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ages of LM -G-filter spaces and LM -G-filterbases induced by functions are inves-
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1. Introduction
In 1977, Lowen [12] developed the idea of filters in IX , called prefilters to discuss

convergence in fuzzy topological spaces. In 1999 Burton et al. [3] introduced the
concept of generalized filters as a map from 2X to I. Subsequently Höhle and Šostak
[4] developed the notion of L-filters and stratified L-filters on a complete quasi-
monoidal lattice and discussed their role in the development of fuzzy convergence
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spaces. Later in 2006, Kim et al. [10] introduced the notion of L-filter base on a
strictly two-sided, commutative quantale lattice L and defined two types of images
and preimages of L-filter bases. In 2013, Jäger [5] developed a theory of stratified
LM -filters which generalizes the theory of stratified L-filters.

In [1], Abbas et al. investigated stratified L-filters and its stratification. In
[6], it is found that the stratification of L-filters in [1] need not preserve the L-
filter structure. This motivated the authors to introduce the concept of LM -
G-filter spaces [6] as a generalization of LM -filters. The study introduced the
concept of stratified LM -G-filters and stratification of LM -G-filter spaces by a
stratification mapping. Further, some subcategories of LM -G, the category of LM -
G-filter spaces have been identified by introducing the concepts of inspired, weakly
inspired LM -G-filter spaces in [7] and catalyzed LM -G-filter spaces in [8] and their
application in mathematical modeling is explored. In [9], the authors studied the
categorical connections of L-G-filters with L-filters and L-interior operators and
a galois correspondence between the categories of stratified L-G-filter spaces and
L-fuzzy pre-proximity spaces is identified.

This paper defines images of LM -G-filters and LM -G-filterbases induced by
functions and identifies their properties. It is proved that the properties of being
weakly inspired, catalyzed, s-stratified as well as the stratification of LM -G-filters
are preserved by images. Moreover, categorical connections of LM -G-filters with
LM -fuzzy neighborhood systems and LM -fuzzy quasi-coincident neighborhood sys-
tem are also obtained.

2. Preliminaries
Throughout this paper X stands for a non-empty ordinary set. For the notions

of category theory, the readers can refer to [2].

Definition 2.1. [4] A triple (L,≤,�) is called a strictly two-sided, commutative
quantale (stsc-quantale, for short) iff it satisfies the following properties:

(L1) L = (L,≤, 1, 0) is a complete lattice where 1 is the universal upper bound and
0 denotes the universal lower bound;

(L2) (L,�) is a commutative semigroup;

(L3) a = a� 1, for each a ∈ L;

(L4) � is distributive over arbitrary joins, i.e. (
∨
i∈I

ai)� b =
∨
i∈I

(ai � b).

Unless otherwise specified, in this paper, L and M stand for strictly two-sided,
commutative quantales.
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Remark 2.2. [4] Every completely distributive lattice, GL-monoid and complete
Heyting algebra ( i.e. frame) are stsc-quantales.

All algebraic operations on L can be extended pointwise to LX as A ≤ B if and
only if A(x) ≤ B(x), (A�B)(x) = A(x)�B(x) and (α�A)(x) = α�A(x) for all
x ∈ X. The constant function αX is defined by αX(x) = α for all x ∈ X.

Definition 2.3. [5] A mapping s : L → M with the properties (M1) s(0L) =
0M ; (M2) s(1L) = 1M and (M3) s(α ∧ β) = s(α) ∧ s(β) for all α, β ∈ L where L
and M are frames is called a stratification mapping.

Definition 2.4. [6] An LM-G-filter on a set X is defined to be a mapping G :
LX →M satisfying:

(G1) G(1X) = 1;

(G2) For every A,B ∈ LX such that A ≤ B, G(A) ≤ G(B);

(G3) For every A,B ∈ LX , G(A�B) ≥ G(A)�G(B).

The pair (X,G) is called an LM-G-filter space. In addition to the above axioms,
if (G4) : G(0X) = 0 is also satisfied, then (X,G) becomes an LM-filter space [4].
If G1 and G2 are two LM-G-filters on X such that G2(A) ≥ G1(A) for all A ∈ LX ,
then we say (X,G1) is weaker (coarser) than (X,G2) and (X,G2) is stronger (finer)
than (X,G1).
An LM-G-filter space (X,G) is called s-stratified if G(αX �A) ≥ s(α)�G(A) for
all α ∈ L and A ∈ LX where s : L → M is a stratification mapping. s-stratified
LM-filter is defined analogously [5].

Remark 2.5. An LM-G-filter space (X,G) is s-stratified if and only if G(αX) ≥
s(α) for all α ∈ L.

Definition 2.6. [6] Let (X,G1) and (Y,G2) be LM-G-filter spaces. A map f→ :
LX → LY is called an LM-G-filter map if G1(f

←(B)) ≥ G2(B), ∀B ∈ LY . A
map f→ : LX → LY is called an LM-G-filter preserving map if G2(f

→(A)) ≥
G1(A), ∀A ∈ LX .

The category of LM -G-filter spaces with LM -G-filter maps as morphisms is
denoted by LM -G.

Definition 2.7. [10] An L-filterbase on X is a mapping B : LX → L such that for
all A,B ∈ LX :

(B1) B(1X) = 1 and B(0X) = 0;
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(B2) 〈B〉(A�B) ≥ B(A)� B(B) where 〈B〉(A) =
∨
B≤A

B(B).

An L-filterbase B is said to be stratified if 〈B〉(α∧A) = α�B(A), for each A ∈ LX
and α ∈ L.[1]

Definition 2.8. [6] A function B̃ : LX →M is called an LM-G-filterbase on X if
it satisfies the following conditions:

(B1) B̃(1X) = 1;

(B2) 〈B̃〉(A�B) ≥ B̃(A)�B̃(B), for each A,B ∈ LX , where 〈B̃〉(A) =
∨
B≤A

B̃(B).

In addition to the above axioms, if (B3) : B̃(0X) = 0 is also satisfied, then (X, B̃)
becomes an LM-filterbase.

Definition 2.9. [6] An LM-G-filterbase B̃ is said to be s-stratified if B̃ satisfies

〈B̃〉(α� A) ≥ s(α)� B̃(A), for each A ∈ LX and α ∈ L where s is a stratification
mapping from L to M . s-stratified LM-filterbase is defined analogously.

Definition 2.10. [11] Let L be a complete lattice. The set of all prime elements
and co-prime elements in L are denoted by pr(L) and J(L) respectively. Define a
relation � in L as follows: ∀a, b ∈ L, a � b if and only if ∀S ⊂ L,

∨
S ≥ b⇒ ∃s ∈

S such that s ≥ a. Define a relation � in L as follows: ∀a, b ∈ L, a � b if and only
if ∀S ⊂ L,

∧
S ≤ b⇒ ∃s ∈ S such that s ≤ a.

Definition 2.11. [7, 8] For A ∈ LX , denote the p-set of A by δp(A) = {x ∈
X; p�A(x)}c where p is prime in L and ()c denotes set complement and 1-set
of A by δ1(A) = {x ∈ X;A(x) = 1}. Let (X,G) be an LM-G-filter space. If

G(A) =
∧

p∈pr(L)

G(1δp(A)) for all A ∈ LX , then (X,G) is called an inspired LM-G-

filter space. If G(A) ≤
∧

p∈pr(L)

G(1δp(A)) for all A ∈ LX , then (X,G) is called weakly

inspired LM-G-filter space. If G(A) = G(1δ1(A)) for all A ∈ LX , then (X,G) is
called catalyzed LM-G-filter space.

3. Images of LM-G-filterbases
This section defines two types of images of LM -G-filterbases induced by func-

tions and identifies certain properties of these images. It is proved that the property
of being s-stratified and stratification of LM -G-filterbases are preserved by both
kind of images. Images induced by functions in the case of LM -filterbases are also
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analyzed.

Lemma 3.1. Let (L,≤,�) be a stsc-quantale and f : X → Y a function. Then
f→(A� αX) = f→(A)� αY for all A ∈ LX and α ∈ L.
Proof.

f→(A� αX)(y) =
∨
{(A� αX)(x); f(x) = y}

=
∨
{A(x)� α; f(x) = y}

=
∨
{A(x); f(x) = y} � α (by property (L4) of stsc-quantale)

= (f→(A)� αY )(y)

Theorem 3.2. Let B̃ be an LM-G-filterbase on X and f : X → Y be a function.
Then f�(B̃) : LY → M defined by f�(B̃)(B) =

∨
{B̃(A)|f←(B) ≥ A} for all

B ∈ LY is an LM-G-filterbase on Y . If B̃1 and B̃2 are LM-G-filterbases on X such
that B̃1 ≤ B̃2, then f�(B̃1) ≤ f�(B̃2).

Proof. Clearly f�(B̃)(1Y ) = 1 . Suppose there exists B1, B2 ∈ LY such that

〈f�(B̃)〉(B1�B2) � f�(B̃)(B1)�f�(B̃)(B2). This implies there exists C,D ∈ LX

where f←(B1) ≥ C, f←(B2) ≥ D such that 〈f�(B̃)〉(B1 � B2) � B̃(C) � B̃(D).

Therefore 〈f�(B̃)〉(B1 � B2) � 〈B̃〉(C �D). This implies there exists P ≤ C �D
such that 〈f�(B̃)〉(B1 �B2) � B̃(P ).

Since f←(B1 � B2) ≥ C � D ≥ P, 〈f�(B̃)〉(B1 � B2) ≥ B̃(P ) which is a con-

tradiction. Therefore f�(B̃) is an LM -G-filterbase on Y . Rest of the proof is
trivial.

In [6], we have the following theorem.

Theorem 3.3. [6] Let B̃ be an LM-G-filterbase on X and s : L → M be a

stratification mapping. Then B̃s : LX →M defined by B̃s(A) =
∨
{B̃(B)�s(α)|A ≥

B � α}, where B ∈ LX , α ∈ L is the coarsest s-stratified LM-G-filterbase on X

which is finer than B̃. B̃s is called the s-stratification of the LM-G-filterbase B̃.

Theorem 3.4. Let B̃ be an LM-G-filterbase on X, f : X → Y be a function and
s : L→M be a stratification mapping. Then

(i.) If B̃ is s-stratified, then f�(B̃) is s-stratified.

(ii.) f�(B̃s) = (f�(B̃))s.

Proof. Proof of (i.) is trivial. Since B̃ ≤ B̃s, f�(B̃) ≤ f�(B̃s). Also since B̃s is

s-stratified, f�(B̃s) is s-stratified. Therefore (f�(B̃))s ≤ f�(B̃s).
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For B ∈ LY ,

f�(B̃s)(B) =
∨

f←(B)≥A

B̃s(A)

=
∨

f←(B)≥A

∨
{B̃(P )� s(α);A ≥ P � αX}

(f�(B̃))s(B) =
∨
{f�(B̃)(R)� s(β);B ≥ R� βY }

=
∨
{[

∨
f←(R)≥Q

B̃(Q)]� s(β);B ≥ R� βY }

Since f←(B) ≥ A ≥ P �αX , we have B ≥ f→(f←(B)) ≥ f→(P )�αY . Therefore,

by comparing the expressions of f�(B̃s) and (f�(B̃))s, it is clear that f�(B̃s)(B) ≤
(f�(B̃))s(B). Therefore f�(B̃s) = (f�(B̃))s.

Example 3.5. Let X = {x1, x2}, Y = {y1, y2, y3} and L = M = [0, 1]. s : L→M
defined by s(1) = 1, s(0) = 0 and s(α) = 0.2 for all α ∈ (0, 1) is a stratification

mapping. Let A1 ∈ LX be defined by A1(x1) = 0.8, A1(x2) = 0.9. Then B̃ : LX →
M defined by

B̃(A) =


1 if A = 1X ,
0.3 if A ≥ A1 and A 6= 1X
0.2 otherwise

is an s-stratified LM -G-filterbase on X. Let f : X → Y be defined by f(x1) =
f(x2) = y1. Then f→(1X) = B1 where B1(y1) = 1, B1(y2) = 0, B1(y3) = 0 and

f→(A1) = B2 where B2(y1) = 0.9, B2(y2) = 0, B2(y3) = 0. Then f�(B̃)(B) : LY →
M defined by

f�(B̃)(B) =


1 if B ≥ B1 ,
0.3 if B ≥ B2 and B � B1

0.2 otherwise

is an s-stratified LM -G-filterbase on Y .
It is easy to prove that

Theorem 3.6. Let B be an LM-filterbase on X and f : X → Y be a function. Then
f�(B) : LY → M defined by f�(B)(B) =

∨
{B(A)|f←(B) ≥ A} for all B ∈ LY is

an LM-filterbase on Y . If B is s-stratified then f�(B) is also s-stratified.

Theorem 3.7. Let B̃ be an LM-G-filterbase on Y and f : X → Y be a function.
Then f�(B̃) : LX → M defined by f�(B̃)(A) =

∨
{B̃(B)|A ≥ f←(B)} for all

A ∈ LX is an LM-G-filterbase on X. If B̃1 and B̃2 are LM-G-filterbases on Y such
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that B̃1 ≤ B̃2, then f�(B̃1) ≤ f�(B̃2).

Proof. (B̃1) is obvious. Suppose there exists A1, A2 ∈ LX such that 〈f�(B̃)〉(A1�
A2) � f�(B̃)(A1) � f�(B̃)(A2). This implies there exists U, V ∈ LY where A1 ≥
f←(U), A2 ≥ f←(V ) such that 〈f�(B̃)〉(A1 � A2) � B̃(U) � B̃(V ). Therefore

〈f�(B̃)〉(A1 � A2) � 〈B̃〉(U � V ). This implies there exists W ≤ U � V such that

〈f�(B̃)〉(A1 � A2) � B̃(W ).

Since A1�A2 ≥ f←(U)�f←(V ) ≥ f←(U�V ) ≥ f←(W ), f�(B̃)(A1�A2) ≥ B̃(W )

and hence 〈f�(B̃)〉(A1 � A2) ≥ B̃(W ) which is a contradiction. Therefore f�(B̃)
is an LM -G-filterbase on X. Rest of the proof is trivial.

Theorem 3.8. Let B̃ be an LM-G-filterbase on Y, f : X → Y be a function and
s : L→M be a stratification mapping. Then

(i.) If B̃ is s-stratified, then f�(B̃) is s-stratified.

(ii.) f�(B̃s) = (f�(B̃))s.

Proof. We prove only (ii.). Since B̃ ≤ B̃s, f�(B̃) ≤ f�(B̃s). Also since B̃s is

s-stratified, f�(B̃s) is s-stratified. Therefore (f�(B̃))s ≤ f�(B̃s).
For A ∈ LX ,

f�(B̃s)(A) =
∨

A≥f←(B)

B̃s(B)

=
∨

A≥f←(B)

∨
{B̃(R)� s(β);B ≥ R� βY }

(f�(B̃))s(A) =
∨
{f�(B̃)(P )� s(α);A ≥ P � αX}

=
∨
{[

∨
P≥f←(S)

B̃(S)]� s(α);A ≥ P � αX}

Since A ≥ f←(B) ≥ f←(R) � βX , comparing the expressions of f�(B̃s) and

(f�(B̃))s, it is clear that f�(B̃s)(A) ≤ (f�(B̃))s(A). Therefore f�(B̃s) = (f�(B̃))s.

Example 3.9. Let X = {x1, x2}, Y = {y1, y2, y3} and L = M = [0, 1]. s : L→M
defined by s(1) = 1, s(0) = 0 and s(α) = 0.5 for all α ∈ (0, 1) is a stratification
mapping. Let B1 ∈ LY be defined by B1(y1) = 0.7, B1(y2) = 0.8 and B1(y3) = 0.4.

Then B̃ : LY →M defined by

B̃(B) =


1 if B = 1Y ,
0.8 if B ≥ B1 and B 6= 1Y
0.5 otherwise
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is an s-stratified LM -G-filterbase on Y . Let f : X → Y be defined by f(x1) = y1
and f(x2) = y3. Since f←(B1) = A1 where A1(x1) = 0.7 and A1(x2) = 0.4,

f�(B̃) : LX →M defined by

f�(B̃)(A) =


1 if A = 1X ,
0.8 if A ≥ A1 and A 6= 1X
0.5 otherwise

is an s-stratified LM -G-filterbase on X.

u
u u

u

0

α β

1

Figure 1: The diamond type lattice

Remark 3.10. Let B be an LM-filterbase on Y and f : X → Y be a function.
Then f�(B) : LX → M defined by f�(B)(A) =

∨
{B(B)|A ≥ f←(B)} for all

A ∈ LX need not be an LM-filterbase on X.
For example, let X = {x1, x2, x3}, Y = {y1, y2} and L = M be the lattice

shown in Figure 1. Let f : X → Y be defined by f(x1) = f(x2) = f(x3) = y1 and
the LM -filterbase on Y, B be defined by

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

y1 0 0 0 0 α α α α β β β β 1 1 1 1
y2 0 α β 1 0 α β 1 0 α β 1 0 α β 1
B(Bi) 0 β α 1 0 β α 1 0 β α 1 0 β α 1

Then f←(B4) = 0X . Therefore by definition, f�(B)(0X) = 1 and hence f�(B) is
not an LM -filterbase on X.

It is easy to observe that

Theorem 3.11. Let B be an LM-filterbase on Y and f : X → Y be a surjective
function. Then f�(B) : LX →M defined by f�(B)(A) =

∨
{B(B)|A ≥ f←(B)} is

an LM-filterbase on X.

4. Images of LM-G-filter Spaces
This section defines images of LM -G-filters induced by functions. Images of s-

stratified, inspired, weakly inspired and catalyzed LM -G-filter spaces are discussed.
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Images induced by functions in the case of LM -filters are also analyzed.

Theorem 4.1. Let (Y,G) be an LM-G-filter space and f : X → Y be a function.
Define f�(G) : LX → M by f�(G)(A) =

∨
{G(B)|A ≥ f←(B)} for all A ∈ LX .

Then

(i.) f�(G) is an LM-G-filter on X.

(ii.) If G1 and G2 are LM-G-filters on Y such that G1 ≤ G2, then f�(G1) ≤
f�(G2).

(iii.) f�(G) is the coarsest LM-G-filter on X for which f→ : (X, f�(G))→ (Y,G)
is an LM-G-filter map.

Proof. We prove only (iii.). It is clear that f→ : (X, f�(G)) → (Y,G) is an
LM -G-filter map. Let H be an LM -G-filter on X such that f→ : (X,H)→ (Y,G)
is an LM -G-filter map. Therefore, for B ∈ LY , H(f←(B)) ≥ G(B).

f�(G)(A) =
∨
{G(B)|A ≥ f←(B)}

≤
∨
{H(f←(B))|A ≥ f←(B)} ≤ H(A).

In [6], we have the following theorem.

Theorem 4.2. [6] Let (X,G) be an LM-G-filter space and s : L→ M be a strat-
ification mapping. Then Gs : LX → M defined by Gs(A) =

∨
{G(B) � s(α)|A ≥

B � α}, where B ∈ LX , α ∈ L is the coarsest s-stratified LM-G-filter on X which
is finer than G. Gs is called the s-stratification of the LM-G-filter G.

Theorem 4.3. Let (Y,G) be an LM-G-filter space, f : X → Y be a function and
s : L→M be a stratification mapping. Then

(i.) If G is s-stratified, then f�(G) is s-stratified.

(ii.) f�(Gs) = (f�(G))s.

Proof. We prove only (ii.). Since G ≤ Gs, f�(G) ≤ f�(Gs). Also since Gs is
s-stratified, f�(Gs) is s-stratified. Therefore (f�(G))s ≤ f�(Gs). For A ∈ LX ,

f�(Gs)(A) =
∨

A≥f←(B)

Gs(B)

=
∨

A≥f←(B)

∨
{G(R)� s(β);B ≥ R� βY }
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(f�(G))s(A) =
∨
{f�(G)G(P )� s(α);A ≥ P � αX}

=
∨
{[

∨
P≥f←(S)

G(S)]� s(α);A ≥ P � αX}

Since A ≥ f←(B) ≥ f←(R) � βX , comparing the expressions of f�(Gs) and
(f�(G))s, it is clear that f�(Gs)(A) ≤ (f�(G))s(A). Therefore f�(Gs) = (f�(G))s.

Example 4.4. Let X = {x1, x2}, Y = {y1, y2} and L = M = [0, 1]. s : L → M
defined by s(1) = 1, s(0) = 0 and s(α) = 0.3 for all α ∈ (0, 1) is a stratifica-
tion mapping. Let B1 ∈ LY be defined by B1(y1) = 0.3, B1(y2) = 0.4. Then
G : LY →M defined by

G(B) =


1 if B = 1Y ,
0.7 if B ≥ B1 and B 6= 1Y
0.3 otherwise

is an s-stratified LM -G-filter on Y . Let f : X → Y be defined by f(x1) = f(x2) =
y2. Since f←(B1) = A1 where A1(x1) = A1(x2) = 0.4, f�(G) : LX → M defined
by

f�(G)(A) =


1 if A = 1X ,
0.7 if A ≥ A1 and A 6= 1X
0.3 otherwise

is an s-stratified LM -G-filter on X.

Theorem 4.5. Let L and M be completely distributive lattices, (Y,G) be an LM-
G-filter space and f : X → Y be a function. Then

(i.) If (Y,G) is weakly inspired LM-G-filter space, then (X, f�(G)) is weakly
inspired.

(ii.) If (Y,G) is catalyzed LM-G-filter space, then (X, f�(G)) is catalyzed.

Proof.

(i.) Let (Y,G) be weakly inspired LM -G-filter space. For A ∈ LX ,

f�(G)(A) =
∨
{G(B)|A ≥ f←(B)}

≤
∨
{G(1δp(B))|1δp(A) ≥ f←(1δp(B))} for all p ∈ pr(L)

[since δp(A) ≤ δp(B) when A ≤ B and δp(f
←(B)) = f−1(δp(B)) ]

≤ f�(G)(1δp(A)) for all p ∈ pr(L)
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Therefore, f�(G)(A) ≤
∧

p∈pr(L)

f�(G)(1δp(A)).

(ii.) Let (Y,G) be catalyzed LM -G-filter space. Since A ≥ 1δ1(A) for A ∈ LX ,
f�(G)(1δ1(A)) ≤ f�(G)(A). The reverse inequality is obtained by

f�(G)(A) =
∨
{G(B)|A ≥ f←(B)}

=
∨
{G(1δ1(B))|1δ1(A) ≥ f←(1δ1(B))}

[since δ1(A) ≤ δ1(B) when A ≤ B and δ1(f
←(B)) = f−1(δ1(B))]

≤ f�(G)(1δ1(A))

Therefore, f�(G)(A) = f�(G)(1δ1(A)).

We leave the following question open.

Question 4.6. Is (X, f�(G)) an inspired LM-G-filter space if (Y,G) is inspired
?

Remark 4.7. Let (Y, F ) be an LM-filter space and f : X → Y be a function.
Then f�(F ) : LX → M defined by f�(F )(A) =

∨
{F (B)|A ≥ f←(B)} for all

A ∈ LX need not be an LM-filter on X. For example, let X = {x}, Y = {y1, y2}
and L = M be the lattice shown in Figure 1. Let f : X → Y be defined by f(x) = y2
and the LM-filter on Y , F be defined by

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

y1 0 0 0 0 α α α α β β β β 1 1 1 1
y2 0 α β 1 0 α β 1 0 α β 1 0 α β 1

F (Ai) 0 0 0 0 α α α α β β β β 1 1 1 1

Then f←(A13) = 0X . Therefore by definition, f�(F )(0X) = 1 and hence f�(F )
is not an LM-filter on X.

It is easy to observe that

Theorem 4.8. Let F be an LM-filter on Y and f : X → Y be a surjective
function. Then f�(F ) : LX → M defined by f�(F )(A) =

∨
{F (B)|A ≥ f←(B)}

for all A ∈ LX is an LM-filter on X.

Theorem 4.9. Let (X,G) be an LM-G-filter space and f : X → Y be a function.
Define f�(G) : LY →M by f�(G)(B) = G(f←(B)) for all B ∈ LY . Then

(i.) f�(G) is an LM-G-filter on Y.

(ii.) If G1 and G2 are LM-G-filters on X such that G1 ≤ G2, then f�(G1) ≤
f�(G2).
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(iii.) f�(G) is the coarsest LM-G-filter on Y for which f→ : (X,G)→ (Y, f�(G))
is an LM-G-filter preserving map.

Proof. We prove only (iii.). For all A ∈ LX , f�(G)(f→(A)) = G(f←(f→(A))) ≥
G(A). Therefore, f→ : (X,G)→ (Y,Gf→) is an LM -G-filter preserving map.
Let H be an LM -G-filter on Y such that f→ : (X,G)→ (Y,H) is an LM -G-filter
preserving map. Therefore, for A ∈ LX , G(A) ≤ H(f→(A)).

f�(G)(B) = G(f←(B))

≤ H(f→(f←(B)) ≤ H(B).

Theorem 4.10. Let (X,G) be an LM-G-filter space, f : X → Y be a function
and s : L→M be a stratification mapping. Then

(i.) If G is s-stratified, then f�(G) is s-stratified.

(ii.) f�(Gs) = (f�(G))s.

Proof. Proof of (i.) is obvious. Since G ≤ Gs, f�(G) ≤ f�(Gs). Also since Gs is
s-stratified, f�(Gs) is s-stratified. Therefore (f�(G))s ≤ f�(Gs). For B ∈ LY ,

f�(Gs)(B) = Gs(f←(B))

=
∨
{G(A)� s(α); f←(B) ≥ A� αX}

(f�(G))s(B) =
∨
{f�(G)(R)� s(β);B ≥ R� βY }

=
∨
{G(f←(R))� s(β);B ≥ R� βY }

Since f←(B) ≥ A� αX , we have B ≥ f→(f←(B)) ≥ f→(A� αX) = f→(A)� αY .
Therefore, by comparing the expressions of f�(Gs) and (f�(G))s, it is clear that
f�(Gs)(A) ≤ (f�(G))s(A). Therefore f�(Gs) = (f�(G))s.

Example 4.11. Let X = {x1, x2, x3}, Y = {y1, y2, y3} and L = M = [0, 1].
s : L → M defined by s(1) = 1, s(0) = 0 and s(α) = 0.4 for all α ∈ (0, 1) is
a stratification mapping. Let A1 ∈ LX be defined by A1(x1) = 0.5, A1(x2) =
0.9, A1(x3) = 0.2. Then G : LX →M defined by

G(A) =


1 if A = 1X ,
0.7 if A ≥ A1 and A 6= 1X
0.5 otherwise
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is an s-stratified LM -G-filter on X. Let f : X → Y be defined by f(x1) = f(x2) =
y1, f(x3) = y2. Let B1, B2 ∈ LY be defined by B1(y1) = 1, B1(y2) = 1, B1(y3) = 0
and B2(y1) = 0.9, B2(y2) = 0.2, B2(y3) = 0 Then f�(G)(B) : LY →M defined by

f�(G)(B) =


1 if B ≥ B1 ,
0.7 if B ≥ B2 and B � B1

0.5 otherwise

is an s-stratified LM -G-filter on Y .
Proceeding as in Theorem 4.5, it is easy to prove the following theorem:

Theorem 4.12. Let L and M be completely distributive lattices, (X,G) be an
LM-G-filter space and f : X → Y be a function. Then

(i.) If (X,G) is inspired LM-G-filter space, then (Y, f�(G)) is inspired.

(ii.) If (X,G) is weakly inspired LM-G-filter space, then (Y, f�(G)) is weakly
inspired.

(iii.) If (X,G) is catalyzed LM-G-filter space, then (Y, f�(G)) is catalyzed.

It is easy to observe that

Theorem 4.13. Let F be an LM-filter on X and f : X → Y be a function.
Then f�(F ) : LY → M defined by f�(F )(B) = F (f←(B)) for all B ∈ LY is an
LM-filter on Y .

5. LM-G-filter Spaces and Neighborhood Systems
This section reveals the categorical connection between LM -G-filter spaces and

neighborhood systems. In this section L and M are assumed to be completely
distributive lattices with an order reversing involution “ ′ ”.

Notation 5.1. [11] The set of all fuzzy points xλ (λ ∈ J(L)) is denoted by J(LX).
A fuzzy point xλ ∈ J(LX) quasi-coincides with A ∈ LX if λ � A′(x) and is denoted
by xλq̂A. The relation “ does not quasi-coincides ” is denoted by ¬q̂.
Definition 5.2. (See [14] for L-fuzzifying neighborhood system) An LM-fuzzy
neighborhood system on X is defined to be a set N = {Nxλ : xλ ∈ J(LX)} of maps
{Nxλ : LX →M} satisfying the following conditions:

(FN1) Nxλ(1X) = 1 and Nxλ(0X) = 0;

(FN2) Nxλ(A) = 0 if xλ � A;

(FN3) Nxλ(A ∧B) = Nxλ(A) ∧Nxλ(B).
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The pair (X,N ) is called an LM-fuzzy neighborhood space and it will be called

topological if it satisfies moreover, (FN4) Nxλ(A) =
∨

xλ≤B≤A

∧
yµ�B

Nyµ(B). A map-

ping f : X → Y between two LM-fuzzy neighborhood spaces (X,N1) and (Y,N2) is
called continuous if ∀xλ ∈ J(LX),∀B ∈ LY , (N1)xλ(f←(B)) ≥ (N2)f(x)λ(B). The
category of topological LM-fuzzy neighborhood spaces with continuous mappings as
morphisms is denoted by (LM)-FN.

Definition 5.3. [13] An LM-fuzzy quasi-coincident neighborhood system on X is
defined to be a set Q = {Qxλ : xλ ∈ J(LX)} of maps {Qxλ : LX → M} satisfying
the following conditions:

(FQN1) Qxλ(1X) = 1 and Qxλ(0X) = 0;

(FQN2) Qxλ(A) = 0 if xλ¬q̂A;

(FQN3) Qxλ(A ∧B) = Qxλ(A) ∧Qxλ(B).

The pair (X,Q) is called an LM-fuzzy quasi-coincident neighborhood space and it

will be called topological if it satisfies moreover, (FQN4)Qxλ(A) =
∨

xλq̂B≤A

∧
yµq̂B

Qyµ(B).

A mapping f : X → Y between two LM-fuzzy quasi-coincident neighborhood spaces
(X,Q1) and (Y,Q2) is called continuous if ∀xλ ∈ J(LX),∀B ∈ LY , (Q1)xλ(f←(B)) ≥
(Q2)f(x)λ(B). The category of topological LM-fuzzy quasi-coincident neighborhood
spaces with continuous mappings as morphisms is denoted by (LM)-FQN.

Theorem 5.4. Let (X,G) be an LM-G-filter space. Define Gxλ : LX →M by

Gxλ(A) =

{
G(A) if xλ ≤ A ,
0 otherwise

Then

(i.) NG = {Gxλ ;xλ ∈ J(LX)} is a topological LM-fuzzy neighborhood system.

(ii.) If f→ : (X,G1) → (Y,G2) is an LM-G-filter map, then f→ : (X,NG1) →
(Y,NG2) is continuous.

Proof.

(i.) (FN1) and (FN2) are obvious.
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(FN3) When A ≤ B, Gxλ(A) ≤ Gxλ(B). For A,B ∈ LX such that xλ ≤
A and xλ ≤ B, we have xλ ≤ A ∧ B. Hence Gxλ(A) ∧ Gxλ(B) =
G(A) ∧ G(B) ≤ G(A ∧ B) = Gxλ(A ∧ B) . Therefore, Gxλ(A ∧ B) =
Gxλ(A) ∧Gxλ(B).

(FN4) If xλ � A, then Gxλ(A) =
∨

xλ≤B≤A

∧
yµ�B

Gyµ(B) = 0.

If xλ ≤ A, then
∨

xλ≤B≤A

∧
yµ�B

Gyµ(B) =
∨

xλ≤B≤A

G(B) = G(A) = Gxλ(A).

Therefore, Gxλ(A) =
∨

xλ≤B≤A

∧
yµ�B

Gyµ(B).

(ii.) If (G2)f(x)λ(B) 6= 0 for any B ∈ LY , then f(x)λ ≤ B, which implies xλ ≤
f←(B). Therefore (G1)xλ(f←(B)) = G1(f

←(B)) ≥ G2(B) = (G2)f(x)λ(B)

for each xλ ∈ J(LX). Hence f→ : (X,NG1)→ (Y,NG2) is continuous.

Corollary 5.5. Let (X,G) be an LM-G-filter space and ω(G) = NG. Then ω is a
functor from LM-G to (LM)-FN

Theorem 5.6. Let (X,G) be an LM-G-filter space. Define Ĝxλ : LX →M by

Ĝxλ(A) =

{
G(A) if xλq̂A ,
0 if xλ¬q̂A

Then

(i.) QG = {Ĝxλ ;xλ ∈ J(LX)} is a topological LM-fuzzy quasi-coincident neigh-
borhood system.

(ii.) If f→ : (X,G1) → (Y,G2) is an LM-G-filter map, then f→ : (X,QG1) →
(Y,QG2) is continuous.

Proof.

(i.) (FQN1) and (FQN2) are obvious.

(FQN3) When A ≤ B, Ĝxλ(A) ≤ Ĝxλ(B). For A,B ∈ LX such that xλq̂A

and xλq̂B, we have xλq̂A∧B. Hence Ĝxλ(A)∧Ĝxλ(B) = G(A)∧G(B) ≤
G(A ∧B) = Ĝxλ(A ∧B) . Therefore, Ĝxλ(A ∧B) = Ĝxλ(A) ∧ Ĝxλ(B).
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(FQN4) If xλ¬q̂A, then Ĝxλ(A) =
∨

xλq̂B≤A

∧
yµq̂B

Ĝyµ(B) = 0.

If xλq̂A, then
∨

xλq̂B≤A

∧
yµq̂B

Ĝyµ(B) =
∨

xλq̂B≤A

G(B) = G(A) = Ĝxλ(A).

Therefore, Ĝxλ(A) =
∨

xλq̂B≤A

∧
yµq̂B

Ĝyµ(B).

(ii.) If (Ĝ2)f(x)λ(B) 6= 0 for any B ∈ LY , then f(x)λq̂B, which implies xλq̂f
←(B).

Therefore (Ĝ1)xλ(f←(B)) = G1(f
←(B)) ≥ G2(B) = (Ĝ2)f(x)λ(B) for each

xλ ∈ J(LX). Hence f→ : (X,QG1)→ (Y,QG2) is continuous.

Corollary 5.7. Let (X,G) be an LM-G-filter space and Ω(G) = QG. Then Ω is
a functor from LM-G to (LM)-FQN

6. Conclusion
The study has identified images of LM -G-filters and LM -G-filterbases induced

by functions and investigated their properties. It is proved that the image of s-
stratified LM -G-filterbase is again an s-stratified LM -G-filterbase. The properties
of being weakly inspired, catalyzed, s-stratified as well as the stratification of LM -
G-filters are preserved by images.

In addition the study has obtained topological neighborhood systems from LM -
G-filter spaces and categorical connections of LM -G with (LM)-FN and (LM)-
FQN are identified. Identifying more relations of LM -G-filters with neighborhood
systems and investigating the role of stratified, inspired, weakly inspired and cat-
alyzed LM -G-filters in convergence theory are part of our future research.
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