−1)k
(2t)2k+1

(2k + 1)!

u(x, t) = cosxsin2t
The behaviour of solution of u(x, t) for different values of (x, t) is included in
Table 1. The approximate solution of FVITM is recorded for distinct values of
α = 1.5, 1.75, 2 by taking first four terms. The smaller number of absolute errors
mentions that the results agreed well with the exact solutions.

Table 1: Comparison of exact solution with numerical solution of SDM for distinct
values of x and t. (for α = 1.5, 1.75, 2)

x t
SDM Exact solution Absolute Errors
α = 1.5 α = 1.75 α = 2 for α = 2

π
6

π
6

0.569161 0.669680 0.749996 0.75 3.57900Ö10−6

π
4

π
4

0.455681 0.580988 0.706996 0.707107 1.10945Ö10−4

π
3

π
3

0.211732 0.322825 0.431986 0.433013 1.026969Ö10−3

2π
3

2π
3

5.684062 1.924487 0.431986 0.433013 1.026969Ö10−3

3π
4

3π
4

17.160899 6.326415 0.706996 0.707107 1.10945Ö10−4

5π
6

5π
6

40.962588 16.612834 0.749996 0.75 3.57900Ö10−6

In Figures 1, 2 and 3, we have plotted the surface of u(x, t) corresponding to the
values α = 2, 1.5 for FVITM; the three figures indicate that the similarity among
FVITM by Sumudu transform and FVITM by Laplace transform [28]. We can
observe that the approximate solution and exact solution for α = 2 are very close
to each other. According to convergence analysis theorem of variational iteration
method, it is clear that the approximate series solution is excellently convergent
with the exact solution. Figure 4 indicates two dimensional plots for comparison
of approximate solution for α = 2, 1.75, 1.5.
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Figure 1: shows that the behaviour of exact solution for α = 2.

Figure 2: shows that the behaviour of approximate solution for α = 2.
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Figure 3: shows that the behaviour of approximate solution for α = 1.5.

Figure 4: shows that the behaviour of approximate solution for α = 2, 1.75, 1.5.
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Example 6.2. We consider the linear time-fractional partial differential equation
[28]

Dα
t u =

x2

2
uxx, 1 < α ≤ 2, 0 < x < 1, t > 0 (19)

subject to the initial conditions,

u(x, 0) = 0, ut(x, 0) = x2. (20)

After implementation of Sumudu transform and Inverse Sumudu transform along
with definition 2.4, we can construct the iteration formula by using equation (19)
to (20), we have

un+1 = un −
∫ t

0

[
∂un
∂τ
− ∂

∂τ
S−1{uα x2

2
S{unxx(x, t)}} − x2

]
dτ

Also, we obtain the following approximations
u0 = x2t

u1 = u0 −
∫ t

0

[
∂u0
∂τ
− ∂

∂τ
S−1{uα x2

2
S{u0xx(x, t)}} − x2

]
dτ

u1 = x2t−
∫ t

0

[
x2 − ∂

∂τ
S−1{uα x2

2
S{2t}} − x2

]
dτ

u1 = x2t−
∫ t

0

[
− ∂
∂τ
S−1{uα x2

2
2u}
]
dτ

u1 = x2t−
∫ t

0

[
− ∂
∂τ
x2S−1{uα+1}

]
dτ

u1 = x2t−
∫ t

0

[
− ∂
∂τ
x2 tα+1

Γ(α+2)

]
dτ

u1 = x2t+ x2 1
Γ(α+2)

∫ t
0

[
∂
∂τ
tα+1

]
dτ

u1 = x2t+ x2 tα+1

Γ(α+2)

u1 = x2
(
t+ tα+1

Γ(α+2)

)
u2 = x2

(
t+ tα+1

Γ(α+2)
+ t2α+1

Γ(2α+2)

)
u3 = x2

(
t+ tα+1

Γ(α+2)
+ t2α+1

Γ(2α+2)
+ t3α+1

Γ(3α+2)

)
...
un = x2

(
t+ tα+1

Γ(α+2)
+ t2α+1

Γ(2α+2)
+ t3α+1

Γ(3α+2)
+ · · ·+ tnα+1

Γ(nα+2)

)
The approximate series solution is defined as

u(x, t) =
∞∑
n=0

un(x, t) = x2

∞∑
k=0

tkα+1

Γ(kα + 2)
= x2Eα,2(t),

where Eα,2(t) is Mittag-leffler function [20] which is defined in the definition 2.6.
In particular for α = 2, the exact solution is given by

u(x, t) = lim
n→∞

un(x, t) = x2

∞∑
k=0

t2k+1

Γ(2k + 2)
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u(x, t) = x2

∞∑
k=0

t2k+1

(2k + 1)!

u(x, t) = x2sinht
The behaviour of solution of u(x, t) for different values of (x, t) is included in
Table 2. The approximate solution of FVITM is recorded for distinct values of
α = 1.5, 1.75, 2 by taking first four terms. The smaller number of absolute errors
mentions that the results agreed well with the exact solutions.

Table 2: Comparison of exact solution with numerical solution of SDM for distinct
values of x and t. (for α = 1.5, 1.75, 2)

x t
SDM Exact solution Absolute Errors
α = 1.5 α = 1.75 α = 2 for α = 2

0.2 0.2 8.215860Ö10−3 8.728344Ö10−3 8.053440Ö10−3 8.053440Ö10−3 0.0
0.4 0.4 0.068944 0.066961 0.065720 0.065720 0.0
0.6 0.6 0.247449 0.236679 0.229195 0.229195 0.0
0.8 0.8 0.631627 0.594953 0.568388 0.568388 0.0

In Figures 5, 6 and 7, we have plotted the surface of u(x, t) corresponding to the
values α = 2, 1.5 for FVITM; the three figures indicate that the similarity among
FVITM by Sumudu transform and FVITM by Laplace transform [28]. We can
observe that the approximate solution and exact solution for α = 2 are very close
to each other. According to convergence analysis theorem of variational iteration
method, it is clear that the approximate series solution is excellently convergent
with the exact solution.

Figure 5: shows that the behaviour of exact solution for α = 2.
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Figure 6: shows that the behaviour of approximate solution for α = 2.

Figure 7: shows that the behaviour of approximate solution for α = 1.5.
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Figure 8 indicates two dimensional plots for comparison of approximate solution
for α = 2, 1.75, 1.5.

Figure 8: shows that the behaviour of approximate solution for α = 2, 1.75, 1.5.

7. Conclusion
In this paper, we successfully applied the technique of Variational iteration

method [VIM] coupling with Sumudu transform for solving linear and nonlinear
partial differential equations with time-fractional derivative. There is no effective
method to identify the Lagrange multipliers especially for the FDEs. The approach
applied in this paper is simple and straightforward because it is not necessary to
calculate the value of Lagrange multipliers with the help of integration by parts
rule. We can observe the numerical results, it is clear that the fractional variational
iteration transform method produces very accurate approximate solutions using
only a few iterations. The proposed technique has provided more realistic series
solutions which converges very rapidly with exact solution. As compared to the
other previous version of VIM, this modification is much better. This paper shows
that the Sumudu transform technique is extremely effective to construct the VIM
like Laplace transform. In future, the extension of this technique can be seen in
fractional partial differential equations in various areas of science and engineering.
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