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Abstract: In this article, we study a new types of mappings using N -neutrosophic
crisp β open sets such as continuous mappings and irresolute mappings in N -
neutrosophic crisp topological spaces were introduced. Also, we discussed about
their properties in relation with the other continuous and irresolute mappings in
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strongly N -neutrosophic crisp β continuous and perfectly N -neutrosophic crisp β
continuous functions in Nnc topological spaces with their properties.
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1. Introduction
The ideal concepts of neutrosophy and neutrosophic set was first presented

by Smarandache [13, 14, 16] at the beginning of 21st century. In 2014, the con-
cept of neutrosophic crisp topological space presented by Salama, Smarandache
and Kroumov [11]. Al-Omeri [3] also investigated neutrosophic crisp sets in the
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build of neutrosophic crisp topological Spaces. Also presented the definitions of
neutrosophic crisp continuous mappings compact spaces. Lellis Thivagar et al.
[7] introduced the concept of Nn-open (closed) sets in N -neutrosophic topological
spaces. Al-Hamido [2] explore the possibilities in idea of neutrosophic crisp topo-
logical spaces into Nnc-topological spaces and scrutinized some of their necessary
properties. F. Smarandache [15, 17] developed an extension from the neutrosophic
crisp set to refined neutrosophic crisp set.

In 1983, Abd EL Monsef et al. [1] presented β- open sets in topology. Also,
the equivalent notion of semi-pre open sets was independently developed by An-
drijevic [5] in 1986. Vadivel et al. [19] presented β-open sets in neutrosophic crisp
topological spaces via N-terms of topology.

The strong and weak forms of continuous functions are introduced by Levine
in 1960 [8] and also introduced in strong continuity in topological spaces. In 1967,
Naimpally [9] also discussed strongly continuous functions in a topology. In 1984,
Noiri [10] discussed and studied more about supercontinuity and some strong forms
of continuity. Recently, Vadivel et al. [23, 24] introduced strongly continuous func-
tions in Nnc topological spaces. Perfectly continuous functions is introduced by
Kohli et al. [6] in 2008 and studied their properties. Al-Omeri [4] worked on neu-
trosophic pre-continuous multifunctions and almost pre-continuous multifunctions
in neutrosophic topological spaces. Recently, the authors [21, 22, 25, 26, 27, 28,
29] worked on some continuous and irresolute functions on N -neutrosophic crisp
topological spaces and Neutrosophic topological spaces.

In this paper, we establish the concept of N -neutrosophic crisp β-continuous
and N -neutrosophic crisp β-irresolute functions in N -neutrosophic crisp topological
spaces and study their relation with near mappings N -neutrosophic crisp topolog-
ical spaces. In addition, strongly N -neutrosophic crisp β continuous and perfectly
N -neutrosophic crisp β continuous functions in N -neutrosophic crisp topological
spaces are study and discuss their properties.

2. Preliminaries

Definition 2.1. [12] For any non-empty fixed set U , a neutrosophic crisp set
(briefly, ncs) K, is an object having the form K = 〈K1, K2, K3〉 where K1, K2 &
K3 are subsets of U satisfying any one of the types

(T1) Ka ∩Kb = φ, a 6= b &
⋃3

a=1Ka ⊂ U , ∀a, b = 1, 2, 3.

(T2) Ka ∩Kb = φ, a 6= b &
⋃3

a=1Ka = U , ∀a, b = 1, 2, 3.

(T3)
⋂3

a=1Ka = φ &
⋃3

a=1Ka = U , ∀a = 1, 2, 3.
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Definition 2.2. [12] Types of ncs’s ∅N and UN in U are as

(i) ∅N may be defined as ∅N = 〈∅, ∅, U〉 or 〈∅, U, U〉 or 〈∅, U, ∅〉 or 〈∅, ∅, ∅〉.

(ii) UN may be defined as UN = 〈U, ∅, ∅〉 or 〈U,U, ∅〉 or 〈U, ∅, U〉 or 〈U,U, U〉.

Definition 2.3. [12] Let U be a non-empty set & the ncs’s K & M in the form
K = 〈K11, K22, K33〉, M = 〈M11,M22,M33〉, then

(i) K ⊆ M ⇔ K11 ⊆ M11, K22 ⊆ M22 & K33 ⊇ M33 or K11 ⊆ M11, K22 ⊇ M22

& K33 ⊇M33.

(ii) K∩M = 〈K11∩M11, K22∩M22, K33∪M33〉 or 〈K11∩M11, K22∪M22, K33∪M33〉

(iii) K∪M = 〈K11∪M11, K22∪M22, K33∩M33〉 or 〈K11∪M11, K22∩M22, K33∩M33〉

Definition 2.4. [12] Let K = 〈K1, K2, K3〉 a ncs on U , then the complement of
K (briefly, Kc) may be defined in three different ways:

(C1) Kc = 〈K1
c, K2

c, K3
c〉, or

(C2) Kc = 〈K3, K2, K1〉, or

(C3) Kc = 〈K3, K2
c, K1〉.

Definition 2.5. [11] A neutrosophic crisp topology (briefly, nct) on a non-empty
set U is a family Γ of nc subsets of U satisfying

(i) ∅N , UN ∈ Γ.

(ii) K1 ∩K2 ∈ Γ ∀ K1 & K2 ∈ Γ.

(iii)
⋃
a

Ka ∈ Γ, ∀ Ka : a ∈ A ⊆ Γ.

Then (U,Γ) is a neutrosophic crisp topological space (briefly, ncts for short) in U .
The neutrosophic crisp open sets (briefly, ncos) are the elements of Γ in U . A ncs
C is neutrosophic crisp closed sets (briefly, nccs) iff its complement Cc is ncos.

Definition 2.6. [2] Let U be a non-empty set. Then ncΓ1, ncΓ2, · · · , ncΓN are
N-arbitrary crisp topologies defined on U and the collection NncΓ is called Nnc-
topology on U is

NncΓ = {A ⊆ U : A = (
N⋃
j=1

Ej) ∪ (
N⋂
j=1

Fj), Ej, Fj ∈ ncΓj}

and it satisfies the following axioms:
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(i) ∅N , UN ∈ NncΓ.

(ii)
∞⋃
j=1

Aj ∈ NncΓ ∀ {Aj}∞j=1 ∈ NncΓ.

(iii)
n⋂

j=1

Aj ∈ NncΓ ∀ {Aj}nj=1 ∈ NncΓ.

Then (U,NncΓ) is called a Nnc-topological space (briefly, Nncts) on U . The Nnc-
open sets (Nncos) are the elements of NncΓ in U and the complement of Nncos
is called Nnc-closed sets (Nnccs) in U . The elements of U are known as Nnc-sets
(Nncs) on U .

Definition 2.7. [2] Let (U,NncΓ) be Nncts on U and K be an Nncs on U , then the
Nnc interior of K (briefly, Nncint(K)) and Nnc closure of K (briefly, Nnccl(K))
are defined as

Nncint(K) = ∪{A : A ⊆ K & A is a Nncos in U}

Nnccl(K) = ∩{C : K ⊆ C & C is a Nnccs in U}.

Definition 2.8. [2] Let (U,NncΓ) be any Nncts. Let K be an Nncs in (U,NncΓ).
Then K is said to be a

(i) Nnc-regular open [18] set (briefly, Nncros) if K = Nncint(Nnccl(K)).

(ii) Nnc-pre open set (briefly, NncPos) if K ⊆ Nncint(Nnccl(K)).

(iii) Nnc-semi open set (briefly, NncSos) if K ⊆ Nnccl(Nncint(K)).

(iv) Nnc-α-open set (briefly, Nncαos) if K ⊆ Nncint(Nnccl(Nncint(K))).

(v) Nnc-γ-open [18] set (briefly, Nncγos) set if K ⊆ Nnccl(Nncint(K)) ∪Nncint
(Nnccl(K)).

(vi) Nnc-β-open [19] set (briefly, Nncβos) if K ⊆ Nnccl(Nncint(Nnccl(K))).

The complement of an Nncros (resp. NncPos, NncSos, Nncαos, Nncγos & Nncβos)
is called an Nnc-regular (resp. Nnc-pre, Nnc-semi, Nnc-α, Nnc-γ & Nnc-β) closed
set (briefly, Nncrcs (resp. NncPcs, NncScs, Nncαcs, Nncγcs & Nncβcs)) in U .

Definition 2.9. [20] Let (U1, NncΓ) and (U2, NncΨ) be any two Nncts’s. A map
f : (U1, NncΓ)→ (U2, NncΨ) is said to be Nnc (resp. Nnc regular, Nnc pre, Nnc semi,
Nncα & Nncγ) continuous (briefly, NncCts (resp. NncrCts, NncPCts, NncSCts,



Nncβ-Continuous Maps 279

NncαCts & NncγCts)) if the inverse image of every Nncos in (U2, NncΨ) is a Nncos
(resp. Nncros, NncPos, NncSos, Nncαos & Nncγos) in (U1, NncΓ).

3. N-Neutrosophic Crisp β Continuous Function

Throughout this section, let (U1, NncΓ) and (U2, NncΨ) be any two Nncts’s.
Let f : (U1, NncΓ) → (U2, NncΨ) be a function. Let K and M be an Nncs’s in
(U1, NncΓ).

Definition 3.1. A function f is said to be Nncβ-continuous (briefly, NncβCts) if
the inverse image of every Nncos in (U2, NncΨ) is a Nncβos in (U1, NncΓ).

Example 3.1. Let U = {l1,m1, n1, o1}, ncΓ1 = {φN , UN , L,M,N}, ncΓ2 =
{φN , UN}. L = 〈{l1}, {φ}, {m1, n1, o1}〉, M = 〈{m1, o1}, {φ}, {l1, n1}〉, N =
〈{l1,m1, o1}, {φ}, {n1}〉, then we have 2ncΓ = {φN , UN , L,M,N}, let f : (U, 2ncΓ)→
(U, 2ncΓ) be an identity function. Then f is a 2ncβCts function.

Theorem 3.1. The statements are hold but the equality does not true.

(i) Every NncrCts is a NncβCts.

(ii) Every NncCts is a NncβCts.

(iii) Every NncαCts is a NncβCts.

(iv) Every NncSCts is a NncβCts.

(v) Every NncPCts is a NncβCts.

(vi) Every NncγCts is a NncβCts.

Proof. (ii) Let f be a NncCts and K is a Nncos in U2. Then f−1(K) is Nncβos
in U1. Since every Nnco set is Nncβo set, f−1(K) is Nncβos in U1. Therefore f is
NncβCts.

The other cases are similar.

Remark 3.1. The diagram shows NncβCts function in Nncts.



280 South East Asian J. of Mathematics and Mathematical Sciences

NncrCts NncCts

NncSCts NncβCts NncPCts

NncαCts NncγCts

Example 3.2. In Example 3.1, let V = {w1, x1, y1, z1}, ncΨ1 = {φN , VN ,W,X, Y },
ncΨ2 = {φN , VN}. W = 〈{x1}, {φ}, {w1, y1, z1}〉, X = 〈{w1, y1}, {φ}, {x1, z1}〉,
Y = 〈{w1, x1, y1}, {φ}, {z1}〉, then we have 2ncΨ = {φN , VN ,W,X, Y }.

Define f : (U, 2ncΓ) → (V, 2ncΨ) as f(l1) = x1, f(m1) = y1, f(n1) = w1 &
f(o1) = z1, then 2ncβCts but not 2ncrCts, 2ncCts, 2ncαCts, 2ncPCts, 2ncSCts,
2ncγCts, the set f−1(〈{w1, y1}, {φ}, {x1, z1}〉) = 〈{m1, n1}, {φ}, {l1, o1}〉 is a 2ncβos
but not 2ncros, 2ncos, 2ncαos, 2ncPos, 2ncSos, 2ncγos.

Theorem 3.2. The conditions

(i) f is NncβCts.

(ii) The inverse f−1(K) of all Nncos K in U2 is Nncβos in U1

are equivalent.
Proof. The proof is obvious, since f−1(K) = f−1(K) for all Nncos K of U2.

Theorem 3.3. The conditions

(i) f(Nncβcl(K)) ⊆ Nnccl(f(K)), for all ncs K in U1.

(ii) Nncβcl(f
−1(M)) ⊆ f−1(Nnccl(M)), for all ncs M in U2

are equivalent.
Proof. (i) Since Nnccl(f(K)) is a Nnccs in U2 and f is NncβCts, then f−1 (Nnc

cl(f(K))) is Nncβc in U1. Now, since K ⊆ f−1 (Nnc cl(f(K))), Nncβcl(K) ⊆
f−1(Nnccl(f(K))). Therefore, f(Nncβcl(K)) ⊆ Nnccl(f(K)).
(ii) By replacingK withM in (i), we obtain f(Nncβcl(f

−1(M))) ⊆ Nnccl(f(f−1(M)))
⊆ Nnccl(M). Hence, Nncβcl(f

−1(M)) ⊆ f−1(Nnccl(M)).

Remark 3.2. If f is NncβCts, then

(i) f(Nncβcl(K)) is not necessarily equal to Nnccl(f(K)) where K ⊆ U1.
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(ii) Nncβcl(f
−1(M)) is not necessarily equal to f−1(Nnccl(M)) where M ⊆ U2.

Example 3.3. Let U = {l1,m1, n1, o1, p1}, ncΓ1 = {φN , UN , L,M,N}, ncΓ2 =
{φN , UN}. L = 〈{n1}, {φ}, {l1,m1, o1, p1}〉, M = 〈{l1,m1}, {φ}, {n1, o1, p1}〉, N =
〈{l1,m1, n1}, {φ}, {o1, p1}〉, then we have 2ncΓ = {φN , UN , L,M,N}. Let f :
(U, 2ncΓ)→ (U, 2ncΓ) be an identity function and f is a 2ncβCts.

(i) Let K = 〈{l1,m1}, {φ}, {n1, o1, p1}〉 ⊆ U . Then f(2ncβcl(K)) = f(2ncβ cl(〈
{l1, m1}, {φ}, {n1, o1, p1}〉)) = f(〈{l1, m1}, {φ}, {n1, o1, p1}〉) = 〈{l1, m1},
{φ}, {n1, o1, p1}〉. But 2nccl(f(K)) = 2nccl(f(〈{l1,m1}, {φ}, {n1, o1, p1}〉)) =
2nccl(〈{l1,m1}, {φ}, {n1, o1, p1}〉) = 〈{l1,m1, o1, p1}, {φ}, {n1}〉. Thus f(2nc

βcl(K)) 6= 2nccl(f(K)).

(ii) LetM = 〈{l1}, {φ}, {m1, n1, o1, p1}〉 ⊆ U . Then 2ncβcl(f
−1(M)) ⊆ 2ncβcl(f

−1

(〈 {l1}, {φ}, {m1, n1, o1, p1}〉)) = 2ncβcl(〈{l1}, {φ}, {m1, n1, o1, p1}〉). But
f−1(2nccl(M)) = f−1(2nccl(〈{l1}, {φ}, {m1, n1, o1, p1}〉)) = f−1(U) = U . Thus
2ncβcl(f

−1(M)) 6= f−1(2nccl(M)).

Theorem 3.4. If f is NncβCts, then f−1(Nncint(M)) ⊆ Nncβint(f
−1(M)), for

all ncs M in U2.
Proof. If f is NncβCts and M ⊆ U2. Nncint(M) is Nnco in U2 and hence,
f−1(Nncint(M)) is Nncβo in U1. Therefore Nncβint(f

−1(Nncint(M))) = f−1 (Nnc

int(M)). Also, Nncint(M) ⊆ M , implies that f−1(Nncint(M)) ⊆ f−1(M). There-
fore Nncβ int(f−1 (Nncint(M))) ⊆ Nncβint(f

−1(M)). That is f−1(Nncint(M)) ⊆
Nncβint(f

−1(M)).
Conversely, let f−1(Nncint(M)) ⊆ Nncβint(f

−1(M)) for all subset M of U2.
If M is Nnco in U2, then Nncint(M) = M . By assumption, f−1(Nncint(M)) ⊆
Nncβint(f

−1(M)). Thus f−1(M) ⊆ Nncβint(f
−1(M)). But Nncβint (f−1(M)) ⊆

f−1(M). Therefore Nncβint(f
−1(M)) = f−1(M). That is, f−1(M) is Nncβo in U1,

for all Nncos M in U2. Therefore f is NncβCts on U1.

Remark 3.3. If f is NncβCts, then Nncβint(f
−1(M)) is not necessarily equal to

f−1(Nnc int(M)) where M ⊆ U2.

Example 3.4. In Example 3.3, f is a 2ncβCts. LetM = 〈{l1, n1}, {φ}, {m1, o1, p1}〉
⊆ U . Then 2ncβint(f

−1(M)) ⊆ 2ncβint(f
−1 (〈{l1, n1}, {φ}, {m1, o1, p1}〉)) = 2ncβ

int(〈 {l1, n1}, {φ}, {m1, o1, p1}〉) = 〈{l1, n1}, {φ}, {m1, o1, p1}〉. But f−1(2ncint(M))
= f−1(2ncint(〈{l1, n1}, {φ}, {m1, o1, p1}〉)) = f−1(〈{n1}, {φ}, {l1,m1, o1, p1}〉) =
〈{n1}, {φ}, {l1,m1, o1, p1}〉. Thus 2ncβint(f

−1(M)) 6= f−1(2ncint(M)).

Theorem 3.5. The statements
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(i) f is a NncβCts function.

(ii) For every NncP p(p1,p2,p3) ∈ U1 and each ncs K of f(p(p1,p2,p3)), there exists
an Nncβos M such that p(p1,p2,p3) ∈M ⊆ f−1(K).

(iii) For every Nnc point p(p1,p2,p3) ∈ U1 and each ncs K of f(p(p1,p2,p3)), there
exists an Nncβos M such that p(p1,p2,p3) ∈M and f(M) ⊆ K

are equivalent.
Proof. (i) ⇒ (ii): If p(p1,p2,p3) is an NncP in U1 and if K is an ncs of f(p(p1,p2,p3)),
then ∃ an Nncos W in U2 such that f(p(p1,p2,p3)) ∈ W ⊂ K. Thus, f is a NncβCts,
M = f−1(W ) is an Nncβos and p(p1,p2,p3) ∈ f−1(f(p(p1,p2,p3))) ⊆ f−1(W ) = M ⊆
f−1(K). Thus, (ii) is a valid statement.
(ii) ⇒ (iii): Let p(p1,p2,p3) be an NncP in U1 and let K be an ncs of f(p(p1,p2,p3)).
Then ∃ an Nncβos K such that p(p1,p2,p3) ∈ M ⊆ f−1(K) by (ii). Thus, we have
p(p1,p2,p3) ∈M and f(M) ⊆ f(f−1(K)) ⊆ K. Hence, (iii) is valid.
(iii)⇒ (i): Let M be an Nncos in U2 and let p(p1,p2,p3) ∈ f−1(M). Then, f(p(p1,p2,p3))
∈ f(f−1(M)) ⊂ M . Since M is an Nncos, M is an ncs of f(p(p1,p2,p3)). Therefore,
from (iii), ∃ an Nncβos K such that p(p1,p2,p3) and f(K) ⊆ M . This implies that
p(p1,p2,p3) ∈ K ⊆ f−1(f(K)) ⊆ f−1(M). Therefore, we know that f−1(M) is an
Nncβos in U1. Thus, f is a NncβCts function.

4. N-Neutrosophic Crisp β Irresolute Functions
In this section, we introduce the concept of N -neutrosophic crisp β irresolute

function in Nncts. Also, we discuss the relation with NncβCts function.

Definition 4.1. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. A function f :
(U1, NncΓ) → (U2, NncΨ) is called N-neutrosophic crisp β irresolute (briefly, Nnc

β Irr) function if the inverse image of every Nncβo set in U2 is Nncβo in U1.

Theorem 4.1. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. A function f :
(U1, NncΓ)→ (U2, NncΨ) is NncβIrr iff the inverse image of every Nncβc set in U2

is Nncβc in U1.
Proof. Let A be any Nncβc set in U2. Then Ac is Nncβo set in U2. Since f is
NncβIrr, f

−1(Ac) is Nncβo set in U1 and f−1(Ac) = [f−1(A)]c which implies that
is f−1(A) is Nncβc set in U1.

Conversely, let B be any Nncβo set in U2. Then Bc is Nncβc set in U2. Thus
f−1(Bc) is Nncβc set in U1 and f−1(Bc) = [f−1(B)]c which implies that is f−1(B)
is Nncβc set in U1. Hence f : (U1, NncΓ)→ (U2, NncΨ) is NncβIrr.

Theorem 4.2. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. And let f : U1 → U2,
Every NncβIrr is a NncβCts. But not converse.
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Proof. Let V be a Nncβo set in U2. Since every Nncβo set is Nnco set in U2. Since
f is NncβIrr, f

−1(V ) is Nncβo in U1. Therefore f is NncβCts.

Example 4.1. Let U = {l1,m1, n1, o1, p1} = V , ncΓ1 = {φN , UN , L,M,N}, ncΓ2 =
{φN , UN}. L = 〈{n1}, {φ}, {l1,m1, o1, p1}〉, M = 〈{l1,m1}, {φ}, {n1, o1, p1}〉, N =
〈{l1,m1, n1}, {φ}, {o1, p1}〉, then we have 2ncΓ = {φN , UN , L,M,N}. ncΨ1 = {φN ,
VN , O, P,Q}, ncΨ2 = {φN , VN}. O = 〈{l1,m1}, {φ}, {n1, o1, p1}〉, P = 〈{n1, o1},
{φ}, {l1,m1, p1}〉, Q = 〈{l1,m1, n1, o1}, {φ}, {p1}〉, then we have 2ncΨ = {φN , VN ,
O, P, Q}.

Define h : (U, 2ncΓ) → (V, 2ncΨ) as h(l1) = l1, h(m1) = m1, h(n1) = n1,
h(o1) = p1 & h(p1) = p1, then 2ncβCts mapping but not 2ncβIrr mapping, the set
h−1(〈{m1, o1, p1}, {φ}, {l1, n1}〉) = 〈{m1, o1, p1}, {φ}, {l1, n1}〉 is a 2ncβos in V but
not 2ncβos in U .

Theorem 4.3. Let f : (U1, NncΓ)→ (U2, NncΨ) be a function. Then the following
are equivalent:

(i) f is NncβIrr.

(ii) Nncβcl(f
−1(B)) ⊆ f−1(Nncβcl(B)) for every ncs B of U2.

(iii) f(Nncβcl(A)) ⊆ Nncβcl(f(A)) for every ncs A of U1.

(iv) f−1(Nncβint(B)) ⊆ Nncβint(f
−1(B)) for every ncs B of U2.

Proof. (i) ⇒ (ii): Let B be any ncs in U2. Then by Proposition 3.1 in [19]
(xi), Nncβcl(B) is Nncβc in U2. Since f is NncβIrr, f

−1(Nncβcl(B)) is Nncβc in
U1. Then Nncβcl(f

−1(Nncβcl(B))) = f−1(Nncβcl(B)). By Proposition 3.1 in [19]
(ii) and (iv), Nncβcl(f

−1(B)) ⊆ Nncβcl(f
−1(Nncβcl(B))) = f−1(Nncβcl(B)). This

proves (ii).
(ii)⇒ (iii): Let A be any ncs in U1. Then f(A) ⊆ U2. By (ii), Nncβcl(f

−1(f(A))) ⊆
f−1(Nncβcl(f(A))). But Nncβcl(A) ⊆ Nncβcl (f−1(f(A))), Nncβcl(A) ⊆ f−1 (Nnc

βcl (f(A))). That implies, f(Nncβcl(A)) ⊆ Nncβcl(f(A)).
(iii) ⇒ (i): Let F be any Nncβc set in U2. Then f−1(F ) = f−1(Nncβcl(F )). By
(iii), f(Nncβcl(f

−1(F ))) ⊆ Nncβcl(f(f−1(F ))) ⊆ Nncβcl(F ) = F . That implies,
(Nncβcl(f

−1(F ))) ⊆ f−1(F ). But f−1(F ) ⊆ Nncβcl(f
−1(F )), Nncβcl(f

−1(F )) =
f−1(F ) and so f−1(F ) is Nncβc set U1. Therefore f is NncβIrr.
(i) ⇒ (iv): Let B any ncs in U2. By Proposition 3.1 in [19] (xii), Nncβint(B)
is Nncβo in U2. Since f is NncβIrr, f

−1(Nncβint(B)) is Nncβo in U1. Then
f−1(Nncβint(B)) = Nncβint(f

−1(Nncβint(B))) ⊆ Nncβint(f
−1(B)).

(iv)⇒ (i): Let V be any Nncβc in U2. Then by (iv), f−1(V ) = f−1(Nncβint(V )) ⊆
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Nncβint(f
−1(V )). But, Nncβint(f

−1(V )) ⊆ f−1(V ), Nncβint(f
−1(V )) = f−1(V )

and by Proposition 3.1 in [19] (x), f−1(V ) is Nncβo. Thus f is NncβIrr.

Theorem 4.4. If f : (U1, NncΓ) → (U2, NncΨ) and g : (U2, NncΨ) → (U3, Nncτ)
are NncβIrr function, then their composition g ◦ f : (U1, NncΓ) → (U3, Nncτ) is
also NncβIrr.
Proof. Let V be a Nncβo set in U3. Since g is a NncβIrr function, g−1(V ) is
Nncβo in U2. Since f is a NncβIrr function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nncβo
in U1. Therefore g ◦ f is NncβIrr.

Theorem 4.5. If f : (U1, NncΓ) → (U2, NncΨ) is NncβIrr and g : (U2, NncΨ) →
(U3, Nncτ) are NncβCts function then their composition g ◦ f : (U1, NncΓ) →
(U3, Nncτ) is also NncβCts.
Proof. Let V be a Nnco set in U3. Since g is a NncβCts function, g−1(V ) is Nncβo
in U2. Since f is a NncβIrr function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nncβo in U1.
Therefore g ◦ f is NncβCts.

5. Strongly Nncβ Continuous and Perfectly Nncβ Continuous Functions

In this section, we introduce the concept of strongly N -neutrosophic crisp β
continuous and perfectly N -neutrosophic crisp β continuous functions in Nncts
and we discuss the relation with the above-mentioned functions.

Definition 5.1. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. A function f :
(U1, NncΓ) → (U2, NncΨ) is called strongly N-neutrosophic crisp β continuous
(briefly, StNncβCts) function if the inverse image of every Nncβo set in U2 is
Nnco in U1.

Definition 5.2. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. A function f :
(U1, NncΓ) → (U2, NncΨ) is called a perfectly N-neutrosophic crisp continuous
(briefly, PeNncCts) function if the inverse image of every Nnco set in U2 is N-
neutrosophic crisp clopen (i.e both Nnco and Nncc) (briefly, Nncclo) in U1.

Definition 5.3. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s. A function f :
(U1, NncΓ) → (U2, NncΨ) is called a perfectly N-neutrosophic crisp β continuous
(briefly, PeNncβCts) function if the inverse image of every Nncβo set in U2 is
N-neutrosophic crisp clopen (i.e both Nnco and Nncc) (briefly, Nncclo) in U1.

Theorem 5.1. Let (U1, NncΓ) and (U2, NncΨ) be two Nncts’s and f : (U1, NncΓ)→
(U2, NncΨ) be a function. Then

(i) If f is PeNncβCts, then f is PeNncCts.

(ii) If f is StNncβCts, then f is NncCts.
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Proof. (i) Let f : (U1, NncΓ)→ (U2, NncΨ) be PeNncβCts. Let V be a Nnco set in
U2. Since f is PeNncβCts, f

−1(V ) is Nncclo in U1. Therefore f is PeNncCts.
(ii) Let f : (U1, NncΓ) → (U2, NncΨ) be StNncβCts. Let G be a Nnco set in U2.
Since f is StNncβCts, f

−1(G) is Nnco in U1. Therefore f is NncCts.

Theorem 5.2. Let f : (U1, NncΓ) → (U2, NncΨ) be StNncβCts and A be Nnco in
U1. Then the restriction, fA : A→ U2 is StNncβCts.
Proof. Let V be any Nncβo set in U2. Since f is StNncβCts, f

−1(V ) is Nnco in
U1. But f−1A (V ) = A ∩ f−1(V ). Since A and f−1(V ) are Nnco, f

−1
A (V ) is Nnco in

A. Hence fA is StNncβCts.

Theorem 5.3. Every PeNncβCts is StNncβCts.
Proof. Let f : (U1, NncΓ) → (U2, NncΨ) be PeNncβCts and V be Nncβo in U2.
Since f is PeNncβCts, f

−1(V ) is Nncclo in U1. That is, f−1(V ) is both Nnco and
Nncc in U1. Hence f is StNncβCts.

Theorem 5.4. If f : (U1, NncΓ) → (U2, NncΨ) and g : (U2, NncΨ) → (U3, Nncτ)
are StNncβCts, then their composition g ◦ f : (U1, NncΓ) → (U3, Nncτ) is also
StNncβCts.
Proof. Let V be a Nncβo set in U3. Since g is a StNncβCts function, g−1(V ) is
Nnco in U2. Since f is a StNncβCts function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nnco
in U1. Therefore g ◦ f is StNncβCts.

Theorem 5.5. If f : (U1, NncΓ) → (U2, NncΨ) and g : (U2, NncΨ) → (U3, Nncτ)
are PeNncβCts, then their composition g ◦ f : (U1, NncΓ) → (U3, Nncτ) is also
PeNncβCts.
Proof. Let V be a Nncβo set in U3. Since g is a PeNncβCts function, g−1(V )
is Nncclo in U2. That is g−1(V ) is both Nnco and Nncc. Since f is a PeNncβCts
function, f−1(g−1(V )) = (g◦f)−1(V ) is Nncclo in U1. Therefore g◦f is PeNncβCts.

Theorem 5.6. Let f : (U1, NncΓ) → (U2, NncΨ) and g : (U2, NncΨ) → (U3, Nncτ)
be functions. Then,

(i) If g is StNncβCts and f is NncβCts, then g ◦ f is NncβIrr.

(ii) If g is PeNncβCts and f is NncCts, then g ◦ f is StNncβCts.

(iii) If g is StNncβCts and f is PeNncβCts, then g ◦ f is PeNncβCts.

(iv) If g is NncβCts and f is StNncβCts, then g ◦ f is NncCts.

Proof. (i) Let V be a Nncβo set in U3. Since g is a StNncβCts function, g−1(V )
is Nnco in U2. Since f is a NncβCts function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nncβo
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in U1. Hence g ◦ f is NncβIrr.
(ii) Let V be a Nncβo set in U3. Since g is a PeNncβCts function, g−1(V ) is
Nncclo in U2. That is, g−1(V ) is both Nnco and Nncc. Since f is a NncCts,
f−1(g−1(V )) = (g ◦ f)−1(V ) is Nnco in U1. Therefore g ◦ f is StNncβCts.
(iii) Let V be a Nncβo set in U3. Since g is a StNncβCts function, g−1(V ) is Nnco
in U2. Since f is a PeNncβCts function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nncclo in
U1. Hence g ◦ f is PeNncβCts.
(iv) Let V be a Nnco set in U3. Since g is a NncβCts function, g−1(V ) is Nncβo in
U2. Since f is a StNncβCts function, f−1(g−1(V )) = (g ◦ f)−1(V ) is Nnco in U1.
Therefore g ◦ f is NncCts.

6. Conclusion
We have discussed about a N -neutrosophic crisp β-continuous mappings in N -

neutrosophic crisp topological spaces and also their relationship with near mappings
in this article. And, N -neutrosophic crisp β-irresolute functions is also introduced
and studied some of their properties with example. Also, studied about the concept
of strongly N -neutrosophic crisp β continuous and perfectly N -neutrosophic crisp
β continuous functions in N -neutrosophic crisp topological spaces. This can be
extended to N -neutrosophic crisp β-open mappings, N -neutrosophic crisp β-closed
mappings, N -neutrosophic crisp β-homeomorphism and also a contra field of N -
neutrosophic crisp β functions in N -neutrosophic crisp topological spaces.
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