South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 2 (2022), pp. 275-288

DOI: 10.56827/SEAJMMS.2022.1802.24

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

$N_{nc}\beta$ -CONTINUOUS MAPS

A. Vadivel, C. John Sundar and P. Thangaraja*

Department of Mathematics, Annamalai University, Annamalai Nagar - 608002, Tamil Nadu, INDIA

E-mail: avmaths@gmail.com, johnphdau@hotmail.com

*Department of Mathematics, Mahendra Engineering College, Nammakal - 637503, Tamil Nadu, INDIA

E-mail : thangarajap1991@gmail.com

(Received: Sep. 28, 2021 Accepted: Jun. 12, 2022 Published: Aug. 30, 2022)

Abstract: In this article, we study a new types of mappings using N-neutrosophic crisp β open sets such as continuous mappings and irresolute mappings in N-neutrosophic crisp topological spaces were introduced. Also, we discussed about their properties in relation with the other continuous and irresolute mappings in N-neutrosophic crisp topological spaces. Also, we study about the concept of strongly N-neutrosophic crisp β continuous and perfectly N-neutrosophic crisp β continuous functions in N_{nc} topological spaces with their properties.

Keywords and Phrases: $N_{nc}\beta$ -open sets, $N_{nc}\beta$ -closed sets, $N_{nc}\beta Cts$, $N_{nc}\beta Irr$, $StN_{nc}\beta Cts$, $PeN_{nc}\beta Cts$.

2020 Mathematics Subject Classification: 54A05, 54A10, 54C08.

1. Introduction

The ideal concepts of neutrosophy and neutrosophic set was first presented by Smarandache [13, 14, 16] at the beginning of 21^{st} century. In 2014, the concept of neutrosophic crisp topological space presented by Salama, Smarandache and Kroumov [11]. Al-Omeri [3] also investigated neutrosophic crisp sets in the build of neutrosophic crisp topological Spaces. Also presented the definitions of neutrosophic crisp continuous mappings compact spaces. Lellis Thivagar et al. [7] introduced the concept of N_n -open (closed) sets in N-neutrosophic topological spaces. Al-Hamido [2] explore the possibilities in idea of neutrosophic crisp topological spaces into N_{nc} -topological spaces and scrutinized some of their necessary properties. F. Smarandache [15, 17] developed an extension from the neutrosophic crisp set to refined neutrosophic crisp set.

In 1983, Abd EL Monsef et al. [1] presented β - open sets in topology. Also, the equivalent notion of semi-pre open sets was independently developed by Andrijevic [5] in 1986. Vadivel et al. [19] presented β -open sets in neutrosophic crisp topological spaces via N-terms of topology.

The strong and weak forms of continuous functions are introduced by Levine in 1960 [8] and also introduced in strong continuity in topological spaces. In 1967, Naimpally [9] also discussed strongly continuous functions in a topology. In 1984, Noiri [10] discussed and studied more about supercontinuity and some strong forms of continuity. Recently, Vadivel et al. [23, 24] introduced strongly continuous functions in N_{nc} topological spaces. Perfectly continuous functions is introduced by Kohli et al. [6] in 2008 and studied their properties. Al-Omeri [4] worked on neutrosophic pre-continuous multifunctions and almost pre-continuous multifunctions in neutrosophic topological spaces. Recently, the authors [21, 22, 25, 26, 27, 28, 29] worked on some continuous and irresolute functions on N-neutrosophic crisp topological spaces and Neutrosophic topological spaces.

In this paper, we establish the concept of N-neutrosophic crisp β -continuous and N-neutrosophic crisp β -irresolute functions in N-neutrosophic crisp topological spaces and study their relation with near mappings N-neutrosophic crisp topological spaces. In addition, strongly N-neutrosophic crisp β continuous and perfectly N-neutrosophic crisp β continuous functions in N-neutrosophic crisp topological spaces are study and discuss their properties.

2. Preliminaries

Definition 2.1. [12] For any non-empty fixed set U, a neutrosophic crisp set (briefly, ncs) K, is an object having the form $K = \langle K_1, K_2, K_3 \rangle$ where $K_1, K_2 \& K_3$ are subsets of U satisfying any one of the types

 $(T1) \ K_a \cap K_b = \phi, \ a \neq b \ \& \ \bigcup_{a=1}^3 K_a \subset U, \ \forall a, b = 1, 2, 3.$ $(T2) \ K_a \cap K_b = \phi, \ a \neq b \ \& \ \bigcup_{a=1}^3 K_a = U, \ \forall a, b = 1, 2, 3.$ $(T3) \ \bigcap_{a=1}^3 K_a = \phi \ \& \ \bigcup_{a=1}^3 K_a = U, \ \forall a = 1, 2, 3.$

Definition 2.2. [12] Types of ncs's \emptyset_N and U_N in U are as

- (i) \emptyset_N may be defined as $\emptyset_N = \langle \emptyset, \emptyset, U \rangle$ or $\langle \emptyset, U, U \rangle$ or $\langle \emptyset, U, \emptyset \rangle$ or $\langle \emptyset, \emptyset, \emptyset \rangle$.
- (ii) U_N may be defined as $U_N = \langle U, \emptyset, \emptyset \rangle$ or $\langle U, U, \emptyset \rangle$ or $\langle U, \emptyset, U \rangle$ or $\langle U, U, U \rangle$.

Definition 2.3. [12] Let U be a non-empty set & the ncs's K & M in the form $K = \langle K_{11}, K_{22}, K_{33} \rangle$, $M = \langle M_{11}, M_{22}, M_{33} \rangle$, then

- (i) $K \subseteq M \Leftrightarrow K_{11} \subseteq M_{11}, K_{22} \subseteq M_{22} \& K_{33} \supseteq M_{33} \text{ or } K_{11} \subseteq M_{11}, K_{22} \supseteq M_{22} \& K_{33} \supseteq M_{33}.$
- $(ii) \ K \cap M = \langle K_{11} \cap M_{11}, K_{22} \cap M_{22}, K_{33} \cup M_{33} \rangle \ or \ \langle K_{11} \cap M_{11}, K_{22} \cup M_{22}, K_{33} \cup M_{33} \rangle$

(*iii*)
$$K \cup M = \langle K_{11} \cup M_{11}, K_{22} \cup M_{22}, K_{33} \cap M_{33} \rangle$$
 or $\langle K_{11} \cup M_{11}, K_{22} \cap M_{22}, K_{33} \cap M_{33} \rangle$

Definition 2.4. [12] Let $K = \langle K_1, K_2, K_3 \rangle$ a new on U, then the complement of K (briefly, K^c) may be defined in three different ways:

- (C1) $K^{c} = \langle K_{1}{}^{c}, K_{2}{}^{c}, K_{3}{}^{c} \rangle$, or
- (C2) $K^{c} = \langle K_{3}, K_{2}, K_{1} \rangle$, or
- (C3) $K^c = \langle K_3, K_2^c, K_1 \rangle.$

Definition 2.5. [11] A neutrosophic crisp topology (briefly, $_{nc}t$) on a non-empty set U is a family Γ of nc subsets of U satisfying

- (i) $\emptyset_N, U_N \in \Gamma$.
- (*ii*) $K_1 \cap K_2 \in \Gamma \forall K_1 \& K_2 \in \Gamma$.
- (*iii*) $\bigcup_{a} K_a \in \Gamma$, $\forall K_a : a \in A \subseteq \Gamma$.

Then (U, Γ) is a neutrosophic crisp topological space (briefly, ncts for short) in U. The neutrosophic crisp open sets (briefly, ncos) are the elements of Γ in U. A ncs C is neutrosophic crisp closed sets (briefly, nccs) iff its complement C^c is ncos.

Definition 2.6. [2] Let U be a non-empty set. Then ${}_{nc}\Gamma_1$, ${}_{nc}\Gamma_2$, \cdots , ${}_{nc}\Gamma_N$ are N-arbitrary crisp topologies defined on U and the collection $N_{nc}\Gamma$ is called N_{nc} -topology on U is

$$N_{nc}\Gamma = \{A \subseteq U : A = (\bigcup_{j=1}^{N} E_j) \cup (\bigcap_{j=1}^{N} F_j), E_j, F_j \in {}_{nc}\Gamma_j\}$$

and it satisfies the following axioms:

(i)
$$\emptyset_N, U_N \in N_{nc}\Gamma$$
.
(ii) $\bigcup_{j=1}^{\infty} A_j \in N_{nc}\Gamma \forall \{A_j\}_{j=1}^{\infty} \in N_{nc}\Gamma$.
(iii) $\bigcap_{j=1}^n A_j \in N_{nc}\Gamma \forall \{A_j\}_{j=1}^n \in N_{nc}\Gamma$.

Then $(U, N_{nc}\Gamma)$ is called a N_{nc} -topological space (briefly, $N_{nc}ts$) on U. The N_{nc} open sets $(N_{nc}os)$ are the elements of $N_{nc}\Gamma$ in U and the complement of $N_{nc}os$ is called N_{nc} -closed sets $(N_{nc}cs)$ in U. The elements of U are known as N_{nc} -sets $(N_{nc}s)$ on U.

Definition 2.7. [2] Let $(U, N_{nc}\Gamma)$ be N_{nc} ts on U and K be an N_{nc} s on U, then the N_{nc} interior of K (briefly, N_{nc} int(K)) and N_{nc} closure of K (briefly, $N_{nc}cl(K)$) are defined as

$$N_{nc}int(K) = \bigcup \{A : A \subseteq K \& A \text{ is a } N_{nc}os \text{ in } U \}$$

 $N_{nc}cl(K) = \cap \{C : K \subseteq C \& C \text{ is a } N_{nc}cs \text{ in } U\}.$

Definition 2.8. [2] Let $(U, N_{nc}\Gamma)$ be any $N_{nc}ts$. Let K be an $N_{nc}s$ in $(U, N_{nc}\Gamma)$. Then K is said to be a

- (i) N_{nc} -regular open [18] set (briefly, $N_{nc}ros$) if $K = N_{nc}int(N_{nc}cl(K))$.
- (ii) N_{nc} -pre open set (briefly, $N_{nc}\mathcal{P}os$) if $K \subseteq N_{nc}int(N_{nc}cl(K))$.
- (iii) N_{nc} -semi open set (briefly, $N_{nc}Sos$) if $K \subseteq N_{nc}cl(N_{nc}int(K))$.
- (iv) N_{nc} - α -open set (briefly, $N_{nc}\alpha os$) if $K \subseteq N_{nc}int(N_{nc}cl(N_{nc}int(K)))$.
- (v) N_{nc} - γ -open [18] set (briefly, $N_{nc}\gamma os$) set if $K \subseteq N_{nc}cl(N_{nc}int(K)) \cup N_{nc}int(K))$.
- (vi) N_{nc} - β -open [19] set (briefly, $N_{nc}\beta os$) if $K \subseteq N_{nc}cl(N_{nc}int(N_{nc}cl(K)))$.

The complement of an N_{nc} ros (resp. $N_{nc}\mathcal{P}os$, $N_{nc}\mathcal{S}os$, $N_{nc}\alpha os$, $N_{nc}\gamma os \& N_{nc}\beta os$) is called an N_{nc} -regular (resp. N_{nc} -pre, N_{nc} -semi, N_{nc} - α , N_{nc} - $\gamma \& N_{nc}$ - β) closed set (briefly, N_{nc} rcs (resp. $N_{nc}\mathcal{P}cs$, $N_{nc}\mathcal{S}cs$, $N_{nc}\alpha cs$, $N_{nc}\gamma cs \& N_{nc}\beta cs$)) in U.

Definition 2.9. [20] Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be any two $N_{nc}ts$'s. A map $f: (U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is said to be N_{nc} (resp. N_{nc} regular, N_{nc} pre, N_{nc} semi, $N_{nc}\alpha \& N_{nc}\gamma$) continuous (briefly, $N_{nc}Cts$ (resp. $N_{nc}rCts$, $N_{nc}\mathcal{P}Cts$, $N_{nc}\mathcal{S}Cts$,

 $N_{nc}\alpha Cts \& N_{nc}\gamma Cts)$ if the inverse image of every $N_{nc}os$ in $(U_2, N_{nc}\Psi)$ is a $N_{nc}os$ (resp. $N_{nc}ros, N_{nc}\mathcal{P}os, N_{nc}\mathcal{S}os, N_{nc}\alpha os \& N_{nc}\gamma os)$ in $(U_1, N_{nc}\Gamma)$.

3. N-Neutrosophic Crisp β Continuous Function

Throughout this section, let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be any two $N_{nc}ts$'s. Let $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be a function. Let K and M be an $N_{nc}s$'s in $(U_1, N_{nc}\Gamma)$.

Definition 3.1. A function f is said to be $N_{nc}\beta$ -continuous (briefly, $N_{nc}\beta Cts$) if the inverse image of every $N_{nc}os$ in $(U_2, N_{nc}\Psi)$ is a $N_{nc}\beta os$ in $(U_1, N_{nc}\Gamma)$.

Example 3.1. Let $U = \{l_1, m_1, n_1, o_1\}, \ _{nc}\Gamma_1 = \{\phi_N, U_N, L, M, N\}, \ _{nc}\Gamma_2 = \{\phi_N, U_N\}.$ $L = \langle\{l_1\}, \{\phi\}, \{m_1, n_1, o_1\}\rangle, M = \langle\{m_1, o_1\}, \{\phi\}, \{l_1, n_1\}\rangle, N = \langle\{l_1, m_1, o_1\}, \{\phi\}, \{n_1\}\rangle, \text{ then we have } 2_{nc}\Gamma = \{\phi_N, U_N, L, M, N\}, \text{ let } f : (U, 2_{nc}\Gamma) \to (U, 2_{nc}\Gamma) \text{ be an identity function. Then } f \text{ is a } 2_{nc}\beta Cts \text{ function.}$

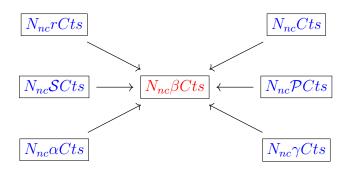
Theorem 3.1. The statements are hold but the equality does not true.

- (i) Every $N_{nc}rCts$ is a $N_{nc}\beta Cts$.
- (ii) Every $N_{nc}Cts$ is a $N_{nc}\beta Cts$.
- (iii) Every $N_{nc}\alpha Cts$ is a $N_{nc}\beta Cts$.
- (iv) Every $N_{nc}\mathcal{S}Cts$ is a $N_{nc}\beta Cts$.
- (v) Every $N_{nc}\mathcal{P}Cts$ is a $N_{nc}\beta Cts$.
- (vi) Every $N_{nc}\gamma Cts$ is a $N_{nc}\beta Cts$.

Proof. (ii) Let f be a $N_{nc}Cts$ and K is a $N_{nc}os$ in U_2 . Then $f^{-1}(K)$ is $N_{nc}\beta os$ in U_1 . Since every $N_{nc}o$ set is $N_{nc}\beta o$ set, $f^{-1}(K)$ is $N_{nc}\beta os$ in U_1 . Therefore f is $N_{nc}\beta Cts$.

The other cases are similar.

Remark 3.1. The diagram shows $N_{nc}\beta Cts$ function in $N_{nc}ts$.



Example 3.2. In Example 3.1, let $V = \{w_1, x_1, y_1, z_1\}$, $_{nc}\Psi_1 = \{\phi_N, V_N, W, X, Y\}$, $_{nc}\Psi_2 = \{\phi_N, V_N\}$. $W = \langle \{x_1\}, \{\phi\}, \{w_1, y_1, z_1\} \rangle$, $X = \langle \{w_1, y_1\}, \{\phi\}, \{x_1, z_1\} \rangle$, $Y = \langle \{w_1, x_1, y_1\}, \{\phi\}, \{z_1\} \rangle$, then we have $2_{nc}\Psi = \{\phi_N, V_N, W, X, Y\}$.

Define $f: (U, 2_{nc}\Gamma) \rightarrow (V, 2_{nc}\Psi)$ as $f(l_1) = x_1$, $f(m_1) = y_1$, $f(n_1) = w_1 \& f(o_1) = z_1$, then $2_{nc}\beta Cts$ but not $2_{nc}rCts$, $2_{nc}Cts$, $2_{nc}\alpha Cts$, $2_{nc}\mathcal{P}Cts$, $2_{nc}\mathcal{S}Cts$, $2_{nc}\gamma Cts$, the set $f^{-1}(\langle \{w_1, y_1\}, \{\phi\}, \{x_1, z_1\}\rangle) = \langle \{m_1, n_1\}, \{\phi\}, \{l_1, o_1\}\rangle$ is a $2_{nc}\beta os$ but not $2_{nc}ros$, $2_{nc}\alpha os$, $2_{nc}\alpha os$, $2_{nc}\mathcal{P}os$, $2_{nc}\mathcal{S}os$, $2_{nc}\gamma os$.

Theorem 3.2. The conditions

(i) f is $N_{nc}\beta Cts$.

(ii) The inverse $f^{-1}(K)$ of all $N_{nc}os K$ in U_2 is $N_{nc}\beta os$ in U_1

are equivalent.

Proof. The proof is obvious, since $f^{-1}(\overline{K}) = \overline{f^{-1}(K)}$ for all $N_{nc}os K$ of U_2 .

Theorem 3.3. The conditions

(i)
$$f(N_{nc}\beta cl(K)) \subseteq N_{nc}cl(f(K))$$
, for all ncs K in U_1 .

(ii)
$$N_{nc}\beta cl(f^{-1}(M)) \subseteq f^{-1}(N_{nc}cl(M))$$
, for all ncs M in U_2

are equivalent.

Proof. (i) Since $N_{nc}cl(f(K))$ is a $N_{nc}cs$ in U_2 and f is $N_{nc}\beta Cts$, then $f^{-1}(N_{nc}cl(f(K)))$ is $N_{nc}\beta c$ in U_1 . Now, since $K \subseteq f^{-1}(N_{nc}cl(f(K)))$, $N_{nc}\beta cl(K) \subseteq f^{-1}(N_{nc}cl(f(K)))$. Therefore, $f(N_{nc}\beta cl(K)) \subseteq N_{nc}cl(f(K))$. (ii) By replacing K with M in (i), we obtain $f(N_{nc}\beta cl(f^{-1}(M))) \subseteq N_{nc}cl(f(f^{-1}(M))) \subseteq N_{nc}cl(f(f^{-1}(M))) \subseteq N_{nc}cl(f(f^{-1}(M)))$.

Remark 3.2. If f is $N_{nc}\beta Cts$, then

(i) $f(N_{nc}\beta cl(K))$ is not necessarily equal to $N_{nc}cl(f(K))$ where $K \subseteq U_1$.

(ii) $N_{nc}\beta cl(f^{-1}(M))$ is not necessarily equal to $f^{-1}(N_{nc}cl(M))$ where $M \subseteq U_2$.

Example 3.3. Let $U = \{l_1, m_1, n_1, o_1, p_1\}$, ${}_{nc}\Gamma_1 = \{\phi_N, U_N, L, M, N\}$, ${}_{nc}\Gamma_2 = \{\phi_N, U_N\}$. $L = \langle\{n_1\}, \{\phi\}, \{l_1, m_1, o_1, p_1\}\rangle$, $M = \langle\{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle$, $N = \langle\{l_1, m_1, n_1\}, \{\phi\}, \{o_1, p_1\}\rangle$, then we have $2_{nc}\Gamma = \{\phi_N, U_N, L, M, N\}$. Let $f : (U, 2_{nc}\Gamma) \to (U, 2_{nc}\Gamma)$ be an identity function and f is a $2_{nc}\beta Cts$.

- (i) Let $K = \langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\} \rangle \subseteq U$. Then $f(2_{nc}\beta cl(K)) = f(2_{nc}\beta cl(\langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle)) = f(\langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle) = \langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle$. But $2_{nc}cl(f(K)) = 2_{nc}cl(f(\langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle)) = 2_{nc}cl(\langle \{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle) = \langle \{l_1, m_1, o_1, p_1\}, \{\phi\}, \{n_1\}\rangle$. Thus $f(2_{nc}\beta cl(K)) \neq 2_{nc}cl(f(K))$.
- (ii) Let $M = \langle \{l_1\}, \{\phi\}, \{m_1, n_1, o_1, p_1\} \rangle \subseteq U$. Then $2_{nc}\beta cl(f^{-1}(M)) \subseteq 2_{nc}\beta cl(f^{-1}(M)) \subseteq (\langle \{l_1\}, \{\phi\}, \{m_1, n_1, o_1, p_1\}\rangle)) = 2_{nc}\beta cl(\langle \{l_1\}, \{\phi\}, \{m_1, n_1, o_1, p_1\}\rangle)$. But $f^{-1}(2_{nc}cl(M)) = f^{-1}(2_{nc}cl(\langle \{l_1\}, \{\phi\}, \{m_1, n_1, o_1, p_1\}\rangle)) = f^{-1}(U) = U$. Thus $2_{nc}\beta cl(f^{-1}(M)) \neq f^{-1}(2_{nc}cl(M))$.

Theorem 3.4. If f is $N_{nc}\beta Cts$, then $f^{-1}(N_{nc}int(M)) \subseteq N_{nc}\beta int(f^{-1}(M))$, for all ncs M in U_2 .

Proof. If f is $N_{nc}\beta Cts$ and $M \subseteq U_2$. $N_{nc}int(M)$ is $N_{nc}o$ in U_2 and hence, $f^{-1}(N_{nc}int(M))$ is $N_{nc}\beta o$ in U_1 . Therefore $N_{nc}\beta int(f^{-1}(N_{nc}int(M))) = f^{-1}(N_{nc}int(M))$ int(M). Also, $N_{nc}int(M) \subseteq M$, implies that $f^{-1}(N_{nc}int(M)) \subseteq f^{-1}(M)$. Therefore $N_{nc}\beta int(f^{-1}(N_{nc}int(M))) \subseteq N_{nc}\beta int(f^{-1}(M))$. That is $f^{-1}(N_{nc}int(M)) \subseteq N_{nc}\beta int(f^{-1}(M))$.

Conversely, let $f^{-1}(N_{nc}int(M)) \subseteq N_{nc}\beta int(f^{-1}(M))$ for all subset M of U_2 . If M is $N_{nc}o$ in U_2 , then $N_{nc}int(M) = M$. By assumption, $f^{-1}(N_{nc}int(M)) \subseteq N_{nc}\beta int(f^{-1}(M))$. Thus $f^{-1}(M) \subseteq N_{nc}\beta int(f^{-1}(M))$. But $N_{nc}\beta int(f^{-1}(M)) \subseteq f^{-1}(M)$. Therefore $N_{nc}\beta int(f^{-1}(M)) = f^{-1}(M)$. That is, $f^{-1}(M)$ is $N_{nc}\beta o$ in U_1 , for all $N_{nc}os M$ in U_2 . Therefore f is $N_{nc}\beta Cts$ on U_1 .

Remark 3.3. If f is $N_{nc}\beta Cts$, then $N_{nc}\beta int(f^{-1}(M))$ is not necessarily equal to $f^{-1}(N_{nc} int(M))$ where $M \subseteq U_2$.

Example 3.4. In Example 3.3, f is a $2_{nc}\beta Cts$. Let $M = \langle \{l_1, n_1\}, \{\phi\}, \{m_1, o_1, p_1\} \rangle$ $\subseteq U$. Then $2_{nc}\beta int(f^{-1}(M)) \subseteq 2_{nc}\beta int(f^{-1}(\langle \{l_1, n_1\}, \{\phi\}, \{m_1, o_1, p_1\} \rangle)) = 2_{nc}\beta$ $int(\langle \{l_1, n_1\}, \{\phi\}, \{m_1, o_1, p_1\} \rangle) = \langle \{l_1, n_1\}, \{\phi\}, \{m_1, o_1, p_1\} \rangle$. But $f^{-1}(2_{nc}int(M))$ $= f^{-1}(2_{nc}int(\langle \{l_1, n_1\}, \{\phi\}, \{m_1, o_1, p_1\} \rangle)) = f^{-1}(\langle \{n_1\}, \{\phi\}, \{l_1, m_1, o_1, p_1\} \rangle) =$ $\langle \{n_1\}, \{\phi\}, \{l_1, m_1, o_1, p_1\} \rangle$. Thus $2_{nc}\beta int(f^{-1}(M)) \neq f^{-1}(2_{nc}int(M))$.

Theorem 3.5. The statements

- (i) f is a $N_{nc}\beta Cts$ function.
- (ii) For every $N_{nc}P \ p_{(p_1,p_2,p_3)} \in U_1$ and each nesk of $f(p_{(p_1,p_2,p_3)})$, there exists an $N_{nc}\beta$ os M such that $p_{(p_1,p_2,p_3)} \in M \subseteq f^{-1}(K)$.
- (iii) For every N_{nc} point $p_{(p_1,p_2,p_3)} \in U_1$ and each ncs K of $f(p_{(p_1,p_2,p_3)})$, there exists an $N_{nc}\beta$ os M such that $p_{(p_1,p_2,p_3)} \in M$ and $f(M) \subseteq K$

are equivalent.

Proof. (i) \Rightarrow (ii): If $p_{(p_1,p_2,p_3)}$ is an $N_{nc}P$ in U_1 and if K is an ncs of $f(p_{(p_1,p_2,p_3)})$, then \exists an $N_{nc}os W$ in U_2 such that $f(p_{(p_1,p_2,p_3)}) \in W \subset K$. Thus, f is a $N_{nc}\beta Cts$, $M = f^{-1}(W)$ is an $N_{nc}\beta os$ and $p_{(p_1,p_2,p_3)} \in f^{-1}(f(p_{(p_1,p_2,p_3)})) \subseteq f^{-1}(W) = M \subseteq f^{-1}(K)$. Thus, (ii) is a valid statement.

(ii) \Rightarrow (iii): Let $p_{(p_1,p_2,p_3)}$ be an $N_{nc}P$ in U_1 and let K be an ncs of $f(p_{(p_1,p_2,p_3)})$. Then \exists an $N_{nc}\beta os K$ such that $p_{(p_1,p_2,p_3)} \in M \subseteq f^{-1}(K)$ by (ii). Thus, we have $p_{(p_1,p_2,p_3)} \in M$ and $f(M) \subseteq f(f^{-1}(K)) \subseteq K$. Hence, (iii) is valid.

(iii) \Rightarrow (i): Let M be an $N_{nc}os$ in U_2 and let $p_{(p_1,p_2,p_3)} \in f^{-1}(M)$. Then, $f(p_{(p_1,p_2,p_3)}) \in f(f^{-1}(M)) \subset M$. Since M is an $N_{nc}os$, M is an ncs of $f(p_{(p_1,p_2,p_3)})$. Therefore, from (iii), \exists an $N_{nc}\beta os$ K such that $p_{(p_1,p_2,p_3)}$ and $f(K) \subseteq M$. This implies that $p_{(p_1,p_2,p_3)} \in K \subseteq f^{-1}(f(K)) \subseteq f^{-1}(M)$. Therefore, we know that $f^{-1}(M)$ is an $N_{nc}\beta os$ in U_1 . Thus, f is a $N_{nc}\beta Cts$ function.

4. *N*-Neutrosophic Crisp β Irresolute Functions

In this section, we introduce the concept of N-neutrosophic crisp β irresolute function in $N_{nc}ts$. Also, we discuss the relation with $N_{nc}\beta Cts$ function.

Definition 4.1. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two N_{nc} ts's. A function f: $(U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is called N-neutrosophic crisp β irresolute (briefly, $N_{nc}\beta$ Irr) function if the inverse image of every $N_{nc}\beta$ set in U_2 is $N_{nc}\beta$ o in U_1 .

Theorem 4.1. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two $N_{nc}ts$'s. A function f: $(U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is $N_{nc}\beta$ Irr iff the inverse image of every $N_{nc}\beta c$ set in U_2 is $N_{nc}\beta c$ in U_1 .

Proof. Let A be any $N_{nc}\beta c$ set in U_2 . Then A^c is $N_{nc}\beta o$ set in U_2 . Since f is $N_{nc}\beta Irr$, $f^{-1}(A^c)$ is $N_{nc}\beta o$ set in U_1 and $f^{-1}(A^c) = [f^{-1}(A)]^c$ which implies that is $f^{-1}(A)$ is $N_{nc}\beta c$ set in U_1 .

Conversely, let B be any $N_{nc}\beta o$ set in U_2 . Then B^c is $N_{nc}\beta c$ set in U_2 . Thus $f^{-1}(B^c)$ is $N_{nc}\beta c$ set in U_1 and $f^{-1}(B^c) = [f^{-1}(B)]^c$ which implies that is $f^{-1}(B)$ is $N_{nc}\beta c$ set in U_1 . Hence $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ is $N_{nc}\beta Irr$.

Theorem 4.2. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two $N_{nc}ts$'s. And let $f: U_1 \to U_2$, Every $N_{nc}\beta Irr$ is a $N_{nc}\beta Cts$. But not converse. **Proof.** Let V be a $N_{nc}\beta o$ set in U_2 . Since every $N_{nc}\beta o$ set is $N_{nc}o$ set in U_2 . Since f is $N_{nc}\beta Irr$, $f^{-1}(V)$ is $N_{nc}\beta o$ in U_1 . Therefore f is $N_{nc}\beta Cts$.

Example 4.1. Let $U = \{l_1, m_1, n_1, o_1, p_1\} = V$, $_{nc}\Gamma_1 = \{\phi_N, U_N, L, M, N\}$, $_{nc}\Gamma_2 = \{\phi_N, U_N\}$. $L = \langle\{n_1\}, \{\phi\}, \{l_1, m_1, o_1, p_1\}\rangle$, $M = \langle\{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle$, $N = \langle\{l_1, m_1, n_1\}, \{\phi\}, \{o_1, p_1\}\rangle$, then we have $2_{nc}\Gamma = \{\phi_N, U_N, L, M, N\}$. $_{nc}\Psi_1 = \{\phi_N, V_N, O, P, Q\}$, $_{nc}\Psi_2 = \{\phi_N, V_N\}$. $O = \langle\{l_1, m_1\}, \{\phi\}, \{n_1, o_1, p_1\}\rangle$, $P = \langle\{n_1, o_1\}, \{\phi\}, \{l_1, m_1, p_1\}\rangle$, $Q = \langle\{l_1, m_1, n_1, o_1\}, \{\phi\}, \{p_1\}\rangle$, then we have $2_{nc}\Psi = \{\phi_N, V_N, O, P, Q\}$.

Define $h : (U, 2_{nc}\Gamma) \to (V, 2_{nc}\Psi)$ as $h(l_1) = l_1$, $h(m_1) = m_1$, $h(n_1) = n_1$, $h(o_1) = p_1 \& h(p_1) = p_1$, then $2_{nc}\beta Cts$ mapping but not $2_{nc}\beta Irr$ mapping, the set $h^{-1}(\langle \{m_1, o_1, p_1\}, \{\phi\}, \{l_1, n_1\}\rangle) = \langle \{m_1, o_1, p_1\}, \{\phi\}, \{l_1, n_1\}\rangle$ is a $2_{nc}\beta os$ in V but not $2_{nc}\beta os$ in U.

Theorem 4.3. Let $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be a function. Then the following are equivalent:

(i) f is $N_{nc}\beta Irr$.

(ii)
$$N_{nc}\beta cl(f^{-1}(B)) \subseteq f^{-1}(N_{nc}\beta cl(B))$$
 for every ncs B of U_2 .

(iii)
$$f(N_{nc}\beta cl(A)) \subseteq N_{nc}\beta cl(f(A))$$
 for every ncs A of U_1 .

(iv)
$$f^{-1}(N_{nc}\beta int(B)) \subseteq N_{nc}\beta int(f^{-1}(B))$$
 for every ncs B of U_2 .

Proof. (i) \Rightarrow (ii): Let *B* be any *ncs* in *U*₂. Then by Proposition 3.1 in [19] (xi), $N_{nc}\beta cl(B)$ is $N_{nc}\beta c$ in *U*₂. Since *f* is $N_{nc}\beta Irr$, $f^{-1}(N_{nc}\beta cl(B))$ is $N_{nc}\beta c$ in *U*₁. Then $N_{nc}\beta cl(f^{-1}(N_{nc}\beta cl(B))) = f^{-1}(N_{nc}\beta cl(B))$. By Proposition 3.1 in [19] (ii) and (iv), $N_{nc}\beta cl(f^{-1}(B)) \subseteq N_{nc}\beta cl(f^{-1}(N_{nc}\beta cl(B))) = f^{-1}(N_{nc}\beta cl(B))$. This proves (ii).

(ii) \Rightarrow (iii): Let A be any ncs in U_1 . Then $f(A) \subseteq U_2$. By (ii), $N_{nc}\beta cl(f^{-1}(f(A))) \subseteq f^{-1}(N_{nc}\beta cl(f(A)))$. But $N_{nc}\beta cl(A) \subseteq N_{nc}\beta cl(f^{-1}(f(A)))$, $N_{nc}\beta cl(A) \subseteq f^{-1}(N_{nc}\beta cl(f(A)))$. That implies, $f(N_{nc}\beta cl(A)) \subseteq N_{nc}\beta cl(f(A))$.

(iii) \Rightarrow (i): Let F be any $N_{nc}\beta c$ set in U_2 . Then $f^{-1}(F) = f^{-1}(N_{nc}\beta cl(F))$. By (iii), $f(N_{nc}\beta cl(f^{-1}(F))) \subseteq N_{nc}\beta cl(f(f^{-1}(F))) \subseteq N_{nc}\beta cl(F) = F$. That implies, $(N_{nc}\beta cl(f^{-1}(F))) \subseteq f^{-1}(F)$. But $f^{-1}(F) \subseteq N_{nc}\beta cl(f^{-1}(F))$, $N_{nc}\beta cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is $N_{nc}\beta c$ set U_1 . Therefore f is $N_{nc}\beta Irr$.

(i) \Rightarrow (iv): Let *B* any *ncs* in *U*₂. By Proposition 3.1 in [19] (xii), $N_{nc}\beta int(B)$ is $N_{nc}\beta o$ in *U*₂. Since *f* is $N_{nc}\beta Irr$, $f^{-1}(N_{nc}\beta int(B))$ is $N_{nc}\beta o$ in *U*₁. Then $f^{-1}(N_{nc}\beta int(B)) = N_{nc}\beta int(f^{-1}(N_{nc}\beta int(B))) \subseteq N_{nc}\beta int(f^{-1}(B)).$

(iv) \Rightarrow (i): Let V be any $N_{nc}\beta c$ in U_2 . Then by (iv), $f^{-1}(V) = f^{-1}(N_{nc}\beta int(V)) \subseteq$

 $N_{nc}\beta int(f^{-1}(V))$. But, $N_{nc}\beta int(f^{-1}(V)) \subseteq f^{-1}(V), N_{nc}\beta int(f^{-1}(V)) = f^{-1}(V)$ and by Proposition 3.1 in [19] (x), $f^{-1}(V)$ is $N_{nc}\beta o$. Thus f is $N_{nc}\beta Irr$.

Theorem 4.4. If $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ and $g : (U_2, N_{nc}\Psi) \to (U_3, N_{nc}\tau)$ are $N_{nc}\beta Irr$ function, then their composition $g \circ f : (U_1, N_{nc}\Gamma) \to (U_3, N_{nc}\tau)$ is also $N_{nc}\beta Irr$.

Proof. Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $N_{nc}\beta Irr$ function, $g^{-1}(V)$ is $N_{nc}\beta o$ in U_2 . Since f is a $N_{nc}\beta Irr$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}\beta o$ in U_1 . Therefore $g \circ f$ is $N_{nc}\beta Irr$.

Theorem 4.5. If $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ is $N_{nc}\beta Irr$ and $g : (U_2, N_{nc}\Psi) \to (U_3, N_{nc}\tau)$ are $N_{nc}\beta Cts$ function then their composition $g \circ f : (U_1, N_{nc}\Gamma) \to (U_3, N_{nc}\tau)$ is also $N_{nc}\beta Cts$.

Proof. Let V be a $N_{nc}o$ set in U_3 . Since g is a $N_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}\beta o$ in U_2 . Since f is a $N_{nc}\beta Irr$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}\beta o$ in U_1 . Therefore $g \circ f$ is $N_{nc}\beta Cts$.

5. Strongly $N_{nc}\beta$ Continuous and Perfectly $N_{nc}\beta$ Continuous Functions

In this section, we introduce the concept of strongly N-neutrosophic crisp β continuous and perfectly N-neutrosophic crisp β continuous functions in $N_{nc}ts$ and we discuss the relation with the above-mentioned functions.

Definition 5.1. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two $N_{nc}ts$'s. A function f: $(U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is called strongly N-neutrosophic crisp β continuous (briefly, $StN_{nc}\beta Cts$) function if the inverse image of every $N_{nc}\beta$ set in U_2 is $N_{nc}o$ in U_1 .

Definition 5.2. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two $N_{nc}ts$'s. A function f: $(U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is called a perfectly N-neutrosophic crisp continuous (briefly, $PeN_{nc}Cts$) function if the inverse image of every $N_{nc}o$ set in U_2 is Nneutrosophic crisp clopen (i.e both $N_{nc}o$ and $N_{nc}c$) (briefly, $N_{nc}clo$) in U_1 .

Definition 5.3. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two $N_{nc}ts$'s. A function f: $(U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ is called a perfectly N-neutrosophic crisp β continuous (briefly, $PeN_{nc}\beta Cts$) function if the inverse image of every $N_{nc}\beta o$ set in U_2 is N-neutrosophic crisp clopen (i.e both $N_{nc}o$ and $N_{nc}c$) (briefly, $N_{nc}clo$) in U_1 .

Theorem 5.1. Let $(U_1, N_{nc}\Gamma)$ and $(U_2, N_{nc}\Psi)$ be two N_{nc} ts's and $f : (U_1, N_{nc}\Gamma) \rightarrow (U_2, N_{nc}\Psi)$ be a function. Then

- (i) If f is $PeN_{nc}\beta Cts$, then f is $PeN_{nc}Cts$.
- (ii) If f is $StN_{nc}\beta Cts$, then f is $N_{nc}Cts$.

Proof. (i) Let $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be $PeN_{nc}\beta Cts$. Let V be a $N_{nc}o$ set in U_2 . Since f is $PeN_{nc}\beta Cts$, $f^{-1}(V)$ is $N_{nc}clo$ in U_1 . Therefore f is $PeN_{nc}Cts$. (ii) Let $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be $StN_{nc}\beta Cts$. Let G be a $N_{nc}o$ set in U_2 . Since f is $StN_{nc}\beta Cts$, $f^{-1}(G)$ is $N_{nc}o$ in U_1 . Therefore f is $N_{nc}Cts$.

Theorem 5.2. Let $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be $StN_{nc}\beta Cts$ and A be $N_{nc}o$ in U_1 . Then the restriction, $f_A: A \to U_2$ is $StN_{nc}\beta Cts$.

Proof. Let V be any $N_{nc}\beta o$ set in U_2 . Since f is $StN_{nc}\beta Cts$, $f^{-1}(V)$ is $N_{nc}o$ in U_1 . But $f_A^{-1}(V) = A \cap f^{-1}(V)$. Since A and $f^{-1}(V)$ are $N_{nc}o$, $f_A^{-1}(V)$ is $N_{nc}o$ in A. Hence f_A is $StN_{nc}\beta Cts$.

Theorem 5.3. Every $PeN_{nc}\beta Cts$ is $StN_{nc}\beta Cts$.

Proof. Let $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ be $PeN_{nc}\beta Cts$ and V be $N_{nc}\beta o$ in U_2 . Since f is $PeN_{nc}\beta Cts$, $f^{-1}(V)$ is $N_{nc}clo$ in U_1 . That is, $f^{-1}(V)$ is both $N_{nc}o$ and $N_{nc}c$ in U_1 . Hence f is $StN_{nc}\beta Cts$.

Theorem 5.4. If $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ and $g : (U_2, N_{nc}\Psi) \to (U_3, N_{nc}\tau)$ are $StN_{nc}\beta Cts$, then their composition $g \circ f : (U_1, N_{nc}\Gamma) \to (U_3, N_{nc}\tau)$ is also $StN_{nc}\beta Cts$.

Proof. Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $StN_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}o$ in U_2 . Since f is a $StN_{nc}\beta Cts$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}o$ in U_1 . Therefore $g \circ f$ is $StN_{nc}\beta Cts$.

Theorem 5.5. If $f : (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ and $g : (U_2, N_{nc}\Psi) \to (U_3, N_{nc}\tau)$ are $PeN_{nc}\beta Cts$, then their composition $g \circ f : (U_1, N_{nc}\Gamma) \to (U_3, N_{nc}\tau)$ is also $PeN_{nc}\beta Cts$.

Proof. Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $PeN_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}clo$ in U_2 . That is $g^{-1}(V)$ is both $N_{nc}o$ and $N_{nc}c$. Since f is a $PeN_{nc}\beta Cts$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}clo$ in U_1 . Therefore $g \circ f$ is $PeN_{nc}\beta Cts$.

Theorem 5.6. Let $f: (U_1, N_{nc}\Gamma) \to (U_2, N_{nc}\Psi)$ and $g: (U_2, N_{nc}\Psi) \to (U_3, N_{nc}\tau)$ be functions. Then,

(i) If g is $StN_{nc}\beta Cts$ and f is $N_{nc}\beta Cts$, then $g \circ f$ is $N_{nc}\beta Irr$.

(ii) If g is $PeN_{nc}\beta Cts$ and f is $N_{nc}Cts$, then $g \circ f$ is $StN_{nc}\beta Cts$.

(iii) If g is $StN_{nc}\beta Cts$ and f is $PeN_{nc}\beta Cts$, then $g \circ f$ is $PeN_{nc}\beta Cts$.

(iv) If g is $N_{nc}\beta Cts$ and f is $StN_{nc}\beta Cts$, then $g \circ f$ is $N_{nc}Cts$.

Proof. (i) Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $StN_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}o$ in U_2 . Since f is a $N_{nc}\beta Cts$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}\beta o$

in U_1 . Hence $g \circ f$ is $N_{nc}\beta Irr$.

(ii) Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $PeN_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}clo$ in U_2 . That is, $g^{-1}(V)$ is both $N_{nc}o$ and $N_{nc}c$. Since f is a $N_{nc}Cts$, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}o$ in U_1 . Therefore $g \circ f$ is $StN_{nc}\beta Cts$.

(iii) Let V be a $N_{nc}\beta o$ set in U_3 . Since g is a $StN_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}o$ in U_2 . Since f is a $PeN_{nc}\beta Cts$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}clo$ in U_1 . Hence $g \circ f$ is $PeN_{nc}\beta Cts$.

(iv) Let V be a $N_{nc}o$ set in U_3 . Since g is a $N_{nc}\beta Cts$ function, $g^{-1}(V)$ is $N_{nc}\beta o$ in U_2 . Since f is a $StN_{nc}\beta Cts$ function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $N_{nc}o$ in U_1 . Therefore $g \circ f$ is $N_{nc}Cts$.

6. Conclusion

We have discussed about a N-neutrosophic crisp β -continuous mappings in Nneutrosophic crisp topological spaces and also their relationship with near mappings in this article. And, N-neutrosophic crisp β -irresolute functions is also introduced and studied some of their properties with example. Also, studied about the concept of strongly N-neutrosophic crisp β continuous and perfectly N-neutrosophic crisp β continuous functions in N-neutrosophic crisp topological spaces. This can be extended to N-neutrosophic crisp β -open mappings, N-neutrosophic crisp β -closed mappings, N-neutrosophic crisp β -homeomorphism and also a contra field of Nneutrosophic crisp β functions in N-neutrosophic crisp topological spaces.

References

- Abd EL-Monsef M. E., EL-Deep S. N. and Mahmound R. A., β-open sets and β-continuous mappings, Bull. Fac. Sci., Assiut Univ., 12 (1983), 77-90.
- [2] Al-Hamido R. K., Gharibah T., Jafari S. and Smarandache F., On neutrosophic crisp topology via N-topology, Neutrosophic Sets and Systems, 23 (2018), 96-109.
- [3] Al-Omeri W., Neutrosophic crisp sets via neutrosophic crisp topological Spaces NCTS, Neutrosophic Sets and Systems, 13 (2016), 96-104.
- [4] Al-Omeri W., and Jafari S., Neutrosophic pre-continuous multifunctions and almost pre-continuous multifunctions, Neutrosophic Sets and Systems, 27 (2019), 53-69.
- [5] Andrijevic D., Semi-pre open sets, Matematiqki Vesnik, 38 (1) (1986), 24-32.
- [6] Kohli J. K., Singh D. and Arya C. P., Perfectly continuous functions, Stud. Cerc. St. Ser. Mat. Nr., 18 (2008), 99–110.

- [7] Lellis Thivagar M., Jafari S., Antonysamy V. and Sutha Devi V., The ingenuity of neutrosophic topology via N-topology, Neutrosophic Sets and Systems, 19 (2018), 91-100.
- [8] Levine N., Strong continuity in topological spaces, Amer. Math. Monthly, 67 (1960), 269.
- [9] Naimpally S. A., On strongly continuous functions, Amer. Math. Monthly, 74 (1967), 166–168.
- [10] Noiri T., Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl. Math., 15 (3) (1984), 241–250.
- [11] Salama A. A., Smarandache F. and Kroumov V., Neutrosophic crisp sets and neutrosophic crisp topological spaces, Neutrosophic Sets and Systems, 2 (2014), 25-30.
- [12] Salama A. A. and Smarandache F., Neutrosophic crisp set theory, Educational Publisher, Columbus, Ohio, USA, 2015.
- [13] Smarandache F., A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, 1999.
- [14] Smarandache F., Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA, 2002.
- [15] Smarandache F., n-valued refined neutrosophic logic and its applications in physics, Progress in Physics, 4 (2013), 143-146.
- [16] Smarandache F. and Pramanik S., New Neutrosophic Sets via Neutrosophic Topological Spaces, Neutrosophic Operational Research, Pons Editions: Brussels, Belgium, I (2017), 189-209.
- [17] Smarandache F., Refined Neutrosophic Crisp Set (RNCS), Nidus Idearum, third edition, Editions Pons, Brussels, Belgium, VII (2019), 114-116.
- [18] Vadivel A. and John Sundar C., γ -open sets in N_{nc} -topological spaces, Advances in Mathematics: Scientific Journal, 9 (4) (2020), 2197-2202.
- [19] Vadivel A. and John Sundar C., $N_{nc}\beta$ -open sets, Advances in Mathematics: Scientific Journal, 9 (4) (2020), 2203-2207.

- [20] Vadivel A. and John Sundar C., On Almost γ-Continuous Functions in N-Neutrosophic Crisp Topological Spaces, Palestine Journal of Mathematics, 11 (3) (2022), 424-432.
- [21] Vadivel A. and John Sundar C., Neutrosophic δ -Open Maps and Neutrosophic δ -Closed Maps, International Journal of Neutrosophic Science (IJNS), 13 (2) (2021), 66-74.
- [22] Vadivel A., Nauvluri M. and Thangaraja P., On N_{nc} DP*-sets and decomposition of continuity in N_{nc} -topological spaces, Advances in Mathematics: Scientific Journal, 9 (11) (2020), 9559-9564.
- [23] Vadivel A., Navuluri M. and Thangaraja P., Completely $N_{nc} e$ (Weakly $N_{nc} e$)-irresolute functions via $N_{nc} e$ -open sets, Journal of Physics: Conference Series, 1724 (2021), 012010.
- [24] Vadivel A., Nauvluri M. and Thangaraja P., Characterization of completely N_{nc} (weakly N_{nc})-irresolute functions via N_{nc} e-open sets, Journal of Physics: Conference Series, 1724 (2021), 012009.
- [25] Vadivel A., Seenivasan M. and John Sundar C., An introduction to δ -open sets in a neutrosophic topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.
- [26] Vadivel A., Thangaraja P., *e*-open sets in N_{nc} -topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012007.
- [27] Vadivel A., Thangaraja P., e-continuous and somewhat e-continuity in N_{nc} -topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012008.
- [28] Vadivel A., Thangaraja P. and John Sundar C., Neutrosophic e-Continuous Maps and Neutrosophic e-Irresolute Maps, Turkish Journal of Computer and Mathematics Education, 12 (1S) (2021), 369-375.
- [29] Vadivel A., Thangaraja P. and John Sundar C., Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conference Proceedings, 2364 (2021), 020016.