South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 2 (2022), pp. 301-318 DOI: 10.56827/SEAJMMS.2022.1802.26 ISSN (Online

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ON THE IMAGES OF LM-G-FILTERS AND LM-G-FILTERBASES

Merin Jose and Sunil C. Mathew*

Department of Mathematics, St. Thomas College Palai, Arunapuram - 686574, Kottayam, Kerala, INDIA

E-mail : merinjmary@gmail.com

*Department of Mathematics, Deva Matha College Kuravilangad, Kottayam - 686633, Kerala, INDIA

E-mail : sunilcmathew@gmail.com

(Received: Jul. 24, 2021 Accepted: Jun. 18, 2022 Published: Aug. 30, 2022)

Abstract: This paper studies LM-G-filters as a generalization of LM-filters. Images of LM-G-filter spaces and LM-G-filterbases induced by functions are investigated and some of their properties are derived. It is shown that the property of being weakly inspired, catalyzed, *s*-stratified and stratification of LM-G-filter spaces are preserved by images. Moreover the categorical connections of LM-G-filter spaces with neighborhood systems are also identified.

Keywords and Phrases: *LM*-G-filters, Images, Quantale, Neighborhood systems.

2020 Mathematics Subject Classification: 54A20, 18A40, 06D22.

1. Introduction

In 1977, Lowen [12] developed the idea of filters in I^X , called prefilters to discuss convergence in fuzzy topological spaces. In 1999 Burton et al. [3] introduced the concept of generalized filters as a map from 2^X to I. Subsequently Höhle and Šostak [4] developed the notion of L-filters and stratified L-filters on a complete quasimonoidal lattice and discussed their role in the development of fuzzy convergence spaces. Later in 2006, Kim et al. [10] introduced the notion of L-filter base on a strictly two-sided, commutative quantale lattice L and defined two types of images and preimages of L-filter bases. In 2013, Jäger [5] developed a theory of stratified LM-filters which generalizes the theory of stratified L-filters.

In [1], Abbas et al. investigated stratified L-filters and its stratification. In [6], it is found that the stratification of L-filters in [1] need not preserve the L-filter structure. This motivated the authors to introduce the concept of LM-G-filter spaces [6] as a generalization of LM-filters. The study introduced the concept of stratified LM-G-filters and stratification of LM-G-filter spaces by a stratification mapping. Further, some subcategories of LM-G, the category of LM-G-filter spaces have been identified by introducing the concepts of inspired, weakly inspired LM-G-filter spaces in [7] and catalyzed LM-G-filter spaces in [8] and their application in mathematical modeling is explored. In [9], the authors studied the categorical connections of L-G-filters with L-filters and L-interior operators and a galois correspondence between the categories of stratified L-G-filter spaces and L-fuzzy pre-proximity spaces is identified.

This paper defines images of LM-G-filters and LM-G-filterbases induced by functions and identifies their properties. It is proved that the properties of being weakly inspired, catalyzed, s-stratified as well as the stratification of LM-G-filters are preserved by images. Moreover, categorical connections of LM-G-filters with LM-fuzzy neighborhood systems and LM-fuzzy quasi-coincident neighborhood system are also obtained.

2. Preliminaries

Throughout this paper X stands for a non-empty ordinary set. For the notions of category theory, the readers can refer to [2].

Definition 2.1. [4] A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies the following properties:

- (L1) $L = (L, \leq, 1, 0)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
- (L2) (L, \odot) is a commutative semigroup;

(L3) $a = a \odot 1$, for each $a \in L$;

(L4) \odot is distributive over arbitrary joins, i.e. $(\bigvee_{i \in I} a_i) \odot b = \bigvee_{i \in I} (a_i \odot b).$

Unless otherwise specified, in this paper, L and M stand for strictly two-sided, commutative quantales.

Remark 2.2. [4] Every completely distributive lattice, GL-monoid and complete Heyting algebra (i.e. frame) are stsc-quantales.

All algebraic operations on L can be extended pointwise to L^X as $A \leq B$ if and only if $A(x) \leq B(x)$, $(A \odot B)(x) = A(x) \odot B(x)$ and $(\alpha \odot A)(x) = \alpha \odot A(x)$ for all $x \in X$. The constant function α_X is defined by $\alpha_X(x) = \alpha$ for all $x \in X$.

Definition 2.3. [5] A mapping $s : L \to M$ with the properties $(M1) \ s(0_L) = 0_M; (M2) \ s(1_L) = 1_M \text{ and } (M3) \ s(\alpha \land \beta) = s(\alpha) \land s(\beta) \text{ for all } \alpha, \beta \in L \text{ where } L$ and M are frames is called a stratification mapping.

Definition 2.4. [6] An LM-G-filter on a set X is defined to be a mapping $G : L^X \to M$ satisfying:

 $(G1) G(1_X) = 1;$

(G2) For every $A, B \in L^X$ such that $A \leq B, G(A) \leq G(B)$;

(G3) For every $A, B \in L^X, G(A \odot B) \ge G(A) \odot G(B)$.

The pair (X, G) is called an LM-G-filter space. In addition to the above axioms, if $(\mathbf{G4}) : G(0_X) = 0$ is also satisfied, then (X, G) becomes an LM-filter space [4]. If G_1 and G_2 are two LM-G-filters on X such that $G_2(A) \ge G_1(A)$ for all $A \in L^X$, then we say (X, G_1) is weaker (coarser) than (X, G_2) and (X, G_2) is stronger (finer) than (X, G_1) .

An LM-G-filter space (X,G) is called s-stratified if $G(\alpha_X \odot A) \ge s(\alpha) \odot G(A)$ for all $\alpha \in L$ and $A \in L^X$ where $s : L \to M$ is a stratification mapping. s-stratified LM-filter is defined analogously [5].

Remark 2.5. An LM-G-filter space (X, G) is s-stratified if and only if $G(\alpha_X) \ge s(\alpha)$ for all $\alpha \in L$.

Definition 2.6. [6] Let (X, G_1) and (Y, G_2) be LM-G-filter spaces. A map f^{\rightarrow} : $L^X \rightarrow L^Y$ is called an LM-G-filter map if $G_1(f^{\leftarrow}(B)) \geq G_2(B), \forall B \in L^Y$. A map $f^{\rightarrow} : L^X \rightarrow L^Y$ is called an LM-G-filter preserving map if $G_2(f^{\rightarrow}(A)) \geq G_1(A), \forall A \in L^X$.

The category of LM-G-filter spaces with LM-G-filter maps as morphisms is denoted by LM-G.

Definition 2.7. [10] An L-filterbase on X is a mapping $\mathcal{B} : L^X \to L$ such that for all $A, B \in L^X$:

 $(\mathcal{B}1) \ \mathcal{B}(1_X) = 1 \ and \ \mathcal{B}(0_X) = 0;$

$$(\mathcal{B}2) \ \langle \mathcal{B} \rangle (A \odot B) \ge \mathcal{B}(A) \odot \mathcal{B}(B) \ where \ \langle \mathcal{B} \rangle (A) = \bigvee_{B \le A} \mathcal{B}(B).$$

An L-filterbase \mathcal{B} is said to be stratified if $\langle \mathcal{B} \rangle (\alpha \wedge A) = \alpha \odot \mathcal{B}(A)$, for each $A \in L^X$ and $\alpha \in L.[1]$

Definition 2.8. [6] A function $\widetilde{\mathcal{B}} : L^X \to M$ is called an LM-G-filterbase on X if it satisfies the following conditions:

$$(B1) \ \mathcal{B}(1_X) = 1;$$

$$(B2) \ \langle \widetilde{\mathcal{B}} \rangle (A \odot B) \ge \widetilde{\mathcal{B}}(A) \odot \widetilde{\mathcal{B}}(B), \text{ for each } A, B \in L^X, \text{ where } \langle \widetilde{\mathcal{B}} \rangle (A) = \bigvee_{B \le A} \widetilde{\mathcal{B}}(B).$$

In addition to the above axioms, if $(B3) : \widetilde{\mathcal{B}}(0_X) = 0$ is also satisfied, then $(X, \widetilde{\mathcal{B}})$ becomes an LM-filterbase.

Definition 2.9. [6] An LM-G-filterbase $\widetilde{\mathcal{B}}$ is said to be s-stratified if $\widetilde{\mathcal{B}}$ satisfies $\langle \widetilde{\mathcal{B}} \rangle (\alpha \odot A) \geq s(\alpha) \odot \widetilde{\mathcal{B}}(A)$, for each $A \in L^X$ and $\alpha \in L$ where s is a stratification mapping from L to M. s-stratified LM-filterbase is defined analogously.

Definition 2.10. [11] Let L be a complete lattice. The set of all prime elements and co-prime elements in L are denoted by pr(L) and J(L) respectively. Define a relation \leq in L as follows: $\forall a, b \in L, a \leq b$ if and only if $\forall S \subset L, \bigvee S \geq b \Rightarrow \exists s \in$ S such that $s \geq a$. Define a relation \succ in L as follows: $\forall a, b \in L, a \succ b$ if and only if $\forall S \subset L, \bigwedge S \leq b \Rightarrow \exists s \in S$ such that $s \leq a$.

Definition 2.11. [7, 8] For $A \in L^X$, denote the p-set of A by $\delta_p(A) = \{x \in X; p \succeq A(x)\}^c$ where p is prime in L and $()^c$ denotes set complement and 1-set of A by $\delta_1(A) = \{x \in X; A(x) = 1\}$. Let (X, G) be an LM-G-filter space. If $G(A) = \bigwedge_{p \in pr(L)} G(1_{\delta_p(A)})$ for all $A \in L^X$, then (X, G) is called an inspired LM-G-

filter space. If $G(A) \leq \bigwedge_{p \in pr(L)} G(1_{\delta_p(A)})$ for all $A \in L^X$, then (X, G) is called weakly

inspired LM-G-filter space. If $G(A) = G(1_{\delta_1(A)})$ for all $A \in L^X$, then (X, G) is called catalyzed LM-G-filter space.

3. Images of *LM*-G-filterbases

This section defines two types of images of LM-G-filterbases induced by functions and identifies certain properties of these images. It is proved that the property of being *s*-stratified and stratification of LM-G-filterbases are preserved by both kind of images. Images induced by functions in the case of LM-filterbases are also

304

analyzed.

Lemma 3.1. Let (L, \leq, \odot) be a stsc-quantale and $f : X \to Y$ a function. Then $f^{\rightarrow}(A \odot \alpha_X) = f^{\rightarrow}(A) \odot \alpha_Y$ for all $A \in L^X$ and $\alpha \in L$. **Proof.**

$$f^{\rightarrow}(A \odot \alpha_X)(y) = \bigvee \{ (A \odot \alpha_X)(x); f(x) = y \}$$

= $\bigvee \{ A(x) \odot \alpha; f(x) = y \}$
= $\bigvee \{ A(x); f(x) = y \} \odot \alpha$ (by property (L4) of stsc-quantale)
= $(f^{\rightarrow}(A) \odot \alpha_Y)(y)$

Theorem 3.2. Let $\widetilde{\mathcal{B}}$ be an LM-G-filterbase on X and $f: X \to Y$ be a function. Then $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}): L^Y \to M$ defined by $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}})(B) = \bigvee \{\widetilde{\mathcal{B}}(A) | f^{\leftarrow}(B) \geq A\}$ for all $B \in L^Y$ is an LM-G-filterbase on Y. If $\widetilde{\mathcal{B}}_1$ and $\widetilde{\mathcal{B}}_2$ are LM-G-filterbases on X such that $\widetilde{\mathcal{B}}_1 \leq \widetilde{\mathcal{B}}_2$, then $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}_1) \leq f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}_2)$.

Proof. Clearly $f^{\rightarrow}(\widetilde{\mathcal{B}})(1_Y) = 1$. Suppose there exists $B_1, B_2 \in L^Y$ such that $\langle f^{\rightarrow}(\widetilde{\mathcal{B}})\rangle(B_1 \odot B_2) \not\geq f^{\rightarrow}(\widetilde{\mathcal{B}})(B_1) \odot f^{\rightarrow}(\widetilde{\mathcal{B}})(B_2)$. This implies there exists $C, D \in L^X$ where $f^{\leftarrow}(B_1) \geq C, f^{\leftarrow}(B_2) \geq D$ such that $\langle f^{\rightarrow}(\widetilde{\mathcal{B}})\rangle(B_1 \odot B_2) \not\geq \widetilde{\mathcal{B}}(C) \odot \widetilde{\mathcal{B}}(D)$. Therefore $\langle f^{\rightarrow}(\widetilde{\mathcal{B}})\rangle(B_1 \odot B_2) \not\geq \langle \widetilde{\mathcal{B}}\rangle(C \odot D)$. This implies there exists $P \leq C \odot D$ such that $\langle f^{\rightarrow}(\widetilde{\mathcal{B}})\rangle(B_1 \odot B_2) \not\geq \widetilde{\mathcal{B}}(P)$.

Since $f^{\leftarrow}(B_1 \odot B_2) \geq C \odot D \geq P$, $\langle f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}) \rangle (B_1 \odot B_2) \geq \widetilde{\mathcal{B}}(P)$ which is a contradiction. Therefore $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}})$ is an *LM*-G-filterbase on *Y*. Rest of the proof is trivial.

In [6], we have the following theorem.

Theorem 3.3. [6] Let $\widetilde{\mathcal{B}}$ be an LM-G-filterbase on X and $s : L \to M$ be a stratification mapping. Then $\widetilde{\mathcal{B}}^s : L^X \to M$ defined by $\widetilde{\mathcal{B}}^s(A) = \bigvee \{ \widetilde{\mathcal{B}}(B) \odot s(\alpha) | A \geq B \odot \alpha \}$, where $B \in L^X$, $\alpha \in L$ is the coarsest s-stratified LM-G-filterbase on X which is finer than $\widetilde{\mathcal{B}}$. $\widetilde{\mathcal{B}}^s$ is called the s-stratification of the LM-G-filterbase $\widetilde{\mathcal{B}}$.

Theorem 3.4. Let $\widetilde{\mathcal{B}}$ be an LM-G-filterbase on X, $f : X \to Y$ be a function and $s : L \to M$ be a stratification mapping. Then

- (i.) If $\widetilde{\mathcal{B}}$ is s-stratified, then $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}})$ is s-stratified.
- (*ii.*) $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}^s) = (f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}))^s$.

Proof. Proof of (i.) is trivial. Since $\widetilde{\mathcal{B}} \leq \widetilde{\mathcal{B}}^s$, $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}) \leq f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}^s)$. Also since $\widetilde{\mathcal{B}}^s$ is *s*-stratified, $f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}^s)$ is *s*-stratified. Therefore $(f^{\multimap}(\widetilde{\mathcal{B}}))^s \leq f^{\multimap}(\widetilde{\mathcal{B}}^s)$.

For $B \in L^Y$,

$$f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}^{s})(B) = \bigvee_{f^{\leftarrow}(B) \ge A} \widetilde{\mathcal{B}}^{s}(A)$$
$$= \bigvee_{f^{\leftarrow}(B) \ge A} \bigvee \{\widetilde{\mathcal{B}}(P) \odot s(\alpha); A \ge P \odot \alpha_{X}\}$$
$$(f^{\twoheadrightarrow}(\widetilde{\mathcal{B}}))^{s}(B) = \bigvee \{f^{\twoheadrightarrow}(\widetilde{\mathcal{B}})(R) \odot s(\beta); B \ge R \odot \beta_{Y}\}$$
$$= \bigvee \{[\bigvee_{f^{\leftarrow}(R) \ge Q} \widetilde{\mathcal{B}}(Q)] \odot s(\beta); B \ge R \odot \beta_{Y}\}$$

Since $f^{\leftarrow}(B) \geq A \geq P \odot \alpha_X$, we have $B \geq f^{\rightarrow}(f^{\leftarrow}(B)) \geq f^{\rightarrow}(P) \odot \alpha_Y$. Therefore, by comparing the expressions of $f^{\rightarrow}(\widetilde{\mathcal{B}}^s)$ and $(f^{\rightarrow}(\widetilde{\mathcal{B}}))^s$, it is clear that $f^{\rightarrow}(\widetilde{\mathcal{B}}^s)(B) \leq (f^{\rightarrow}(\widetilde{\mathcal{B}}))^s(B)$. Therefore $f^{\rightarrow}(\widetilde{\mathcal{B}}^s) = (f^{\rightarrow}(\widetilde{\mathcal{B}}))^s$.

Example 3.5. Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and L = M = [0, 1]. $s : L \to M$ defined by s(1) = 1, s(0) = 0 and $s(\alpha) = 0.2$ for all $\alpha \in (0, 1)$ is a stratification mapping. Let $A_1 \in L^X$ be defined by $A_1(x_1) = 0.8, A_1(x_2) = 0.9$. Then $\widetilde{\mathcal{B}} : L^X \to M$ defined by

$$\widetilde{\mathcal{B}}(A) = \begin{cases} 1 & \text{if } A = 1_X ,\\ 0.3 & \text{if } A \ge A_1 \text{ and } A \ne 1_X \\ 0.2 & \text{otherwise} \end{cases}$$

is an *s*-stratified *LM*-G-filterbase on *X*. Let $f : X \to Y$ be defined by $f(x_1) = f(x_2) = y_1$. Then $f^{\to}(1_X) = B_1$ where $B_1(y_1) = 1, B_1(y_2) = 0, B_1(y_3) = 0$ and $f^{\to}(A_1) = B_2$ where $B_2(y_1) = 0.9, B_2(y_2) = 0, B_2(y_3) = 0$. Then $f^{\to}(\widetilde{\mathcal{B}})(B) : L^Y \to M$ defined by

$$f^{\twoheadrightarrow}(\widetilde{\mathcal{B}})(B) = \begin{cases} 1 & \text{if } B \ge B_1, \\ 0.3 & \text{if } B \ge B_2 \text{ and } B \not\ge B_1 \\ 0.2 & \text{otherwise} \end{cases}$$

is an s-stratified LM-G-filterbase on Y.

It is easy to prove that

Theorem 3.6. Let \mathcal{B} be an LM-filterbase on X and $f: X \to Y$ be a function. Then $f^{\neg}(\mathcal{B}): L^Y \to M$ defined by $f^{\neg}(\mathcal{B})(B) = \bigvee \{\mathcal{B}(A) | f^{\leftarrow}(B) \ge A\}$ for all $B \in L^Y$ is an LM-filterbase on Y. If \mathcal{B} is s-stratified then $f^{\neg}(\mathcal{B})$ is also s-stratified.

Theorem 3.7. Let $\widetilde{\mathcal{B}}$ be an LM-G-filterbase on Y and $f: X \to Y$ be a function. Then $f^{\leftarrow}(\widetilde{\mathcal{B}}): L^X \to M$ defined by $f^{\leftarrow}(\widetilde{\mathcal{B}})(A) = \bigvee \{\widetilde{\mathcal{B}}(B) | A \geq f^{\leftarrow}(B)\}$ for all $A \in L^X$ is an LM-G-filterbase on X. If $\widetilde{\mathcal{B}}_1$ and $\widetilde{\mathcal{B}}_2$ are LM-G-filterbases on Y such that $\widetilde{\mathcal{B}}_1 \leq \widetilde{\mathcal{B}}_2$, then $f^{-}(\widetilde{\mathcal{B}}_1) \leq f^{-}(\widetilde{\mathcal{B}}_2)$.

Proof. $(\widetilde{\mathcal{B}}_1)$ is obvious. Suppose there exists $A_1, A_2 \in L^X$ such that $\langle f^{\leftarrow}(\widetilde{\mathcal{B}}) \rangle (A_1 \odot A_2) \not\geq f^{\leftarrow}(\widetilde{\mathcal{B}})(A_1) \odot f^{\leftarrow}(\widetilde{\mathcal{B}})(A_2)$. This implies there exists $U, V \in L^Y$ where $A_1 \geq f^{\leftarrow}(U), A_2 \geq f^{\leftarrow}(V)$ such that $\langle f^{\leftarrow}(\widetilde{\mathcal{B}}) \rangle (A_1 \odot A_2) \not\geq \widetilde{\mathcal{B}}(U) \odot \widetilde{\mathcal{B}}(V)$. Therefore $\langle f^{\leftarrow}(\widetilde{\mathcal{B}}) \rangle (A_1 \odot A_2) \not\geq \langle \widetilde{\mathcal{B}} \rangle (U \odot V)$. This implies there exists $W \leq U \odot V$ such that $\langle f^{\leftarrow}(\widetilde{\mathcal{B}}) \rangle (A_1 \odot A_2) \not\geq \widetilde{\mathcal{B}}(W)$.

Since $A_1 \odot A_2 \ge f^{\leftarrow}(U) \odot f^{\leftarrow}(V) \ge f^{\leftarrow}(U \odot V) \ge f^{\leftarrow}(W), \ f^{\leftarrow}(\widetilde{\mathcal{B}})(A_1 \odot A_2) \ge \widetilde{\mathcal{B}}(W)$ and hence $\langle f^{\leftarrow}(\widetilde{\mathcal{B}}) \rangle (A_1 \odot A_2) \ge \widetilde{\mathcal{B}}(W)$ which is a contradiction. Therefore $f^{\leftarrow}(\widetilde{\mathcal{B}})$ is an *LM*-G-filterbase on *X*. Rest of the proof is trivial.

Theorem 3.8. Let $\widetilde{\mathcal{B}}$ be an LM-G-filterbase on Y, $f : X \to Y$ be a function and $s : L \to M$ be a stratification mapping. Then

- (i.) If $\widetilde{\mathcal{B}}$ is s-stratified, then $f^{\leftarrow}(\widetilde{\mathcal{B}})$ is s-stratified.
- (*ii.*) $f^{\leftarrow}(\widetilde{\mathcal{B}}^s) = (f^{\leftarrow}(\widetilde{\mathcal{B}}))^s$.

Proof. We prove only (ii.). Since $\widetilde{\mathcal{B}} \leq \widetilde{\mathcal{B}}^s$, $f^{*-}(\widetilde{\mathcal{B}}) \leq f^{*-}(\widetilde{\mathcal{B}}^s)$. Also since $\widetilde{\mathcal{B}}^s$ is *s*-stratified, $f^{*-}(\widetilde{\mathcal{B}}^s)$ is *s*-stratified. Therefore $(f^{*-}(\widetilde{\mathcal{B}}))^s \leq f^{*-}(\widetilde{\mathcal{B}}^s)$. For $A \in L^X$,

$$f^{\leftarrow}(\widetilde{\mathcal{B}}^{s})(A) = \bigvee_{A \ge f^{\leftarrow}(B)} \widetilde{\mathcal{B}}^{s}(B)$$

$$= \bigvee_{A \ge f^{\leftarrow}(B)} \bigvee \{\widetilde{\mathcal{B}}(R) \odot s(\beta); B \ge R \odot \beta_{Y} \}$$

$$(f^{\leftarrow}(\widetilde{\mathcal{B}}))^{s}(A) = \bigvee \{f^{\leftarrow}(\widetilde{\mathcal{B}})(P) \odot s(\alpha); A \ge P \odot \alpha_{X} \}$$

$$= \bigvee \{[\bigvee_{P \ge f^{\leftarrow}(S)} \widetilde{\mathcal{B}}(S)] \odot s(\alpha); A \ge P \odot \alpha_{X} \}$$

Since $A \geq f^{\leftarrow}(B) \geq f^{\leftarrow}(R) \odot \beta_X$, comparing the expressions of $f^{\leftarrow}(\widetilde{\mathcal{B}}^s)$ and $(f^{\leftarrow}(\widetilde{\mathcal{B}}))^s$, it is clear that $f^{\leftarrow}(\widetilde{\mathcal{B}}^s)(A) \leq (f^{\leftarrow}(\widetilde{\mathcal{B}}))^s(A)$. Therefore $f^{\leftarrow}(\widetilde{\mathcal{B}}^s) = (f^{\leftarrow}(\widetilde{\mathcal{B}}))^s$.

Example 3.9. Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and L = M = [0, 1]. $s : L \to M$ defined by s(1) = 1, s(0) = 0 and $s(\alpha) = 0.5$ for all $\alpha \in (0, 1)$ is a stratification mapping. Let $B_1 \in L^Y$ be defined by $B_1(y_1) = 0.7, B_1(y_2) = 0.8$ and $B_1(y_3) = 0.4$. Then $\widetilde{\mathcal{B}} : L^Y \to M$ defined by

$$\widetilde{\mathcal{B}}(B) = \begin{cases} 1 & \text{if } B = 1_Y, \\ 0.8 & \text{if } B \ge B_1 \text{ and } B \neq 1_Y \\ 0.5 & \text{otherwise} \end{cases}$$

is an s-stratified LM-G-filterbase on Y. Let $f: X \to Y$ be defined by $f(x_1) = y_1$ and $f(x_2) = y_3$. Since $f^{\leftarrow}(B_1) = A_1$ where $A_1(x_1) = 0.7$ and $A_1(x_2) = 0.4$, $f^{\leftarrow}(\widetilde{\mathcal{B}}): L^X \to M$ defined by

$$f^{\leftarrow}(\widetilde{\mathcal{B}})(A) = \begin{cases} 1 & \text{if } A = 1_X, \\ 0.8 & \text{if } A \ge A_1 \text{ and } A \ne 1_X \\ 0.5 & \text{otherwise} \end{cases}$$

is an s-stratified LM-G-filterbase on X.

Figure 1: The diamond type lattice

Remark 3.10. Let \mathcal{B} be an LM-filterbase on Y and $f : X \to Y$ be a function. Then $f^{*-}(\mathcal{B}) : L^X \to M$ defined by $f^{*-}(\mathcal{B})(A) = \bigvee \{\mathcal{B}(B) | A \ge f^{\leftarrow}(B)\}$ for all $A \in L^X$ need not be an LM-filterbase on X.

For example, let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2\}$ and L = M be the lattice shown in Figure 1. Let $f: X \to Y$ be defined by $f(x_1) = f(x_2) = f(x_3) = y_1$ and the *LM*-filterbase on Y, \mathcal{B} be defined by

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}	B_{15}	B_{16}
y_1	0	0	0	0	α	α	α	α	β	β	β	β	1	1	1	1
y_2	0	α	β	1	0	α	β	1	0	α	β	1	0	α	β	1
$\mathcal{B}(B_i)$	0	β	α	1	0	β	α	1	0	β	α	1	0	β	α	1

Then $f^{\leftarrow}(B_4) = 0_X$. Therefore by definition, $f^{\ast}(\mathcal{B})(0_X) = 1$ and hence $f^{\ast}(\mathcal{B})$ is not an *LM*-filterbase on *X*.

It is easy to observe that

Theorem 3.11. Let \mathcal{B} be an LM-filterbase on Y and $f : X \to Y$ be a surjective function. Then $f^{\leftarrow}(\mathcal{B}) : L^X \to M$ defined by $f^{\leftarrow}(\mathcal{B})(A) = \bigvee \{\mathcal{B}(B) | A \ge f^{\leftarrow}(B)\}$ is an LM-filterbase on X.

4. Images of *LM*-G-filter Spaces

This section defines images of LM-G-filters induced by functions. Images of sstratified, inspired, weakly inspired and catalyzed LM-G-filter spaces are discussed. Images induced by functions in the case of LM-filters are also analyzed.

Theorem 4.1. Let (Y, G) be an LM-G-filter space and $f : X \to Y$ be a function. Define $f^{\leftarrow}(G) : L^X \to M$ by $f^{\leftarrow}(G)(A) = \bigvee \{G(B) | A \ge f^{\leftarrow}(B)\}$ for all $A \in L^X$. Then

- (i.) $f^{\leftarrow}(G)$ is an LM-G-filter on X.
- (ii.) If G_1 and G_2 are LM-G-filters on Y such that $G_1 \leq G_2$, then $f^{*-}(G_1) \leq f^{*-}(G_2)$.
- (iii.) $f^{*-}(G)$ is the coarsest LM-G-filter on X for which $f^{\rightarrow} : (X, f^{*-}(G)) \rightarrow (Y, G)$ is an LM-G-filter map.

Proof. We prove only (iii.). It is clear that $f^{\rightarrow} : (X, f^{\leftarrow}(G)) \rightarrow (Y, G)$ is an LM-G-filter map. Let H be an LM-G-filter on X such that $f^{\rightarrow} : (X, H) \rightarrow (Y, G)$ is an LM-G-filter map. Therefore, for $B \in L^Y$, $H(f^{\leftarrow}(B)) \geq G(B)$.

$$f^{\leftarrow}(G)(A) = \bigvee \{G(B)|A \ge f^{\leftarrow}(B)\} \\ \le \bigvee \{H(f^{\leftarrow}(B))|A \ge f^{\leftarrow}(B)\} \le H(A).$$

In [6], we have the following theorem.

Theorem 4.2. [6] Let (X, G) be an LM-G-filter space and $s : L \to M$ be a stratification mapping. Then $G^s : L^X \to M$ defined by $G^s(A) = \bigvee \{G(B) \odot s(\alpha) | A \ge B \odot \alpha\}$, where $B \in L^X$, $\alpha \in L$ is the coarsest s-stratified LM-G-filter on X which is finer than G. G^s is called the s-stratification of the LM-G-filter G.

Theorem 4.3. Let (Y,G) be an LM-G-filter space, $f: X \to Y$ be a function and $s: L \to M$ be a stratification mapping. Then

- (i.) If G is s-stratified, then $f^{\leftarrow}(G)$ is s-stratified.
- (*ii.*) $f^{-}(G^s) = (f^{-}(G))^s$.

Proof. We prove only (ii.). Since $G \leq G^s$, $f^{\leftarrow}(G) \leq f^{\leftarrow}(G^s)$. Also since G^s is s-stratified, $f^{\leftarrow}(G^s)$ is s-stratified. Therefore $(f^{\leftarrow}(G))^s \leq f^{\leftarrow}(G^s)$. For $A \in L^X$,

$$f^{\leftarrow}(G^s)(A) = \bigvee_{A \ge f^{\leftarrow}(B)} G^s(B)$$
$$= \bigvee_{A \ge f^{\leftarrow}(B)} \bigvee \{G(R) \odot s(\beta); B \ge R \odot \beta_Y \}$$

$$(f^{\leftarrow}(G))^{s}(A) = \bigvee \{ f^{\leftarrow}(G)G(P) \odot s(\alpha); A \ge P \odot \alpha_{X} \}$$
$$= \bigvee \{ [\bigvee_{P \ge f^{\leftarrow}(S)} G(S)] \odot s(\alpha); A \ge P \odot \alpha_{X} \}$$

Since $A \ge f^{\leftarrow}(B) \ge f^{\leftarrow}(R) \odot \beta_X$, comparing the expressions of $f^{\ast-}(G^s)$ and $(f^{\ast-}(G))^s$, it is clear that $f^{\ast-}(G^s)(A) \le (f^{\ast-}(G))^s(A)$. Therefore $f^{\ast-}(G^s) = (f^{\ast-}(G))^s$.

Example 4.4. Let $X = \{x_1, x_2\}, Y = \{y_1, y_2\}$ and L = M = [0, 1]. $s : L \to M$ defined by s(1) = 1, s(0) = 0 and $s(\alpha) = 0.3$ for all $\alpha \in (0, 1)$ is a stratification mapping. Let $B_1 \in L^Y$ be defined by $B_1(y_1) = 0.3, B_1(y_2) = 0.4$. Then $G : L^Y \to M$ defined by

$$G(B) = \begin{cases} 1 & \text{if } B = 1_Y, \\ 0.7 & \text{if } B \ge B_1 \text{ and } B \ne 1_Y \\ 0.3 & \text{otherwise} \end{cases}$$

is an s-stratified LM-G-filter on Y. Let $f: X \to Y$ be defined by $f(x_1) = f(x_2) = y_2$. Since $f^{\leftarrow}(B_1) = A_1$ where $A_1(x_1) = A_1(x_2) = 0.4$, $f^{\leftarrow}(G): L^X \to M$ defined by

$$f^{*-}(G)(A) = \begin{cases} 1 & \text{if } A = 1_X, \\ 0.7 & \text{if } A \ge A_1 \text{ and } A \ne 1_X \\ 0.3 & \text{otherwise} \end{cases}$$

is an *s*-stratified LM-G-filter on X.

Theorem 4.5. Let L and M be completely distributive lattices, (Y,G) be an LM-G-filter space and $f: X \to Y$ be a function. Then

- (i.) If (Y,G) is weakly inspired LM-G-filter space, then $(X, f^{*-}(G))$ is weakly inspired.
- (ii.) If (Y,G) is catalyzed LM-G-filter space, then $(X, f^{\leftarrow}(G))$ is catalyzed.

Proof.

(i.) Let (Y, G) be weakly inspired LM-G-filter space. For $A \in L^X$,

$$\begin{aligned} f^{\leftarrow}(G)(A) &= \bigvee \{ G(B) | A \ge f^{\leftarrow}(B) \} \\ &\leq \bigvee \{ G(1_{\delta_p(B)}) | 1_{\delta_p(A)} \ge f^{\leftarrow}(1_{\delta_p(B)}) \} \text{ for all } p \in pr(L) \\ &\text{ [since } \delta_p(A) \le \delta_p(B) \text{ when } A \le B \text{ and } \delta_p(f^{\leftarrow}(B)) = f^{-1}(\delta_p(B))] \\ &\leq f^{\leftarrow}(G)(1_{\delta_p(A)}) \text{ for all } p \in pr(L) \end{aligned}$$

Therefore,
$$f^{\ast-}(G)(A) \leq \bigwedge_{p \in pr(L)} f^{\ast-}(G)(1_{\delta_p(A)}).$$

(ii.) Let (Y, G) be catalyzed *LM*-G-filter space. Since $A \ge 1_{\delta_1(A)}$ for $A \in L^X$, $f^{*-}(G)(1_{\delta_1(A)}) \le f^{*-}(G)(A)$. The reverse inequality is obtained by

$$f^{*-}(G)(A) = \bigvee \{G(B) | A \ge f^{\leftarrow}(B)\}$$

= $\bigvee \{G(1_{\delta_1(B)}) | 1_{\delta_1(A)} \ge f^{\leftarrow}(1_{\delta_1(B)})\}$
[since $\delta_1(A) \le \delta_1(B)$ when $A \le B$ and $\delta_1(f^{\leftarrow}(B)) = f^{-1}(\delta_1(B))$]
 $\le f^{*-}(G)(1_{\delta_1(A)})$

Therefore, $f^{*-}(G)(A) = f^{*-}(G)(1_{\delta_1(A)}).$

We leave the following question open.

Question 4.6. Is $(X, f^{\leftarrow}(G))$ an inspired LM-G-filter space if (Y, G) is inspired ?

Remark 4.7. Let (Y, F) be an LM-filter space and $f : X \to Y$ be a function. Then $f^{\leftarrow}(F) : L^X \to M$ defined by $f^{\leftarrow}(F)(A) = \bigvee \{F(B) | A \ge f^{\leftarrow}(B)\}$ for all $A \in L^X$ need not be an LM-filter on X. For example, let $X = \{x\}, Y = \{y_1, y_2\}$ and L = M be the lattice shown in Figure 1. Let $f : X \to Y$ be defined by $f(x) = y_2$ and the LM-filter on Y, F be defined by

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}	A_{15}	A_{16}
y_1	0	0	0	0	α	α	α	α	β	β	β	β	1	1	1	1
y_2	0	α	β	1	0	α	β	1	0	α	β	1	0	α	β	1
$F(A_i)$	0	0	0	0	α	α	α	α	β	β	β	β	1	1	1	1

Then $f^{\leftarrow}(A_{13}) = 0_X$. Therefore by definition, $f^{\leftarrow}(F)(0_X) = 1$ and hence $f^{\leftarrow}(F)$ is not an LM-filter on X.

It is easy to observe that

Theorem 4.8. Let F be an LM-filter on Y and $f : X \to Y$ be a surjective function. Then $f^{*-}(F) : L^X \to M$ defined by $f^{*-}(F)(A) = \bigvee \{F(B) | A \ge f^{\leftarrow}(B)\}$ for all $A \in L^X$ is an LM-filter on X.

Theorem 4.9. Let (X, G) be an LM-G-filter space and $f : X \to Y$ be a function. Define $f^{\twoheadrightarrow}(G) : L^Y \to M$ by $f^{\twoheadrightarrow}(G)(B) = G(f^{\leftarrow}(B))$ for all $B \in L^Y$. Then

- (i.) $f^{\rightarrow}(G)$ is an LM-G-filter on Y.
- (ii.) If G_1 and G_2 are LM-G-filters on X such that $G_1 \leq G_2$, then $f^{-*}(G_1) \leq f^{-*}(G_2)$.

(iii.) $f^{\twoheadrightarrow}(G)$ is the coarsest LM-G-filter on Y for which $f^{\rightarrow} : (X,G) \rightarrow (Y, f^{\twoheadrightarrow}(G))$ is an LM-G-filter preserving map.

Proof. We prove only (iii.). For all $A \in L^X$, $f^{\rightarrow}(G)(f^{\rightarrow}(A)) = G(f^{\leftarrow}(f^{\rightarrow}(A))) \ge G(A)$. Therefore, $f^{\rightarrow}: (X, G) \to (Y, G^{f^{\rightarrow}})$ is an *LM*-G-filter preserving map. Let *H* be an *LM*-G-filter on *Y* such that $f^{\rightarrow}: (X, G) \to (Y, H)$ is an *LM*-G-filter preserving map. Therefore, for $A \in L^X$, $G(A) \le H(f^{\rightarrow}(A))$.

$$\begin{aligned} f^{\twoheadrightarrow}(G)(B) &= G(f^{\leftarrow}(B)) \\ &\leq H(f^{\rightarrow}(f^{\leftarrow}(B)) \leq H(B). \end{aligned}$$

Theorem 4.10. Let (X,G) be an LM-G-filter space, $f : X \to Y$ be a function and $s : L \to M$ be a stratification mapping. Then

- (i.) If G is s-stratified, then $f^{\rightarrow}(G)$ is s-stratified.
- (*ii.*) $f^{\to}(G^s) = (f^{\to}(G))^s$.

Proof. Proof of (i.) is obvious. Since $G \leq G^s$, $f^{\rightarrow}(G) \leq f^{\rightarrow}(G^s)$. Also since G^s is s-stratified, $f^{\rightarrow}(G^s)$ is s-stratified. Therefore $(f^{\rightarrow}(G))^s \leq f^{\rightarrow}(G^s)$. For $B \in L^Y$,

$$f^{\rightarrow}(G^{s})(B) = G^{s}(f^{\leftarrow}(B))$$

$$= \bigvee \{G(A) \odot s(\alpha); f^{\leftarrow}(B) \ge A \odot \alpha_{X} \}$$

$$(f^{\rightarrow}(G))^{s}(B) = \bigvee \{f^{\rightarrow}(G)(R) \odot s(\beta); B \ge R \odot \beta_{Y} \}$$

$$= \bigvee \{G(f^{\leftarrow}(R)) \odot s(\beta); B \ge R \odot \beta_{Y} \}$$

Since $f^{\leftarrow}(B) \ge A \odot \alpha_X$, we have $B \ge f^{\rightarrow}(f^{\leftarrow}(B)) \ge f^{\rightarrow}(A \odot \alpha_X) = f^{\rightarrow}(A) \odot \alpha_Y$. Therefore, by comparing the expressions of $f^{\rightarrow}(G^s)$ and $(f^{\rightarrow}(G))^s$, it is clear that $f^{\rightarrow}(G^s)(A) \le (f^{\rightarrow}(G))^s(A)$. Therefore $f^{\rightarrow}(G^s) = (f^{\rightarrow}(G))^s$.

Example 4.11. Let $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3\}$ and L = M = [0, 1]. $s : L \to M$ defined by s(1) = 1, s(0) = 0 and $s(\alpha) = 0.4$ for all $\alpha \in (0, 1)$ is a stratification mapping. Let $A_1 \in L^X$ be defined by $A_1(x_1) = 0.5, A_1(x_2) = 0.9, A_1(x_3) = 0.2$. Then $G : L^X \to M$ defined by

$$G(A) = \begin{cases} 1 & \text{if } A = 1_X, \\ 0.7 & \text{if } A \ge A_1 \text{ and } A \ne 1_X \\ 0.5 & \text{otherwise} \end{cases}$$

is an *s*-stratified *LM*-G-filter on *X*. Let $f: X \to Y$ be defined by $f(x_1) = f(x_2) = y_1, f(x_3) = y_2$. Let $B_1, B_2 \in L^Y$ be defined by $B_1(y_1) = 1, B_1(y_2) = 1, B_1(y_3) = 0$ and $B_2(y_1) = 0.9, B_2(y_2) = 0.2, B_2(y_3) = 0$ Then $f^{\neg \neg}(G)(B) : L^Y \to M$ defined by

$$f^{\twoheadrightarrow}(G)(B) = \begin{cases} 1 & \text{if } B \ge B_1 ,\\ 0.7 & \text{if } B \ge B_2 \text{ and } B \not\ge B_1 \\ 0.5 & \text{otherwise} \end{cases}$$

is an s-stratified LM-G-filter on Y.

Proceeding as in Theorem 4.5, it is easy to prove the following theorem:

Theorem 4.12. Let L and M be completely distributive lattices, (X,G) be an LM-G-filter space and $f: X \to Y$ be a function. Then

- (i.) If (X, G) is inspired LM-G-filter space, then $(Y, f^{-*}(G))$ is inspired.
- (ii.) If (X,G) is weakly inspired LM-G-filter space, then $(Y, f^{\rightarrow}(G))$ is weakly inspired.
- (iii.) If (X, G) is catalyzed LM-G-filter space, then $(Y, f^{-*}(G))$ is catalyzed.

It is easy to observe that

Theorem 4.13. Let F be an LM-filter on X and $f : X \to Y$ be a function. Then $f^{\to}(F) : L^Y \to M$ defined by $f^{\to}(F)(B) = F(f^{\leftarrow}(B))$ for all $B \in L^Y$ is an LM-filter on Y.

5. LM-G-filter Spaces and Neighborhood Systems

This section reveals the categorical connection between LM-G-filter spaces and neighborhood systems. In this section L and M are assumed to be completely distributive lattices with an order reversing involution "′".

Notation 5.1. [11] The set of all fuzzy points x_{λ} ($\lambda \in J(L)$) is denoted by $J(L^X)$. A fuzzy point $x_{\lambda} \in J(L^X)$ quasi-coincides with $A \in L^X$ if $\lambda \nleq A'(x)$ and is denoted by $x_{\lambda}\hat{q}A$. The relation "does not quasi-coincides" is denoted by $\neg \hat{q}$.

Definition 5.2. (See [14] for *L*-fuzzifying neighborhood system) An *LM*-fuzzy neighborhood system on X is defined to be a set $\mathcal{N} = \{\mathcal{N}_{x_{\lambda}} : x_{\lambda} \in J(L^X)\}$ of maps $\{\mathcal{N}_{x_{\lambda}} : L^X \to M\}$ satisfying the following conditions:

(FN1) $\mathcal{N}_{x_{\lambda}}(1_X) = 1$ and $\mathcal{N}_{x_{\lambda}}(0_X) = 0$;

(FN2) $\mathcal{N}_{x_{\lambda}}(A) = 0$ if $x_{\lambda} \nleq A$;

(FN3) $\mathcal{N}_{x_{\lambda}}(A \wedge B) = \mathcal{N}_{x_{\lambda}}(A) \wedge \mathcal{N}_{x_{\lambda}}(B).$

The pair (X, \mathcal{N}) is called an LM-fuzzy neighborhood space and it will be called topological if it satisfies moreover, $(\mathbf{FN4}) \mathcal{N}_{x_{\lambda}}(A) = \bigvee_{x_{\lambda} \leq B \leq A} \bigwedge_{y_{\mu} \leq B} \mathcal{N}_{y_{\mu}}(B)$. A map-

ping $f: X \to Y$ between two LM-fuzzy neighborhood spaces (X, \mathcal{N}_1) and (Y, \mathcal{N}_2) is called continuous if $\forall x_{\lambda} \in J(L^X), \forall B \in L^Y, (\mathcal{N}_1)_{x_{\lambda}}(f^{\leftarrow}(B)) \geq (\mathcal{N}_2)_{f(x)_{\lambda}}(B)$. The category of topological LM-fuzzy neighborhood spaces with continuous mappings as morphisms is denoted by (LM)-**FN**.

Definition 5.3. [13] An LM-fuzzy quasi-coincident neighborhood system on X is defined to be a set $\mathcal{Q} = \{\mathcal{Q}_{x_{\lambda}} : x_{\lambda} \in J(L^X)\}$ of maps $\{\mathcal{Q}_{x_{\lambda}} : L^X \to M\}$ satisfying the following conditions:

(FQN1) $\mathcal{Q}_{x_{\lambda}}(1_X) = 1$ and $\mathcal{Q}_{x_{\lambda}}(0_X) = 0$;

(FQN2) $Q_{x_{\lambda}}(A) = 0$ if $x_{\lambda} \neg \hat{q}A$;

(FQN3) $\mathcal{Q}_{x_{\lambda}}(A \wedge B) = \mathcal{Q}_{x_{\lambda}}(A) \wedge \mathcal{Q}_{x_{\lambda}}(B).$

The pair (X, \mathcal{Q}) is called an LM-fuzzy quasi-coincident neighborhood space and it will be called topological if it satisfies moreover, $(\mathbf{FQN4})\mathcal{Q}_{x_{\lambda}}(A) = \bigvee_{x_{\lambda}\hat{q}B \leq A} \bigwedge_{y_{\mu}\hat{q}B} \mathcal{Q}_{y_{\mu}}(B).$

A mapping $f: X \to Y$ between two LM-fuzzy quasi-coincident neighborhood spaces (X, Q_1) and (Y, Q_2) is called continuous if $\forall x_{\lambda} \in J(L^X), \forall B \in L^Y, (Q_1)_{x_{\lambda}}(f^{\leftarrow}(B)) \geq (Q_2)_{f(x)_{\lambda}}(B)$. The category of topological LM-fuzzy quasi-coincident neighborhood spaces with continuous mappings as morphisms is denoted by (LM)-**FQN**.

Theorem 5.4. Let (X,G) be an LM-G-filter space. Define $G_{x_{\lambda}}: L^X \to M$ by

$$G_{x_{\lambda}}(A) = \begin{cases} G(A) & \text{if } x_{\lambda} \leq A, \\ 0 & \text{otherwise} \end{cases}$$

Then

(i.)
$$\mathcal{N}_G = \{G_{x_\lambda}; x_\lambda \in J(L^X)\}$$
 is a topological LM-fuzzy neighborhood system.

(ii.) If $f^{\rightarrow} : (X, G_1) \rightarrow (Y, G_2)$ is an LM-G-filter map, then $f^{\rightarrow} : (X, \mathcal{N}_{G_1}) \rightarrow (Y, \mathcal{N}_{G_2})$ is continuous.

Proof.

(i.) (FN1) and (FN2) are obvious.

(FN3) When $A \leq B$, $G_{x_{\lambda}}(A) \leq G_{x_{\lambda}}(B)$. For $A, B \in L^X$ such that $x_{\lambda} \leq A$ and $x_{\lambda} \leq B$, we have $x_{\lambda} \leq A \wedge B$. Hence $G_{x_{\lambda}}(A) \wedge G_{x_{\lambda}}(B) = G(A) \wedge G(B) \leq G(A \wedge B) = G_{x_{\lambda}}(A \wedge B)$. Therefore, $G_{x_{\lambda}}(A \wedge B) = G_{x_{\lambda}}(A) \wedge G_{x_{\lambda}}(B)$.

(FN4) If
$$x_{\lambda} \not\leq A$$
, then $G_{x_{\lambda}}(A) = \bigvee_{x_{\lambda} \leq B \leq A} \bigwedge_{y_{\mu} \leq B} G_{y_{\mu}}(B) = 0.$
If $x_{\lambda} \leq A$, then $\bigvee_{x_{\lambda} \leq B \leq A} \bigwedge_{y_{\mu} \leq B} G_{y_{\mu}}(B) = \bigvee_{x_{\lambda} \leq B \leq A} G(B) = G(A) = G(A)$

Therefore,
$$G_{x_{\lambda}}(A) = \bigvee_{x_{\lambda} \leq B \leq A} \bigwedge_{y_{\mu} \preceq B} G_{y_{\mu}}(B).$$

(ii.) If $(G_2)_{f(x)_{\lambda}}(B) \neq 0$ for any $B \in L^Y$, then $f(x)_{\lambda} \leq B$, which implies $x_{\lambda} \leq f^{\leftarrow}(B)$. Therefore $(G_1)_{x_{\lambda}}(f^{\leftarrow}(B)) = G_1(f^{\leftarrow}(B)) \geq G_2(B) = (G_2)_{f(x)_{\lambda}}(B)$ for each $x_{\lambda} \in J(L^X)$. Hence $f^{\rightarrow} : (X, \mathcal{N}_{G_1}) \rightarrow (Y, \mathcal{N}_{G_2})$ is continuous.

Corollary 5.5. Let (X, G) be an LM-G-filter space and $\omega(G) = \mathcal{N}_G$. Then ω is a functor from LM-**G** to (LM)-**FN**

Theorem 5.6. Let (X,G) be an LM-G-filter space. Define $\widehat{G}_{x_{\lambda}}: L^X \to M$ by

$$\widehat{G}_{x_{\lambda}}(A) = \begin{cases} G(A) & \text{if } x_{\lambda} \widehat{q}A, \\ 0 & \text{if } x_{\lambda} \neg \widehat{q}A \end{cases}$$

Then

- (i.) $\mathcal{Q}_G = \{\widehat{G}_{x_\lambda}; x_\lambda \in J(L^X)\}$ is a topological LM-fuzzy quasi-coincident neighborhood system.
- (ii.) If $f^{\rightarrow} : (X, G_1) \rightarrow (Y, G_2)$ is an LM-G-filter map, then $f^{\rightarrow} : (X, \mathcal{Q}_{G_1}) \rightarrow (Y, \mathcal{Q}_{G_2})$ is continuous.

Proof.

(i.) (FQN1) and (FQN2) are obvious.

(FQN3) When
$$A \leq B$$
, $\widehat{G}_{x_{\lambda}}(A) \leq \widehat{G}_{x_{\lambda}}(B)$. For $A, B \in L^X$ such that $x_{\lambda}\hat{q}A$
and $x_{\lambda}\hat{q}B$, we have $x_{\lambda}\hat{q}A \wedge B$. Hence $\widehat{G}_{x_{\lambda}}(A) \wedge \widehat{G}_{x_{\lambda}}(B) = G(A) \wedge G(B) \leq G(A \wedge B) = \widehat{G}_{x_{\lambda}}(A \wedge B)$. Therefore, $\widehat{G}_{x_{\lambda}}(A \wedge B) = \widehat{G}_{x_{\lambda}}(A) \wedge \widehat{G}_{x_{\lambda}}(B)$.

 $G_{x_{\lambda}}(A).$

(FQN4) If
$$x_{\lambda}\neg \hat{q}A$$
, then $\widehat{G}_{x_{\lambda}}(A) = \bigvee_{x_{\lambda}\hat{q}B \leq A} \bigwedge_{y_{\mu}\hat{q}B} \widehat{G}_{y_{\mu}}(B) = 0.$
If $x_{\lambda}\hat{q}A$, then $\bigvee_{x_{\lambda}\hat{q}B \leq A} \bigwedge_{y_{\mu}\hat{q}B} \widehat{G}_{y_{\mu}}(B) = \bigvee_{x_{\lambda}\hat{q}B \leq A} G(B) = G(A) = \widehat{G}_{x_{\lambda}}(A).$
Therefore, $\widehat{G}_{x_{\lambda}}(A) = \bigvee_{x_{\lambda}\hat{q}B \leq A} \bigwedge_{y_{\mu}\hat{q}B} \widehat{G}_{y_{\mu}}(B).$

(ii.) If $(\widehat{G}_2)_{f(x)_{\lambda}}(B) \neq 0$ for any $B \in L^Y$, then $f(x)_{\lambda} \widehat{q}B$, which implies $x_{\lambda} \widehat{q} f^{\leftarrow}(B)$. Therefore $(\widehat{G}_1)_{x_{\lambda}}(f^{\leftarrow}(B)) = G_1(f^{\leftarrow}(B)) \geq G_2(B) = (\widehat{G}_2)_{f(x)_{\lambda}}(B)$ for each $x_{\lambda} \in J(L^X)$. Hence $f^{\rightarrow}: (X, \mathcal{Q}_{G_1}) \rightarrow (Y, \mathcal{Q}_{G_2})$ is continuous.

Corollary 5.7. Let (X, G) be an LM-G-filter space and $\Omega(G) = \mathcal{Q}_G$. Then Ω is a functor from LM-**G** to (LM)-**FQN**

6. Conclusion

The study has identified images of LM-G-filters and LM-G-filterbases induced by functions and investigated their properties. It is proved that the image of *s*stratified LM-G-filterbase is again an *s*-stratified LM-G-filterbase. The properties of being weakly inspired, catalyzed, *s*-stratified as well as the stratification of LM-G-filters are preserved by images.

In addition the study has obtained topological neighborhood systems from LM-G-filter spaces and categorical connections of LM-G with (LM)-FN and (LM)-FQN are identified. Identifying more relations of LM-G-filters with neighborhood systems and investigating the role of stratified, inspired, weakly inspired and catalyzed LM-G-filters in convergence theory are part of our future research.

Acknowledgements

The authors are thankful to a referee for his valuable suggestions and comments. The first author wishes to thank CSIR, India for giving financial assistance under the Senior Research Fellowship awarded by order No. 08/528(0004)/2019-EMR-1 dated 08/04/2021.

References

- Abbas S. E., Aygün Halis, Çetkin Vildan, On stratified L-filter structure, International Journal of Pure and Applied Mathematics, 78 (8) (2012), 1221-1239.
- [2] Adámek J., Herrlich H., Strecker G. E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990.

- [3] Burton M. H., Muraleetharan M., Gutiérrez García J., Generalised filters 2, Fuzzy Sets and Systems, 106 (1999), 393-400.
- [4] Höhle U., Rodabaugh S. E., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, 1999.
- [5] Jäger G., A note on stratified *LM*-filters, Iran. J. Fuzzy Syst. 10 (2013), 135-142.
- [6] Jose M., Mathew S. C., Generalization of *LM*-Filters: Sum, Subspace, Product, Quotient and Stratification, To appear.
- [7] Jose M., Mathew S. C., On the categories of inspired and weakly inspired *LM*-G-filter spaces, To appear.
- [8] Jose M., Mathew S. C., Catalyzed LM-G-filter spaces, J. Intell. Fuzzy Syst. 43 (2022), 1259-1269.
- [9] Jose M., Mathew S. C., On the categorical connections of L-G-filter spaces and a galois correspondence with *L*-fuzzy pre-proximity spaces, New Mathematics and Natural Computation, Accepted.
- [10] Kim Y. C., Ko J. M., Images and preimages of *L*-filterbases, Fuzzy Sets and Systems, 157 (2006), 1913-1927.
- [11] Liu Y. M., Luo M. K., Fuzzy Topology, World Scientific Co., 1997.
- [12] Lowen R., Convergence in fuzzy topological spaces, General Topology Appl., 10 (2)(1979), 147-160.
- [13] Pang B., On (*LM*)-fuzzy convergence spaces, Fuzzy Sets and Systems, 238 (2014), 46-70.
- [14] Zhang D., L-Fuzzifying topologies as L-topologies, Fuzzy Sets and Systems, 125 (2002), 135-144.