ON M-PROJECTIVE CURVATURE TENSOR OF

 PARA-KENMOTSU MANIFOLDS ADMITTING ZAMKOVOY CONNECTIONSwati Sharma, Mayank Pandey, Giteshwari Pandey* and R. N. Singh
Department of Mathematics, A. P. S. University, Rewa - 486003, Madhya Pradesh, INDIA
E-mail : ssrewa1234@gmail.com, mayankpandey.maths@gmail.com, rnsinghmp@rediffmail.com
*Department of Mathematics, Govt. Tulsi College, Anuppur - 484224, (M. P.), INDIA
E-mail : math.giteshwari@gmail.com

(Received: Feb. 24, 2022 Accepted: Aug. 24, 2022 Published: Aug. 30, 2022)

Abstract

In this paper, relation between curvature tensors of Levi-Civita connection and Zamkovoy connection on para-Kenmotsu manifolds have been obtained.Quasi M-projectively flat, M-projectively flat and ϕ-M-projectively flat paraKenmotsu manifolds admitting Zamkovoy connection have been studied. Also, para-Kenmotsu manifolds admitting Zamkovoy connction satisfying $\bar{M}(\xi, U) . \bar{R}=0$ and $\bar{M}(\xi, U) \cdot \bar{S}=0$ have been developed.

Keywords and Phrases: Para-Kenmotsu manifold, M-projective curvature tensor, Zamkovoy connection, Quasi M-projectively flat, ϕ - M-projectively flat, Bianchi's identity.

2020 Mathematics Subject Classification: 53C15, 53D15.

1. Introduction

In 2008, the notion of Zamkovoy connection was introduced by S. Zamkovoy [21] for paracontact manifold. Also this is known as canonical paracontact connection whose torsion is the obstruction of paracontact manifold to be para-Sasakian
manifold. For an n-dimensional almost contact metric manifold M^{n} consisting of $(1,1)$ tensor field ϕ, a 1-form η, a vector field ξ and a Riemannian metric g endowed with an almost contact metric structure (ϕ, ξ, η, g), Zamkovoy connection is defined by

$$
\begin{equation*}
\bar{\nabla}_{U} V=\nabla_{U} V+\left(\nabla_{U} \eta\right)(V) \xi-\eta(V) \nabla_{U} \xi+\eta(U) \phi V \tag{1.1}
\end{equation*}
$$

for all $U, V \in \chi(M)$. Further Zamkovoy connection have been studied by many authors such as ([2], [3], [5], [9]).

In 1969, Tanno [20] classified connected almost contact Riemannian manifolds whose automorphism groups have the maximum dimension. In this classification, the almost contact Riemannian manifolds are divided into three classes: (i) homogeneous normal contact Riemannian manifolds with constant ϕ-holomorphic sectional curvature if the sectional curvature for 2-planes which contains $\xi, K(X, \xi)>$ 0, (ii) global Riemannian products of a line or a circle and a Kahlerian manifold with constant holomorphic sectoinal curvature if $K(X, \xi)=0$ and (iii) a warped product space $L \times{ }_{f} C E^{n}$, if $K(X, \xi)<0$ [8]. In 1976, Sato [16] introduced the notion of paracontact manifolds on a Riemannian manifold. On the other hand Kaneyuki and Willams [7] introduced almost paracontact structure on semiRiemannian manifold. Adati and Matsumoto [1] defined and studied P-Sasakian and SP-Sasakian manifolds which are regarded as special kind of an almost contact Riemannian manifold. In 1995, Sinha and Saiprasad [19], have defined a class of almost paracontact metric manifold namely para-Kenmotsu and special para-Kenmotsu manifolds. Para-Kenmotsu manifolds have been studied by several authors ([4], [5], [13], [15], [21]) and many others.

The notion of M-projective curvature tensor on a Riemannian manifold was introduced by Pokhariyal and Mishra [14] as

$$
\begin{align*}
M(U, V) X & =R(U, V) X \\
- & \frac{1}{2(n-1)}[S(V, X) U-S(U, X) V+g(U, X) Q V-g(V, X) Q U] \tag{1.2}
\end{align*}
$$

where R denotes the Riemannian curvature tensor of type (1,3), S denotes the Ricci tensor of type $(0,2)$ and Q denotes the Ricci operator with respect to LeviCivita connection. R. H. Ojha ([10], [11]) studied the curvature properties of M-projective curvature tensor on Sasakian manifolds. Moreover the M-projective curvature tensor was studied by several authors ([6], [12], [18]).

In a para-Kenmotsu manifold M^{n} of dimension $n>2$, the M-projective curva-
ture tensor \bar{M} with respect to Zamkovoy connection $(\bar{\nabla})$ is given by

$$
\begin{align*}
\bar{M}(U, V) X & =\bar{R}(U, V) X \\
- & \frac{1}{2(n-1)}[\bar{S}(V, X) U-\bar{S}(U, X) V+g(U, X) \bar{Q} V-g(V, X) \bar{Q} U] \tag{1.3}
\end{align*}
$$

where \bar{R} denotes the Riemannian curvature tensor, \bar{S} denotes the Ricci tensor and \bar{Q} denotes the Ricci operator with respect to Zamkovoy connection $\bar{\nabla}$ respectively.
Definition 1.1. An n-dimensional para-Kenmotsu manifold M^{n} is said to be Einstein manifold if its Ricci tensor is of the form $S(X, Y)=a g(X, Y)$, for all $U, V \in \chi(M)$, where a is scalar function.

2. Para-Kenmotsu Manifolds

An odd dimensional smooth manifold M^{n} equipped with structure (ϕ, ξ, η), where ϕ is a tensor field of type $(1,1), \xi$ is a vector field, η is 1 -form such that

$$
\begin{align*}
\eta(\xi) & =1 \tag{2.1}\\
\phi^{2} X & =X-\eta(X) \xi \tag{2.2}
\end{align*}
$$

Then M^{n} is an almost paracontact manifold. Let g be the Riemannian metric satisfying for all vector fields X and Y on M^{n}

$$
\begin{align*}
g(X, \xi) & =\eta(X) \tag{2.3}\\
\phi \xi & =0, \quad \eta(\phi X)=0 \tag{2.4}\\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{2.5}
\end{align*}
$$

Then the manifold M^{n} is said to admit an almost paracontact metric structure (ϕ, ξ, η, g). A manifold of dimension n with Riemannian metric g admitting a tensor field ϕ of type (1, 1), a vector field ξ and 1 -form η satisfying (2.1) and (2.3) along with

$$
\begin{align*}
& \left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)=0 \tag{2.6}\\
& \left(\nabla_{X} \nabla_{Y} \eta\right)(U)=[-g(X, U)+\eta(X) \eta(U)] \eta(Y)+[-g(X, Y)+\eta(X) \eta(Y)] \eta(U) \tag{2.7}
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=\phi^{2} X=X-\eta(X) \xi \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) X \tag{2.9}
\end{equation*}
$$

is called para-Kenmotsu manifold [17]. A para-Kenmotsu manifold admitting a 1-form η satisfies

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.10}
\end{equation*}
$$

It is known that [17] in a para-Kenmotsu manifold, the following relation hold

$$
\begin{align*}
R(X, Y) \xi & =\eta(X) Y-\eta(Y) X \tag{2.11}\\
R(\xi, X) Y & =\eta(Y) X-g(X, Y) \xi \tag{2.12}\\
g(R(X, Y) U, \xi) & =\eta(R(X, Y) U)=g(X, U) \eta(Y)-g(Y, U) \eta(X) \tag{2.13}\\
S(X, \xi) & =-(n-1) \eta(X) \tag{2.14}\\
S(\phi X, \phi Y) & =S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.15}
\end{align*}
$$

The Zamkovoy connection on para-Kenmotsu manifold is given as

$$
\begin{equation*}
\left(\bar{\nabla}_{X} Y\right)=\nabla_{X} Y+g(X, Y) \xi-\eta(Y) X+\eta(X) \phi Y \tag{2.16}
\end{equation*}
$$

Example.

We consider the three-dimensional manifold
$M^{3}=\left\{(u, v, w) \in R^{3}, w \neq 0\right\}$, where (u, v, w) are the standard coordinates in R^{3}. The vector fields

$$
f_{1}=\frac{\partial}{\partial u}, \quad f_{2}=\frac{\partial}{\partial v}, \quad f_{3}=u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v}+\frac{\partial}{\partial w}
$$

are linearly independent at each point of M. Furthermore, by direct calculations, we have

$$
\left[f_{1}, f_{2}\right]=0,\left[f_{1}, f_{3}\right]=f_{1},\left[f_{2}, f_{3}\right]=f_{2}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, f_{3}\right)$ for any $Z \in \chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M.

Let φ be the $(1,1)$ tensor field defined by $\varphi\left(f_{1}\right)=f_{2}, \varphi\left(f_{2}\right)=f_{1}, \varphi\left(f_{3}\right)=$ 0 . Then using the linearity of φ and g we have $\eta\left(f_{3}\right)=1, \quad \varphi^{2}(Z)=Z-$ $\eta(Z) f_{3}, \quad g(\varphi Z, \varphi W)=-g(Z, W)+\eta(Z) \eta(W)$, for any $Z, W \in \chi(M)$. Thus for $f_{3}=\xi,(\varphi, \xi, \eta, g)$ defines an almost contact metric structure on M.

Let the Levi-Civita connection with respect to g be ∇, then using Koszul's formula we get the following:

$$
\begin{aligned}
& \nabla_{f_{1}} f_{3}=f_{1}, \quad \nabla_{f_{1}} f_{2}=0, \quad \nabla_{f_{1}} f_{1}=-f_{3}, \\
& \nabla_{f_{2}} f_{3}=f_{2}, \quad \nabla_{f_{2}} f_{2}=f_{3}, \quad \nabla_{f_{2}} f_{1}=0 \\
& \nabla_{f_{3}} f_{3}=0, \quad \nabla_{f_{3} f_{2}=0,} \quad \nabla_{f_{3}} f_{1}=0
\end{aligned}
$$

From above relations we see that the manifold satisfies (2.13) for $f_{3}=\xi$. Therefore the structure $M^{3}(\varphi, \xi, \eta, g)$ is a three-dimensional para-Kenmotsu manifold.

3. Curvature Properties of Para-Kenmotsu Manifolds Admitting Zamkovoy Connection

Let \bar{R} denotes the Riemannian curvature tensor with respect to Zamkovoy connection defined as

$$
\begin{equation*}
\bar{R}(U, V) X=\bar{\nabla}_{U} \bar{\nabla}_{V} X-\bar{\nabla}_{V} \bar{\nabla}_{U} X-\bar{\nabla}_{[U, V]} X \tag{3.1}
\end{equation*}
$$

In view of equation (2.16), we have

$$
\begin{equation*}
\bar{R}(U, V) X=R(U, V) X-g(U, X) V-g(V, X) U, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
R(U, V) X=\nabla_{U} \nabla_{V} X-\nabla_{V} \nabla_{U} X-\nabla_{[U, V]} X \tag{3.3}
\end{equation*}
$$

is the Riemannian curvature tensor of Levi-Civita connection ∇. Equation (3.2) is the relation between Riemannian curvature tensors with respect to Zamkovoy connection $\bar{\nabla}$ and Levi-Civita connection ∇. Transvection of Y in equation (3.2), gives

$$
\begin{equation*}
‘ \cdot \bar{R}(U, V, X, Y)=‘ R(U, V, X, Y)-g(U, X) g(V, Y)-g(V, X) g(U, Y), \tag{3.4}
\end{equation*}
$$

where

$$
\cdot \bar{R}(U, V, X, Y)=g(\bar{R}(U, V) X, Y)
$$

and

$$
\cdot R(U, V, X, Y)=g(R(U, V) X, Y)
$$

Putting $V=X=e_{i}$ in equation (3.4) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\bar{S}(U, Y)=S(U, Y)+(n-1) g(U, Y), \tag{3.5}
\end{equation*}
$$

where \bar{S} and S denotes the Ricci tensors with respect to the connections $\bar{\nabla}$ and ∇ respectively. Again putting $U=Y=e_{i}$ in equation (3.5) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\bar{r}=r+(n-1) n, \tag{3.6}
\end{equation*}
$$

where \bar{r} and r denotes the scalar curvatures with respect to the connections $\bar{\nabla}$ and ∇ respectively. From equation (3.5), we have

$$
\begin{equation*}
\bar{Q} U=Q U+(n-1) U, \tag{3.7}
\end{equation*}
$$

where \bar{Q} and Q denotes the Ricci operators with respect to connections $\bar{\nabla}$ and ∇ respectively. Also

$$
\begin{equation*}
\bar{S}(U, \xi)=0 . \tag{3.8}
\end{equation*}
$$

Now from equation (3.2), we have

$$
\begin{equation*}
\bar{R}(U, V) \xi=\bar{R}(\xi, V) X=\bar{R}(U, \xi) X=0 . \tag{3.9}
\end{equation*}
$$

Theorem 3.1. A para-Kenmotsu manifold M^{n} equipped with Zamkovoy connection satisfies Bianchi's first identity.
Proof. Writing two more equations by the cyclic permutation of U, V, X in equation (3.2), we get

$$
\begin{equation*}
\bar{R}(V, X) U=R(V, X) U-g(V, U) X-g(X, U) V \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{R}(X, U) V=R(X, U) V-g(V, X) U-g(U, V) X \tag{3.11}
\end{equation*}
$$

Adding equations (3.2), (3.10) and (3.11) with the fact that $R(U, V) X+R(V, X) U+$ $R(X, U) V=0$, we get

$$
\begin{equation*}
\bar{R}(U, V) X+\bar{R}(V, X) U+\bar{R}(X, U) V=0 \tag{3.12}
\end{equation*}
$$

This shows that a para-Kenmotsu manifold M^{n} equipped with Zamkovoy connection satisfies Bianchi's first identity.
Theorem 3.2. The curvature tensor of para-Kenmotsu manifold M^{n} admitting Zamkovoy connection is
(i) skew-symmetric in first two slots,
(ii) skew-symmetric in last two slots,
(iii) symmetric in pair of slots.

Proof. (i) Interchanging U and V in equation (3.4), we get

$$
\begin{equation*}
\cdot \bar{R}(V, U, X, Y)=‘ R(V, U, X, Y)-g(V, X) g(U, Y)+g(U, X) g(V, Y) \tag{3.13}
\end{equation*}
$$

Adding equations (3.4) and (3.14) with the fact that ' $R(U, V, X, Y)+{ }^{\prime} R(V, U, X, Y)$ $=0$, we get

$$
\begin{equation*}
{ }^{\bullet} R(U, V, X, Y)+{ }^{‘} \bar{R}(V, U, X, Y)=0 \tag{3.14}
\end{equation*}
$$

which shows that ' \bar{R} is skew-symmetric in first two slots.
(ii) Interchanging X and Y in equation (3.4), we get

$$
\begin{equation*}
‘ \bar{R}(U, V, Y, X)=‘ R(U, V, Y, X)-g(U, Y) g(V, X)+g(V, Y) g(U, X) \tag{3.15}
\end{equation*}
$$

Adding equations (3.4) and (3.15) with the fact that ' $R(U, V, X, Y)+{ }^{\prime} R(U, V, Y, X)$ $=0$, we get

$$
\begin{equation*}
\cdot \bar{R}(U, V, X, Y)+‘ \bar{R}(U, V, Y, X)=0 \tag{3.16}
\end{equation*}
$$

which shows that ' \bar{R} is skew-symmetric in last two slots.
(iii) Interchanging pair of slots in equation (3.4), we get

$$
\begin{equation*}
{ }^{\prime} \bar{R}(X, Y, U, V)=‘ R(X, Y, U, V)-g(X, U) g(Y, V)+g(Y, U) g(X, V) . \tag{3.17}
\end{equation*}
$$

Subtracting equations (3.4) to (3.17) with the fact that ' $R(U, V, X, Y)-{ }^{\prime} R(X, Y, U$, $V)=0$, we get

$$
\begin{equation*}
‘ \bar{R}(U, V, X, Y)-‘ \bar{R}(X, Y, U, V)=0 \tag{3.18}
\end{equation*}
$$

which shows that \bar{R} is symmetric in pair of slots.
Theorem 3.3. If a para-Kenmotsu manifold M^{n} is Ricci flat with respect to Zamkovoy connection then the manifold is an Einstein manifold.
Proof. Suppose that para-Kenmotsu manifold M^{n} is Ricci flat with respect to Zamkovoy connection, then from equation (3.5), we have

$$
\begin{equation*}
S(U, Y)=-(n-1) g(U, Y), \tag{3.19}
\end{equation*}
$$

which shows that M^{n} is an Einstein manifold.
Theorem 3.4. If the curvature tensor of para-Kenmotsu manifold admitting Zamkovoy connection vanishes then the manifold M^{n} is of constant curvature with respect to Levi-Civita connection.
Proof. Consider $\bar{R}(U, V) X=0$, then from equation (3.2), we have

$$
\begin{equation*}
R(U, V) X=g(U, X) V-g(V, X) U \tag{3.20}
\end{equation*}
$$

which shows that M^{n} is constant curvature with respect to Levi-Civita connection.
4. Quasi M-Projectively Flat Para-Kenmotsu Manifolds with respect to Zamkovoy Connection

Definition 4.1. A para-Kenmotsu manifold M^{n} is said to be Quasi-M-projectively flat with respect to Zamkovoy connection [21] if

$$
\begin{equation*}
g(\bar{M}(\phi U, V) X, \phi Y)=0, \tag{4.1}
\end{equation*}
$$

where \bar{M} is the M-projective curvature tensor with respect to Zamkovoy connection $\bar{\nabla}$.

Theorem 4.1. A Quasi-M-projectively flat para-Kenmotsu manifold M^{n} with respect to Zamkovoy connection is an Einstein manifold.

Proof. In the view of equation (1.3), we have

$$
\begin{align*}
g(\bar{M}(U, V) X, Y) & =g(\bar{R}(U, V) X, Y) \\
& -\frac{1}{2(n-1)}[\bar{S}(V, X) g(U, Y)-\bar{S}(U, X) g(V, Y) \tag{4.2}\\
& +g(U, X) \bar{S}(V, Y)-g(V, X) \bar{S}(U, Y)] .
\end{align*}
$$

Replacing U by ϕU and Y by ϕY in equation (4.2), we get

$$
\begin{align*}
g(\bar{M}(\phi U, V) X, \phi Y) & =g(\bar{R}(\phi U, V) X, \phi Y) \\
& -\frac{1}{2(n-1)}[\bar{S}(V, X) g(\phi U, \phi Y)-\bar{S}(\phi U, X) g(V, \phi Y) \tag{4.3}\\
& +g(\phi U, X) \bar{S}(V, \phi Y)-g(V, X) \bar{S}(\phi U, \phi Y)] .
\end{align*}
$$

Now, let us suppose that M^{n} is Quasi-M-projectively flat with respect to Zamkovoy connection. Then from equations (4.1) and (4.3), we have

$$
\begin{align*}
\stackrel{\bar{R}}{ }(\phi U, V, X, \phi Y)= & -\frac{1}{2(n-1)}[\bar{S}(V, X) g(\phi U, \phi Y)-\bar{S}(\phi U, X) g(V, \phi Y) \tag{4.4}\\
& +g(\phi U, X) \bar{S}(V, \phi Y)-g(V, X) \bar{S}(\phi U, \phi Y)] .
\end{align*}
$$

Using equations (3.2) and (3.5) in above equation, we get

$$
\begin{align*}
‘ R(\phi U, V, X, \phi Y) & =g(\phi U, X) g(V, \phi Y)-g(V, X) g(\phi U, \phi Y) \\
& +\frac{1}{2(n-1)}[S(V, X) g(\phi U, \phi Y)+(n-1) g(V, X)(\phi U, \phi Y) \\
& -S(\phi U, x) g(V, \phi Y)-(n-1) g(\phi U, X) g(V, \phi Y) \tag{4.5}\\
& +g(\phi U, X) S(V, \phi Y)+(n-1) g(V, \phi Y) g(\phi U, X) \\
& -g(V, X) S(\phi U, \phi Y)-(n-1) g(V, X) g(\phi U, \phi Y)] .
\end{align*}
$$

Let $\left\{e_{1}, e_{2} \ldots \ldots . e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector field in M^{n}, then $\left\{\phi e_{1}, \phi e_{2}, \ldots \ldots . . \phi e_{n-1}, \xi\right\}$ is also local orthonormal basis in M^{n}. Putting $U=Y=e_{i}$
in equation (4.5) and taking summation over $1 \leq i \leq n-1$, we get

$$
\begin{align*}
& \sum_{i=1}^{n-1} R\left(\phi e_{i}, V, X, \phi e_{i}\right)=\sum_{i=1}^{n-1} g\left(\phi e_{i}, X\right) g\left(V, \phi e_{i}\right)-g(V, X) \sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right) \\
& \quad+\frac{1}{2(n-1)}\left[S(V, X) \sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)+(n-1) g(V, X) \sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)\right. \\
& \quad-\sum_{i=1}^{n-1} S\left(\phi e_{i}, X\right) g\left(V, \phi e_{i}\right)-(n-1) \sum_{i=1}^{n-1} g\left(\phi e_{i}, X\right) g\left(V, \phi e_{i}\right) \tag{4.6}\\
& \quad+\sum_{i=1}^{n-1} g\left(\phi e_{i}, X\right) S\left(V, \phi e_{i}\right)+(n-1) \sum_{i=1}^{n-1} g\left(V, \phi e_{i}\right) g\left(\phi e_{i}, X\right) \\
& \left.\quad-g(X, V) \sum_{i=1}^{n-1} S\left(\phi e_{i}, \phi e_{i}\right)-(n-1) \sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right) g(V, X)\right]
\end{align*}
$$

Also

$$
\begin{gather*}
\sum_{i=1}^{n-1} R\left(\phi e_{i}, V, X, \phi e_{i}\right)=S(V, X)+g(V, X) \tag{4.7}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=(n-1) \tag{4.8}\\
\sum_{i=1}^{n-1} S\left(\phi e_{i}, \phi e_{i}\right)=\sum_{i=1}^{n-1} S\left(e_{i}, e_{i}\right)=r \tag{4.9}\\
\sum_{i=1}^{n-1} S\left(\phi e_{i}, V\right) g\left(\phi e_{i}, X\right)=S(V, X) \tag{4.10}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, X\right) g\left(V, \phi e_{i}\right)=g(V, X) \tag{4.11}
\end{gather*}
$$

Now using equations (4.7), (4.8), (4.9), (4.10) and (4.11) in equation (4.6), we get

$$
\begin{equation*}
S(V, X)=\left[\frac{\left.-2 n^{2}+4 n-2-r\right)}{n-1}\right] g(V, X), \tag{4.12}
\end{equation*}
$$

which shows that M^{n} is an Einstein manifold.

5. M-projectively Flat Para-Kenmotsu Manifolds admitting Zamkovoy Connection

In this section, we consider $\bar{M}(U, V) X=0$, where \bar{M} is M-projective curvature tensor with respect to Zamkovoy connection $\bar{\nabla}$.

An n-dimensional para-Kenmotsu manifold M^{n} is said to be M-projectively flat if the M -projective curvature vanishes identically on it.
Theorem 5.1. A M-projectively flat para-Kenmotsu manifold $M^{n}(n>2)$ admitting Zamkovoy connection $\bar{\nabla}$ is an Einstein manifold.
Proof. Let para-Kenmotsu manifold M^{n} be M-projectively flat with respect to Zamkovoy connection i.e. $\bar{M}=0$, then from equation (1.3), we have

$$
\begin{equation*}
\bar{R}(U, V) X=\frac{1}{2(n-1)}[\bar{S}(V, X) U-\bar{S}(U, X,) V+g(V, X) \bar{Q} U-g(U, X) \bar{Q} U] . \tag{5.1}
\end{equation*}
$$

Taking inner product of above equation with the vector field Y, we get

$$
\begin{align*}
\ulcorner\bar{R}(U, V, X, Y) & =\frac{1}{2(n-1)}[\bar{S}(V, X) g(U, Y)-\bar{S}(U, X,) g(V, Y) \tag{5.2}\\
& +g(V, X) \bar{S}(U, Y)-g(U, X) \bar{S}(U, Y)]
\end{align*}
$$

Putting $U=Y=e_{i}$ and taking summation over $i, 1 \leq i \leq n$ in above equation, we have

$$
\begin{equation*}
\bar{S}(V, X)=\frac{\bar{r}}{n} g(V, X) \tag{5.3}
\end{equation*}
$$

Using equations (3.5) and (3.6) in equation (5.3), we get

$$
\begin{equation*}
S(V, X)=\frac{r}{n} g(V, X) . \tag{5.4}
\end{equation*}
$$

This shows that the manifold is an Einstein manifold.
Theorem 5.2. $A \xi$ - M-projectively flat para-Kenmotsu manifold $M^{n}(n>2)$ admitting Zamkovoy connection is an Einsten manifold.
Proof. Let M^{n} be ξ - M-projectively flat para-Kenmotsu maniflod with respect to Zamkovoy connection, i.e. $\bar{M}(X, Y) \xi=0$, then from equation (1.3), we have

$$
\begin{align*}
\bar{R}(U, V) \xi- & \frac{1}{2(n-1)}[\bar{S}(V, \xi) U-\bar{S}(U, \xi) V \tag{5.5}\\
& -g(U, \xi) \bar{Q} V-g(V, \xi) \bar{Q} U]=0 .
\end{align*}
$$

Using equations (3.8) and (3.9) in equation (5.5), we get

$$
\begin{equation*}
\eta(U) \bar{Q} V-\eta(V) \bar{Q} U=0 \tag{5.6}
\end{equation*}
$$

Taking inner product of above equation with the vector field Y, we get

$$
\begin{equation*}
\eta(U) \bar{S}(V, Y)-\eta(V) \bar{S}(U, Y)=0 \tag{5.7}
\end{equation*}
$$

Putting $U=\xi$ and using equation (3.8) in equation (5.7), we get

$$
\begin{equation*}
\bar{S}(V, Y)=0 \tag{5.8}
\end{equation*}
$$

Using equation (3.5) in equation (5.8), we get

$$
\begin{equation*}
S(V, Y)=-(n-1) g(V, Y) \tag{5.9}
\end{equation*}
$$

which shows that the manifold is an Einstein manifold.
Corollary 5.3. If a para-Kenmotsu manifold M^{n} admitting Zamkovoy connection $\bar{\nabla}$ is $\xi-M$-projectively flat then its scalar curvature is constant.
Proof. Putting $V=Y=e_{i}$ and taking summation over $i, 1 \leq i \leq n$ in equation (5.9), we get

$$
r=-n(n-1)
$$

which shows that scalar curvature is constant.
Theorem 5.4. An n-dimensional para-Kenmotsu manifold is $\xi-M$-projectively flat with respect to Zamkovoy connection iff it is ξ-M-projectively flat with respect to Levi-Civita connection, provided that the vector fields are horizontal vector fields. Proof. From equations (1.3), (3.2) and (3.7), we have

$$
\begin{align*}
\bar{M}(U, V) X & =R(U, V) X-g(U, X) V+g(V, X) U \\
& -\frac{1}{2(n-1)}[S(V, X) U-S(U, X) V+Q(V) g(U, X)-Q(U) g(V, X)] \tag{5.10}
\end{align*}
$$

Using equation (1.2) in equation (5.10), we get

$$
\begin{equation*}
\bar{M}(U, V) X=M(U, V) X-g(U, X) V+g(V, X) U \tag{5.11}
\end{equation*}
$$

Putting $X=\xi$ in equation (5.11), we get

$$
\begin{equation*}
\bar{M}(X, Y) \xi=M(X, Y) \xi-\eta(U) V+\eta(V) \tag{5.12}
\end{equation*}
$$

If U and V are horizontal vector fields then from equation (5.12), it follows that

$$
\begin{equation*}
\bar{M}(X, Y) \xi=M(X, Y) \xi \tag{5.13}
\end{equation*}
$$

6. ϕ-M-projectively flat para-Kenmotsu Manifolds admitting Zamkovoy Connection

In this section, we consider a para-Kenmotsu manifold equipped with Zamkovoy connection is ϕ-M-projectively flat.
Definition 6.1. A para-Kenmotsu manifold M^{n} admitting Zamkovoy connection is said to be ϕ-M protectively flat if $\bar{M}(\phi U, \phi V, \phi X, \phi Y)=0$.
Theorem 6.1. $A \phi-M$-projectively flat para-Kenmotsu manifold M^{n} equipped with Zamkovoy Connection $\bar{\nabla}$ then the equation

$$
S(V, X)=-(n-1) \eta(V) \eta(X)
$$

is satisfied on M^{n}.
Proof. Suppose $\bar{M}(\phi X, \phi Y, \phi Z, \phi U)=0$, then From equation (1.3), we get

$$
\begin{align*}
\bar{R}(\phi U, \phi V, \phi X, \phi Y) & =\frac{1}{2(n-1)}[\bar{S}(\phi V, \phi X) g(\phi U, \phi Y)-\bar{S}(\phi U, \phi X) g(\phi V, \phi Y) \tag{6.1}\\
& +g(\phi V, \phi X) \bar{S}(\phi U, \phi Y)-g(\phi U, \phi X) \bar{S}(\phi V, \phi Y)] .
\end{align*}
$$

From equation (3.4), we have

$$
\begin{align*}
\bar{R}(\phi U, \phi V, \phi X, \phi Y) & =R(\phi U, \phi V, \phi X, \phi Y) \\
& -g(\phi U, \phi X,) g(\phi V, \phi Y)+g(\phi V, \phi X,) g(\phi U, \phi Y) . \tag{6.2}
\end{align*}
$$

Putting $U=Y=e_{i}$ and taking summation over $i, 1 \leq i \leq n-1$ in equation (6.2), we get

$$
\begin{equation*}
\bar{S}(\phi V, \phi X)=S(\phi V, \phi X)+(n-1) g(\phi V, \phi X) . \tag{6.3}
\end{equation*}
$$

Using equations (6.2) and (6.3) in equation (6.1), we get

$$
\begin{align*}
R(\phi U, \phi V, \phi X, \phi Y) & =\frac{1}{2(n-1)}[S(\phi V, \phi X,) g(\phi U, \phi Y)+(n-1) g(\phi V, \phi X) g(\phi U, \phi Y) \\
& -S(\phi U, \phi X) g(\phi V, \phi Y)-(n-1) g(\phi U, \phi X) g(\phi V, \phi Y) \\
& +S(\phi U, \phi Y) g(\phi V, \phi X)+(n-1) g(\phi U, \phi Y) g(\phi V, \phi X) \\
& -S(\phi V, \phi Y) g(\phi U, \phi X)-(n-1) g(\phi V,, \phi Y) g(\phi U, \phi X)] \\
& +g(\phi U, \phi X,) g(\phi V, \phi Y)-g(\phi V, \phi X,) g(\phi U, \phi Y) . \tag{6.4}
\end{align*}
$$

Let $\left\{e_{i}\right\}$ be a local orthonormal basis of the tangent space at any point of the manifold M^{n}, then $\left\{\phi e_{i}, \xi\right\}$ is also a local orthonormal basis. Putting $U=Y=e_{i}$ and taking summation over $i, 1 \leq i \leq n-1$ in equation (6.4), we get

$$
\begin{equation*}
S(\phi V, \phi X)=0 . \tag{6.5}
\end{equation*}
$$

In view of equations (2.15) and (6.5), we have

$$
\begin{equation*}
S(V, X)=-(n-1) \eta(V) \eta(X) . \tag{6.6}
\end{equation*}
$$

7. Para-Kenmotsu manifolds admitting Zamkovoy Connection satisfying

 $\bar{M}(\xi, U) \cdot \bar{R}=0$In this section, we consider that $\bar{M}(\xi, U) \cdot \bar{R}=0$ and obtained a relation on para-Kenmotsu manifold, where \bar{M} is M-projective curvature tensor and \bar{R} is Riemannian curvature tensor with respect to Zamkovoy connection $\bar{\nabla}$.
Theorem 7.1. On an n-dimensional $(n>2)$ para-Kenmotsu manifold M^{n} admitting Zamkovoy connection if $\bar{M}(\xi, U) \cdot \bar{R}=0$ holds then the manifold is an Einstein manifold.
Proof. Let us assume that a para-Kenmotsu manifold M^{n} admitting Zamkovoy connection satisfying the condition

$$
\begin{equation*}
(\bar{M}(\xi, U) \cdot \bar{R})(X, W) V=0 \tag{7.1}
\end{equation*}
$$

where $(\bar{M}),(\bar{R})$ are M-projective curvature tensor and Riemannian curvature tensor with respect to Zamkovoy connection, and $U, V, X, W \in \chi(M)$. Equation (7.1) gives

$$
\begin{gather*}
\bar{M}(\xi, U) \bar{R}(X, W) V-\bar{R}(\bar{M}(\xi, U) X, W) V-\bar{R}(X, \bar{M}(\xi, U) W) V- \tag{7.2}\\
\bar{R}(X, W) \bar{M}(\xi, U) V=0 .
\end{gather*}
$$

Putting $X=\xi$ in above eqution, we get

$$
\begin{array}{r}
\bar{M}(\xi, U) \bar{R}(\xi, W) V-\bar{R}(\bar{M}(\xi, U) \xi, W) V-\bar{R}(\xi, \bar{M}(\xi, U) W) V- \\
\bar{R}(\xi, W) \bar{M}(\xi, U) V=0 . \tag{7.3}
\end{array}
$$

Using equation (3.9) in above equation, we get

$$
\begin{equation*}
\bar{R}(\bar{M}(\xi, U) \xi, W) V=0 \tag{7.4}
\end{equation*}
$$

In view of equation (1.3), we have

$$
\begin{equation*}
\bar{M}(\xi, U) \xi=\frac{-1}{2(n-1)}[\bar{Q}(U)+(n-1) \eta(U) \xi] . \tag{7.5}
\end{equation*}
$$

Using equation (7.5) in equation (7.4), we get

$$
\begin{equation*}
\bar{R}(Q U, W) V+(n-1) \bar{R}(U, W) V=0 \tag{7.6}
\end{equation*}
$$

In view of equation (3.2), we have

$$
\begin{align*}
R(Q U, W) V & -g(Q U, V) W+g(W, V) Q U \\
& +(n-1)[R(U, W) V-g(U, V) W+g(W, V) U]=0 \tag{7.7}
\end{align*}
$$

Taking inner product of above equation with vector field Y, we get

$$
\begin{align*}
& R(Q U, W, V, Y)-S(U, V) g(W, Y)+g(W, V) S(U, Y) \\
& \quad+(n-1)[R(U, W, V, Y)-g(U, V) g(W, Y)+g(W, V) g(U, Y)]=0 \tag{7.8}
\end{align*}
$$

Putting $W=V=e_{i}$ and taking summation over $i, 1 \leq i \leq n$ in above equation, we get

$$
\begin{equation*}
S(Q U, Y)=(2 n-2) S(U, Y)-(n-1)^{2} g(U, Y) \tag{7.9}
\end{equation*}
$$

Using equation (2.14) in above equation, we get

$$
\begin{equation*}
S(U, Y)=\frac{1}{3}(n-1) g(U, Y) \tag{7.10}
\end{equation*}
$$

which shows that the manifold is an Einstein manifold.
8. Para-Kenmotsu manifolds admitting Zamkovoy Connection satisfying $\bar{M}(\xi, U) \cdot \bar{S}=0$

In this section, we consider $\bar{M}(\xi, U) \cdot \bar{S}=0$ and obtained that M^{n} is an Einstein manifold.

Theorem 8.1. On an n-dimensional para-Kenmotsu manifold admitting Zamkovoy connection $\bar{\nabla}$, if the condition $\bar{M}(\xi, U) . \bar{S}=0$ holds, then the manifold is an Einstein manifold.
Proof. Let us assume that a para-Kenmotsu manifold M^{n} admitting Zamkovoy connection satisfying the condition

$$
\begin{equation*}
(\bar{M}(\xi, U) \cdot \bar{S}(X, Y)=0 \tag{8.1}
\end{equation*}
$$

for all $U, X, Y \in \chi(M)$, then we have

$$
\begin{equation*}
\bar{S}(\bar{M}(\xi, U) X, Y)+\bar{S}(X, \bar{M}(\xi, U) Y)=0 \tag{8.2}
\end{equation*}
$$

In the view of equation (1.3), we have

$$
\begin{equation*}
\bar{M}(\xi, U) \cdot X=-\frac{1}{2(n-1)}[\bar{S}(U, X) \xi+\eta(X) \bar{Q} U-g(U, X) \bar{Q} \xi] \tag{8.3}
\end{equation*}
$$

Using equation (8.3) in equation (8.2), we get

$$
\begin{equation*}
\eta(X) \bar{S}(\bar{Q} U, Y)-g(U, X) \bar{S}(\bar{Q} \xi, Y)+\eta(Y) \bar{S}(\bar{Q} U, X)-g(U, Y) \bar{S}(\bar{Q} \xi, X)=0 \tag{8.4}
\end{equation*}
$$

Putting $X=\xi$ and using equations (3.5) and (3.7) in equation (8.4), we get

$$
\begin{equation*}
S(Q U, Y)=-(2 n-2) S(U, Y)-(n-1)^{2} g(U, Y) . \tag{8.5}
\end{equation*}
$$

Using equation (2.15) in above equation, we get

$$
\begin{equation*}
S(U, Y)=-(n-1) g(U, Y), \tag{8.6}
\end{equation*}
$$

which shows that the manifold is an Einstein manifold.

References

[1] Adati T. and Matsumoto K., On conformally recurrent and conformally symmetric p-Sasakian manifolds, TRU Math., 13 (1977), 25-32.
[2] Biswas A. and Baishya K. K., A general connection on Sasakian manifolds and the case of almost pseudo-symmetric Sasakian manifold, Scientific Studies and Research Series Mathematics and Informatics, 29 (1) (2019), 59-72.
[3] Biswas A. and Baishya K. K., Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transitvanin University of Brasov, 12 (2) (2020), 233-246.
[4] Blaga A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (1) (2015), 1-13.
[5] Blaga A. M., Generazlied dual connections on para-Kenmotsu manifolds, Bull. Ink. Math Virtural Inst., 7 (1) (2017), 165-171.
[6] Chaubey S. K. and Ojha R. H., On the M-projective curvature tensor of a Kenmotsu manifolds, DGDS, 38 (2015), 131-142.
[7] Kaneyuki S. and Williams F. L., Almost paracontact and parahodge structures on manifolds, Nagoya. Math. J, 99 (1985), 173-187.
[8] Kenmotsu K., A class of almost paracontact metric manifold, Tohoku Math. J., 24 (1972), 93-103.
[9] Mandal A. and Das A., Projective curvature tensor with respect to Zamkovoy connection in LP-Sasakian manifolds, J. Indoes. Math. Soc., 26 (03) (2020), 369-379.
[10] Ojha R. H., Sasakian manifolds, Kyungpook Math. J., 19 (1973), 211-215.
[11] Ojha R. H., M-projectively flat Sasakian manifolds, Indian J. of pure and Applied Mathematics, 17 (4) (1986), 484-484.
[12] Pandey S. K. and Singh R. N., On M-projective curvature tensor of generalized Sasakian-space-forms, Facta Universitatis(Niš), Jer. Math. Inform., 33 (3) (2018), 361-373.
[13] Prakasha D. G., Harish H., Veeresha P. and Venkatesha T., The Zamkovoy canonical paracontact connection on a para-Kenmoshu manifold, UBDA Mathematical J., 23 (02) (2021), 191-206.
[14] Pokhariyal G. P. and Mishra R. S., Curvature tensor and their relativistic significance-II, Yokohama Math. J., 19 (2) (1971), 97-103.
[15] Raghuwanshi T., Pandey S. K., Pandey M. K. and Goyal A., On W_{2}-curvature tensor of para-Kenmotsu manifolds, Filomat, 36 (3) (2022), 741-752.
[16] Sato I., On a structure similar to almost contact structure I, Tensor N. S., 30 (1976), 219-224.
[17] Satyanarayan T. and Saiprasad K. L., On a type of para-Kenmotsu manifold, Pure Math. Sci., 2 (04) (2013), 165-170.
[18] Singh R. N. and Pandey S. K., On the M-projective curvature tensor of a $\mathrm{N}(\mathrm{k})$-contact Metric manifold, ISRN Geometry, 932564, 6 pages (2013).
[19] Sinha B. B. and Saiprasad K. L., A class of almost paracontact metric manifold, Bull. Cal. Math. Soc., 87 (1995), 307-312.
[20] Tanno S., The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J., 21 (1969), 21-38.
[21] Zamkovoy S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.

