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Abstract: In this article, we study a new types of mappings using N-neutrosophic
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1. Introduction

The ideal concepts of neutrosophy and neutrosophic set was first presented
by Smarandache [13, 14, 16] at the beginning of 21% century. In 2014, the con-
cept of neutrosophic crisp topological space presented by Salama, Smarandache
and Kroumov [11]. Al-Omeri [3] also investigated neutrosophic crisp sets in the
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build of neutrosophic crisp topological Spaces. Also presented the definitions of
neutrosophic crisp continuous mappings compact spaces. Lellis Thivagar et al.
[7] introduced the concept of N,-open (closed) sets in N-neutrosophic topological
spaces. Al-Hamido [2] explore the possibilities in idea of neutrosophic crisp topo-
logical spaces into N, .-topological spaces and scrutinized some of their necessary
properties. F. Smarandache [15, 17] developed an extension from the neutrosophic
crisp set to refined neutrosophic crisp set.

In 1983, Abd EL Monsef et al. [1] presented (- open sets in topology. Also,
the equivalent notion of semi-pre open sets was independently developed by An-
drijevic [5] in 1986. Vadivel et al. [19] presented -open sets in neutrosophic crisp
topological spaces via N-terms of topology.

The strong and weak forms of continuous functions are introduced by Levine
in 1960 [8] and also introduced in strong continuity in topological spaces. In 1967,
Naimpally [9] also discussed strongly continuous functions in a topology. In 1984,
Noiri [10] discussed and studied more about supercontinuity and some strong forms
of continuity. Recently, Vadivel et al. [23, 24] introduced strongly continuous func-
tions in N,. topological spaces. Perfectly continuous functions is introduced by
Kohli et al. [6] in 2008 and studied their properties. Al-Omeri [4] worked on neu-
trosophic pre-continuous multifunctions and almost pre-continuous multifunctions
in neutrosophic topological spaces. Recently, the authors [21, 22, 25, 26, 27, 28,
29] worked on some continuous and irresolute functions on N-neutrosophic crisp
topological spaces and Neutrosophic topological spaces.

In this paper, we establish the concept of N-neutrosophic crisp S-continuous
and N-neutrosophic crisp S-irresolute functions in N-neutrosophic crisp topological
spaces and study their relation with near mappings N-neutrosophic crisp topolog-
ical spaces. In addition, strongly N-neutrosophic crisp # continuous and perfectly
N-neutrosophic crisp S continuous functions in N-neutrosophic crisp topological
spaces are study and discuss their properties.

2. Preliminaries

Definition 2.1. [12] For any non-empty fized set U, a neutrosophic crisp set
(briefly, ncs) K, is an object having the form K = (K, Ko, K3) where Ky, Ko &
K3 are subsets of U satisfying any one of the types

(T1) K,NKy=¢,a#b& \J_, K, CU, Va,b=1,2,3.

(T2) K,NKy=¢,a#b& | J_, K, =U, VYa,b=1,2,3.

(T3) N Ke=0¢ & |} K,=U, Va=1,2,3.
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Definition 2.2. [12] Types of ncs’s Oy and Uy in U are as
(i) On may be defined as Oy = (0,0, U) or (D, U, U) or (0,U,0) or (0,0, 0).
(ii) Unx may be defined as Uy = (U,0,0) or (U,U,0) or (U,0,U) or (U U,U).

Definition 2.3. [12] Let U be a non-empty set & the ncs’s K & M in the form
K = (K11, Koy, K33), M = (My1, Mo, Mss), then

(i) K C M < Ky C My, Ky C© My & Ks3 2 Mg or K1y © My, Koy 2O My
& Ksz3 2 Mss.

(i) KNM = (K11NMy, KooNMag, K33UMss) or (Kij1NMiq, KogUMag, K33UMss)
(1ii) KUM = (K11UMy, KooUMag, K33NMss) or (K11 UMi1, KogNMag, K33NMss)

Definition 2.4. [12] Let K = (K3, K», K3) a ncs on U, then the complement of
K (briefly, K¢) may be defined in three different ways:

(C]) K¢ = <K107KQC,K3C>, or
(CQ) KC = <K3,K2,K1>, or
(C3) K¢ = (K3, K2, K1)

Definition 2.5. [11] A neutrosophic crisp topology (briefly, ».t) on a non-empty
set U is a family I of nc subsets of U satisfying

(Z) @N, Uy erl.
(ZZ) KiNKyel'VK & Ky el
(i) JK,€l', V K,:ae ACT.
Then (U,T') is a neutrosophic crisp topological space (briefly, ncts for short) in U.

The neutrosophic crisp open sets (briefly, ncos) are the elements of T in U. A ncs
C' is neutrosophic crisp closed sets (briefly, nccs) iff its complement C° is ncos.

Definition 2.6. [2] Let U be a non-empty set. Then L1, nel'a, -+, nel'n are
N-arbitrary crisp topologies defined on U and the collection NI is called N,.-
topology on U 1s

N N
Npel' ={AC U A= (U Ej) V(N F), Ej Fj € nel'y}
j=1 j=1

and it satisfies the following axioms:
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(i) Q)N; Uy € NmF.

(ii) U A; € NIV {A;}2, € NI
=1

(i) () Aj € Npel' V {A;}5_, € Ny I
=1

=

Then (U, Np.I') is called a Ny,.-topological space (briefly, Nycts) on U. The Ny.-
open sets (N,.0s) are the elements of Np.I' in U and the complement of N,.o0s
is called Ny.-closed sets (Ny.cs) in U. The elements of U are known as N.-sets

(Npes) on U.

Definition 2.7. [2] Let (U, N,,.I') be Ny.ts on U and K be an N,.s on U, then the
Ny interior of K (briefly, Nypcint(K)) and N,. closure of K (briefly, Ny.cl(K))

are defined as
Npeint(K) =U{A: ACK & Aisa Nyosin U}

Nped(K)=n{C: K CC & Cis a Nyecsin U}

Definition 2.8. [2] Let (U, N,.I') be any Ny.ts. Let K be an Ny.s in (U, NpI').
Then K is said to be a

(i) Nype-regular open [18] set (briefly, Nperos) if K = Nyeint(Npecl(K)).
(11) Nye-pre open set (briefly, Ny.Pos) if K C Ny int(Npcl(K)).
(17i) Npe-semi open set (briefly, Np.Sos) if K C Npecl(Npeint(K)).

(iv) Npe-c-open set (briefly, Nycaos) if K C Nyeint(Npecl( Ny int(K))).

(v) Npe-y-open [18] set (briefly, Nype.yos) set if K C Nyecl(Npeint(K)) UNpcint
(Npecl(K)).
(vi) Nye-B-open [19] set (briefly, Npefos) if K C Nyecl(Npeint(Npcl(K))).
The complement of an Nyeros (resp. NpcPos, NpeS0s, Nypewos, Npyos & Ny.Lfos)
is called an Ny.-reqular (resp. Npe-pre, Npe-semi, Npe-ct, Npe-y & Npe-f3) closed
set (briefly, Nyperes (resp. Nyp Pces, NpScs, Npeacs, Nyoyes & Nyofes)) in U.
Definition 2.9. [20] Let (Uy, Ny I') and (Us, N, W) be any two Npcts’s. A map

[ (Uy, NooT') = (Us, Ny W) s said to be Ny (resp. Ny reqular, Ny pre, Np. semi,
Nypeao & Npoy) continuous (briefly, N,.Cts (resp. N,.rCts, N,.PCts, N,.SCts,
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NyeaCts & N,yCts)) if the inverse image of every Ny.0s in (Uy, N, V) is a N,.0s
(resp. Nyperos, NucPos, Nu.Sos, Ny.cos & Nyeyos) in (U, Npel).

3. N-Neutrosophic Crisp f Continuous Function

Throughout this section, let (Uy, N, .I') and (Us, N, V) be any two N,.ts’s.
Let f : (Up, NpeI') — (Uz, N,y W) be a function. Let K and M be an N,.s’s in
(U1, NypI).

Definition 3.1. A function f is said to be N,.(-continuous (briefly, N,.5Cts) if
the inverse image of every Ny.o0s in (Uy, NuoW) is a Nycfos in (Uy, NpeIL).

Example 3.1. Let U = {ll,ml,nl,ol}, nCI‘l = {¢N,UN,L,M,N}, nCFQ =

{ng:UN}' L = <{l1}7{¢}’{m1’n1701}>’ M = <{m1701}> {¢}7{l17n1}>7 N =
({ly,m1,01}, {0}, {n1}), then we have 2,,.I' = {¢n,Un, L, M, N}, let f: (U, 2,.I") —
(U, 2,.I") be an identity function. Then f is a 2,,.4Cts function.

Theorem 3.1. The statements are hold but the equality does not true.
(1) Every N,.rCts is a Ny.5Cts.
(i) Every N,.Cts is a N,.pCts.
(111) Every Nn.aCts is a Np.SCts.
(iv) Every N,.SCts is a Ny.SCts.
(v) Every N,.PCts is a Ny.5Cts.
(vi) Every N,.yCts is a N,.(Cts.

Proof. (ii) Let f be a N,.Cts and K is a N,.0s in Us. Then f~}(K) is N,.[Bos
in U;. Since every N,.o0 set is N,.Bo set, f(K) is N,.B0s in U;. Therefore f is
N,.0Cts.

The other cases are similar.

Remark 3.1. The diagram shows N,.0Cts function in Nyts.
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NS08 —— [N IO8] — [FaP O

Example 3.2. In Example 3.1, let V = {wy, 21,91, 21}, ne¥1 = {én, Vv, W, X, Y},

ne¥2 = {¢N7VN}' W = <{w1}’{¢}7 {whylazl})? X = <{’w1,y1},{¢},{$1,21}>,
Y = {wy, 21,1}, {0}, {#1}), then we have 2,V = {¢n, Vv, W, X, Y }.

Define f : (U7 2ncF) — (V7 2nc\Ij) as f(ll) = Ty, f(ml) = Y1, f(nl) = w &
f(o1) = 2, then 2,.6Cts but not 2,.rCts, 2,.Cts, 2,.aCts, 2,.PCts, 2,.S5Cts,
2,c7C'ts, the set f_l<<{w17 yl}? {¢}’ {1‘1, Zl}>) = <{m1’ nl}v {¢}7 {lb 01}> is a 2,,.0s

but not 2,.r08, 2,.08, 2,008, 2, P0s, 2,508, 2,.70s.

Theorem 3.2. The conditions
(i) f is NpSCts.
(ii) The inverse f~Y(K) of all Nyp.0s K in Uy is Ny.fos in Uy

are equivalent. o
Proof. The proof is obvious, since f~!(K) = f~1(K) for all N,.0s K of Us.

Theorem 3.3. The conditions
(1) f(NpeBcl(K)) C Npecl(f(K)), for all nes K in U;.
(11) NpeBel(f~HM)) C fH(Npecl(M)), for all nes M in Uy

are equivalent.

Proof. (i) Since N,.cl(f(K)) is a Ny.cs in Uy and f is N,.Cts, then f=1 (N,
c(f(K))) is Npefc in Up. Now, since K C f~! (N c(f(K))), NypBcl(K) C
£ (Npecl(f(K))). Therefore, f(NoBel(K)) € Noeel(F(K).

(ii) By replacing K with M in (i), we obtain f(Np.Bcl(f~1(M))) C Nuocl(f(f~1(M)))
C Nyecl(M). Hence, N, Lel(f~H(M)) C f~H(Npecl(M)).

Remark 3.2. If f is N,.0Cts, then
(i) f(NpeBcl(K)) is not necessarily equal to Np.cl(f(K)) where K C U,.
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(i1) NpeBcl(f~H(M)) is not necessarily equal to = (Npecl(M)) where M C Us.

Example 3.3. Let U = {li,m1,n1,01,p1}, nl1 = {én,Un, L, M, N}, Ty =
{on, Un}. L= ({m}, {0}, {li,m1, 01, pr}), M = ({l1,m1},{¢}, {n1,01,m}), N =
({ly,m1,n1}, {0}, {o1,m}), then we have 2,.I' = {¢n,Un,L,M,N}. Let f :
(U, 2,.I) — (U, 2,.I') be an identity function and f is a 2,.5Cts.

(i) Let K = <{l1,m1},{¢},{n1,01,p1}> C U. Then f(2ncﬂCl<K)) = f(zncﬁ Cl((
{lh ml}v{(b}’ {n17017p1}>)) = f(<{l17 m1},{¢},{n1,01,p1})) = <{llv ml}?
{¢}’ {n17017p1}>‘ But 2nCCl(f<K)) = 2ncd(f(<{llvm1}v {¢}7 {nlaola p1}>)) =
2necl ({1, m1}, {0}, {n1, 01, p1})) = ({li,ma, 01,1}, {9}, {ma}). Thus f(2n
Bel(K)) # 2necl(f(K)).

(ii) Let M = ({I;}, {6}, {m1,n1,01,p1}) CU. Then 2,.8cl(f~H(M)) C 2,.Bcl(f!
(( {l}, {2}, {mu, nl,ol,p1}>)) = 2,0 (({l1}, {9}, {mbnuol,pl}»- But
M 2necl (M) = f~ ( necll({li}, {6}, {m1, 1, 01,p1}))) = fH(U) = U. Thus
2neBel(f7H (M) # [ (2necl(M)).

Theorem 3.4. If f is N,.(Cts, then f~'(N,.int(M)) C N,.Sint(f~1(M)), for
all nes M in Us,.
Proof. If f is N,.8Cts and M C Us. Np.nt(M) is N,.o in Uy and hence,
F Y (Nypeint(M)) is NpeBo in Uy. Therefore Nncﬂmt(f (Nncint(M))) = 71 (Npe
int(M)). Also, Nyeint(M) C M, implies that f Y Npeint(M)) C f L(M). There-
fore N,.( mt(f_1 (Npeint(M))) € NpeBint(f~H(M)). That is f~H(N,int(M)) C
N, Bint(f~(M)).

Conversely, let f~1(N,int(M)) C Np.Bint(f~'(M)) for all subset M of Us.
If M is Nyeo in Uy, then Npint(M) = M. By assumption, f~1( ncmt(M)) C
NooBint(f-1(M)). Thus f-1(0M) C NyoBint(f~1(M)). But Nyfint (f-(M)) C
f~HM). Therefore N, .Bint(f~(M)) = f~Y(M). That is, f~1(M) is N,.fo in Uy,
for all N,.os M in U,. Therefore f is N,.8Cts on Uj.

Remark 3.3. If f is N,.8Cts, then N,.Bint(f~1(M)) is not necessarily equal to
J YNy int(M)) where M C Us.

Example 3.4. In Example 3.3, flsaQnCBC’ts Let M = ({l1,n1}, {0}, {m1,01,p1})
C U. Then 2,.Bint(f~H(M)) C 2,.B8int(f~* ({{l1,m}, {0}, {ml,ol,p1}>)) = 2,.0
int({({l,m}, {0}, {ma, 01, p1})) = ({l, 1}, {o}, {ma, 01, p1}). But [~ (2,cint(M))
= fﬁl(anint“{ll?nl}v{¢}7{m17017p1}>)) = f71(<{n1}7{¢}7{llvmlaolapl}» -
({r} Ao} {li,ma, 01,p1}). Thus 2,.8int(f~H(M)) # [~ (20cint(M)).

Theorem 3.5. The statements
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(1) fis a Np.8Cts function.

(ii) For every NucP D(p, pops) € Ui and each ncs K of f(Dp, pops)), there ewists
an NpcBos M such that pap, pyps) € M C f7HK).

(iii) For every Npe point D pops) € Ui and each ncs K of f(p(p1 pops)), there
exists an NpcBos M such that pe, p,py) € M and f(M) C

are equivalent.

Proof. (i) = (ii): If pp, psps) is an Ny P in Uy and if K is an nes of f(Dgp, pops)),

then 3 an N,.0s W in U, such that f(pp, pops)) € W C K. Thus, fis a N,.3Cts,

M = f_l(W) is an Npefos and Pip, pyps) € f_l(f(p(m,m,p?,))) c f_l(W) =M Cc

f~YK). Thus, (ii) is a valid statement.

(ii) = (iii): Let p(p, pops) be an Ny P in Uy and let K be an nes of f(p(p; pops))-

Then 3 an N,,.fos K such that pu, p,ps) € M C f7HK) by (ii). Thus, we have

Piprpaps) € M and f(M) C f(f1(K)) C K. Hence, (iii) is valid.

(iil) (i): Let M be an N,.0s in Uz and let pip, pope) € fH(M). Then, f(Dipypops))
f(f71(M)) € M. Since M is an N,.0s, M is an ncs of f(pe, psps))- Therefore,

from (iii), 3 an NypcfBos K such that py, p,p,) and f(K) € M. This implies that

Piprpaps) € K C fTHF(K)) C f71(M). Therefore, we know that f~'(M) is an

Ny,epos in Uy. Thus, fis a N,.Cts function.

4. N-Neutrosophic Crisp  Irresolute Functions
In this section, we introduce the concept of N-neutrosophic crisp [ irresolute
function in N,.ts. Also, we discuss the relation with N,.5Cts function.

Definition 4.1. Let (Uy, Ny I') and (Uz, N, V) be two Nyts’s. A function f
(U1, NpoI') — (Ua, NpoW) is called N-neutrosophic crisp [ irresolute (briefly, N,
B Irr) function if the inverse image of every Ny.Bo set in Us is NypcBo in Uy.

Theorem 4.1. Let (Uy, N,.I') and (Uy, N, V) be two N,.ts’s. A function f :
(U1, NpoI') = (U, Np V) is Ny SIrr iff the inverse image of every NyoSc set in Us
18 Ny.pe in Uy.
Proof. Let A be any N, B¢ set in Us. Then A€ is N,.(o set in U,. Since f is
NpofBIrr, f7HAC) is N,.fo set in Uy and f~1(A¢) = [f~1(A)]¢ which implies that
is f71(A) is N,.Sc set in Uj.

Conversely, let B be any N, .o set in Us. Then B¢ is N,.0c set in Us. Thus
f7HBC) is NyfBeset in Uy and f~1(B¢) = [f~1(B)]® which implies that is f~!(B)
is NpefBe set in Uy, Hence f: (Uy, Npl') = (Us, Np W) is Ny S1rr.

Theorem 4.2. Let (Uy, N, .I') and (Uy, N, W) be two Nyts’s. Andlet f: Uy — Us,
Every N,.BIrr is a N,.0Cts. But not converse.
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Proof. Let V be a N,,.fo set in Us,. Since every N,.Bo set is N,.0 set in Uy. Since
fis NpBIrr, f74V) is Ny.fo in Uy. Therefore f is N,,.3Cts.

Example 4.1. Let U = {ll,ml,nl,al,pl} = V, ncfl = {¢N7 UN,L,M, N}, nch =
{ng:UN}' L= <{n1}7{¢}7{l17m17 017p1}>> M = <{l1’m1}’{¢}7{n17017p1}>7 N =
<{l1,m1,n1}, {¢}7{01,p1}>> then we have 2ncF = {¢Na UNaLaMa N} nc\Ijl = {¢N7
Vy, O, P,Q}, neWo = {¢N>VN}- 0= <{l17m1}7{¢}7{n1701>p1}>7 P = <{n1701}7
{¢}7 {llvm17p1}>7 Q = <{llam17n1701}7 {(b}v {p1}>7 then we have 2nc\1j = {(bNa VN7
O, P, Q}.

Define h : (U,2,.I') — (V,2,.¥) as h(ly) = I, h(m1) = my, h(n1) = ny,
h(o1) = p1 & h(p1) = p1, then 2,,.6Cts mapping but not 2,,.1rr mapping, the set

h=Y({({my,01,p1}, {0}, {l1,m})) = ({my,01,p1}, {0}, {l1,n1}) is a 2,.80s in V but
not 2,.0os in U.

Theorem 4.3. Let f: (Uy, NpeI') = (Ua, NpeW) be a function. Then the following
are equivalent:

(i) f is NuoBIrr.

(ii) NuoBel(f7H(B)) € [ (NueBel(B)) for every nes B of Up.
(iti) f(NpeBcl(A)) C Nnefel(f(A)) for every ncs A of Us.

(iv) f~(NnoBint(B)) C NoBint(f~\(B)) for every nes B of Us.

Proof. (i) = (ii): Let B be any ncs in Us. Then by Proposition 3.1 in [19]

(xi), NpeBcl(B) is Ny.Bc in Uy. Since f is NpoSIrr, f~HN,.Bcl(B)) is Np.fe in

Ui. Then N, Bcl(f~(NpeBcl(B))) = f~H(NneBcl(B)). By Proposition 3.1 in [19]

(ii) and (iv), NpeBcl(f7H(B)) C Npefcl(fH(Npefel(B))) = f~H(NueBcl(B)). This

proves (ii).

(i) = (iii): Let A be any ncsin Uy. Then f(A) C UQ By (ii), NpeBel(f71(f(A))) C

f_l(Nn05Cl(f( ))) But Nncﬁd( ) C NyefBcl ( ( ( ))) n66d( ) f_l (Nnc

pel (f(A))). That implies, f(Nnefcl(A)) S NucScl(f(A)).

(iii) = (i): Let F be any N,.Bc set in Uy. Then f~(F) = f~'(N,.(cl(F)). By

). SNl (f(F))) € NooSel(f(~ () € NycBel(F) = F. That imuplies

NooGel(fH(F))) € F(F). But JHF) © Nyufel(f~(F), NouBel(~(F)) =
Y(F) and so f71(F) is N,.fc set U,. Therefore f is N,.GIrr.

) = (iv): Let B any ncs in Us. By Proposition 3.1 in [19] (xii), N,.Bint(B)
Npfo in Us. Since f is Np.SBIrr, f~1(Nu.Bint(B)) is Np.fo in U;. Then

FA(NonBint(B)) = Noufint(f- Ny Bint(B))) € Nouint(f-1())

(iv) = (i): Let V be any N, (¢ in Uy. Then by (iv), f~1(V) = f~1(N,.Bint(V)) C

(i
(
I
(
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Ny Bint(f~1(V)). But, Nppint(f~H(V)) C f7HV), NuBint(f7HV)) = f7H(V)
and by Proposition 3.1 in [19] (x), f~1(V) is N,.Bo. Thus f is N,.BIrr.

Theorem 4.4. If f : (U, NpoI') = (U, NooW) and g = (Ug, Ny W) — (Us, NyeT)
are Ny pBIrr function, then their composition g o f : (U1, NpoI') — (Us, NpeT) is
also Ny.BIrr.

Proof. Let V be a N,.fo set in Us. Since g is a N,.SIrr function, g~ (V) is
N0 in Uy. Since f is a N,.BIrr function, f~* (g7 (V)) = (go f)~1(V) is N,.Bo
in U;. Therefore g o f is N,.BIrr.

Theorem 4.5. If f : (U, NyoI') — (Ua, N V) is NyofSIrr and g : (Ua, NpeW)
(Us, N,,o7) are N,.5Cts function then their composition g o f : (Uy, Npel')
(Us, Npe) is also N,.BCts.

Proof. Let V be a N,.o0 set in Us. Since g is a N,,.3Cts function, g7 (V) is N,.B0
in Uy. Since f is a N,.BIrr function, f~1 (g7 (V)) = (go f)"H(V) is NyBo in U;.
Therefore g o f is N,.5Cts.

%
%

5. Strongly N,.8 Continuous and Perfectly N,.5 Continuous Functions

In this section, we introduce the concept of strongly N-neutrosophic crisp
continuous and perfectly N-neutrosophic crisp 8 continuous functions in N,ts
and we discuss the relation with the above-mentioned functions.

Definition 5.1. Let (Uy, N, .I') and (U, N,,.V) be two Ny.ts’s. A function f :
(U, NpeI') = (Us, N, V) is called strongly N -neutrosophic crisp 5 continuous
(briefly, StN,.0Cts) function if the inverse image of every N,.fo set in Uy is
N0 in Uj.

Definition 5.2. Let (Uy, Ny .I') and (Uz, N, V) be two Nycts’s. A function f
(Uy, NpoI') — (Uz, N, V) is called a perfectly N-neutrosophic crisp continuous
(briefly, PeN,.Cts) function if the inverse image of every N,.o set in Uy is N-
neutrosophic crisp clopen (i.e both N,.o and Ny.c) (briefly, Ny.clo) in Uy.

Definition 5.3. Let (Uy, Ny .I') and (Uz, N,,.V) be two Ny.ts’s. A function f :
(U1, N oI') = (Ua, NpuoW) is called a perfectly N-neutrosophic crisp B continuous
(briefly, PeN,.5Cts) function if the inverse image of every Np.Bo set in U, is
N -neutrosophic crisp clopen (i.e both Nyp.o and Ny.c) (briefly, Ny.clo) in Uy.

Theorem 5.1. Let (U, Ny I') and (Ua, Ny W) be two Nyts’s and f: (Uy, Ny ') —
(Uz, Ny W) be a function. Then

(i) If f is PeN,.SCts, then f is PeN,.Cts.

(ii) If f is StN,.8Cts, then f is N,.Cts.
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Proof. (i) Let f : (U, NpeI') = (Uz, N, W) be PeN,,.0Cts. Let V be a N,.0 set in
Us. Since f is PeN,.3Cts, f~1(V) is N,.clo in U;. Therefore f is PeN,.Cts.

(i) Let f : (Ur, NpeI') — (Ua, NpeW) be StN,,.fCts. Let G be a Ny.o set in Us.
Since f is StN,.3Cts, f~1(G) is Nyeo in U;. Therefore f is N, .Cts.

Theorem 5.2. Let f: (Uy, NpI') = (U, NpeW) be StN,.Cts and A be Ny0 in
Uy. Then the restriction, fa: A — Us is SthcﬂCts

Proof. Let V be any N,.(0 set in Us. Since f is StN,.3Cts, f~1(V) is N,.o0 in
Uy. But f,1(V) = An f~4(V). Since A and f~4(V) are N,.o0, f;* (V) is N0 in
A. Hence f4 is StN,,.0Cts.

Theorem 5.3. Every PeN, . fCts is StN,.fCts.

Proof. Let f : (U, Ny.I') — (Uz, NuoeW) be PeN, .Cts and V be N,.fo in Us.
Since f is PeN,.3Cts, f~1(V) is Ny.clo in U;. That is, f~1(V) is both N,.0 and
N,.c in Uy. Hence f is StN,,.0C'ts.

Theorem 5.4. If f : (U, N,y.I') = (U, Ny W) and g - (Ug,Nnc\P) (Us, NypeT)
are StN,.(Cts, then their composition g o f : (Uy, NpeI') — (Us, NpeT) is also
StN,.5Cts.

Proof. Let V be a N,.(0 set in Us. Since g is a StN,.3Cts function, g71 (V) is
Nyeo in U,. Since f is a StN,,.8Cts function, f~*(g=(V)) = (go f)" (V) is N0
in U;. Therefore g o f is StN,,.fCts.

Theorem 5.5. If [ : (U, Nyo[') — (U, N W) and g = (Uzy, NpeW) — (Us, NpeT)
are PeN, .[Cts, then their composition g o f : (Uy, NpI') — (Us, NpeT) is also
PeN,.6Cts.

Proof. Let V be a N,.(o set in Us. Since g is a PeN,.3Cts function, g=' (V)
is Npeclo in Us. That is g71(V) is both N,.0 and N,.c. Since f is a PeN,.3Cts
function, f~1(g7 (V) = (gof)~1(V) is Nyeclo in U;. Therefore go f is PeN,,.0Cts.

Theorem 5.6. Let f: (Uy, NpoI') = (Uz, N W) and g : (Ua, NpeW) — (Us, NyeT)

be functions. Then,

(1) If g is StN,.fCts and f is Nu.8Cts, then go f is Ny.BIrr.

(i1) If g is PeN,.Cts and f is N,.Cts, then go f is StN,.(Cts.
(111) If g is StN,.fCts and f is PeN,.[Cts, then go f is PeN, . SCts.
() If g is N,.8Cts and f is StN,.0Cts, then go f is N,.Cts.

Proof. (i) Let V be a N,.fo set in Usz. Since g is a StN,,.5Cts function, g~ (V)
is N0 in Us. Since f is a N,,.3Cts function, f~1 (g7 (V) = (go f)"(V) is N,.fo
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in U;. Hence go fis N,.BIrr.

(ii) Let V be a N,.B0 set in Us. Since g is a PeN,.3Cts function, g~ (V) is
Npeclo in Uy, That is, g71(V) is both N,.0 and N,.c. Since f is a N,.Cts,
g (V)= (go f)~1 (V) is Nueo0 in Uy. Therefore g o f is StN,,.3Cts.

(iii) Let V be a N,.Bo set in Us. Since g is a StN,,.SCts function, g=*(V) is N,.o0
in Uy. Since f is a PeN,.Cts function, f~'(g7*(V)) = (go f)~ (V) is Ny.clo in
U,. Hence go f is PeN, . BCts.

(iv) Let V be a N,.0 set in Us. Since g is a N,.3Cts function, g~ (V) is N80 in
Us. Since f is a StN,.Cts function, f~* (g~ (V)) = (go f)"*(V) is Nyeo in Us.
Therefore g o f is N,,.Cts.

6. Conclusion

We have discussed about a N-neutrosophic crisp f-continuous mappings in N-
neutrosophic crisp topological spaces and also their relationship with near mappings
in this article. And, N-neutrosophic crisp S-irresolute functions is also introduced
and studied some of their properties with example. Also, studied about the concept
of strongly N-neutrosophic crisp 8 continuous and perfectly N-neutrosophic crisp
B continuous functions in N-neutrosophic crisp topological spaces. This can be
extended to N-neutrosophic crisp S-open mappings, N-neutrosophic crisp S-closed
mappings, N-neutrosophic crisp S-homeomorphism and also a contra field of N-
neutrosophic crisp 4 functions in N-neutrosophic crisp topological spaces.
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