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1. Introduction and Preliminaries
During the last three decades research workers have devoted their much time

to generalise the Banach contraction theorem in various ways. They have obtained
common fixed point of two mappings using commutative property. The notion of
commutativity has been weakend in terms of weakly commutative, compatibity,
weak compatibity etc. . A number of common fixed point theorems have been ob-
tained using compatibity, weak compatibity etc. We shall quote some definitions
and theorems from the literature to complete our paper. Let f and g be selfmaps
on the metric space (X, d). If fx = gx = p for some x ∈ X, then x is called a coin-
cidence point [9] of f and g and p is called a point of coincidence of f and g. In 1986,
Jungck gave the concept of compatible mappings [9]. A pair (A, B) of self mappings
of a metric space (X, d) is said to be compatible if limn→∞ d(ABxn, BAxn) = 0,
whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t for some t ∈ X.
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Jungck introduced weakly compatible mappings [11] which is generalized concept
of compatible mappings [9]. A pair (A, B) of self mappings of a metric space (X, d)
is said to be weakly compatible, if Ax = Bx for some x ∈ X implies ABx = BAx.
To prove the common fixed point of weakly compatible mappings, it was required
that the space should be complete or the mappings should be continuous. In 2002,
El Moutawakil and Aamri introduced the concept of (E.A) property [21]. Let (X,
d) be a metric space and f, h : X → X be two self-maps. The pair (f, h) is said
to satisfy the (E.A) property if there exists sequence {xn} in X and some z ∈ X
such that

lim
n→∞

fxn = lim
n→∞

hxn = z ∈ X.

Using (E.A) property one can prove the common fixed point theorems including
only the closeness condition of the space. The concept of (E.A) property has been
generalized by Liu et. al. [20] to common (E.A) property [20]. Let (X, d) be a
metric space and f, g, h and J : X → X be four self-maps. The pairs (f, h) and
(g, J) satisfy the common (E.A) property if there exist two sequences {xn} and
{yn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = t ∈ X.

In [4], we get the concept of subsequentially continuous mappings.
Let (X, d) be a metric space and f, h : X → X be self-maps. The pair (f, h) is
called subsequentially continuous if there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = z

for some z ∈ X and
lim
n→∞

fhxn = lim
n→∞

hfxn = hz.

The concept compatibility and subsequential continuity together imply the exis-
tence of coincidence point of two mappings. Kumam and Sintunavarat introduced
the following concept which does not require the condition closeness of the space.
Let (X, d) be a metric space and f, h : X → X be self-maps. The pair (f, h) said
to satisfy the common limit in the range [18] of h property if

lim
n→∞

fxn = lim
n→∞

hxn = hx,

for some x ∈ X. One can observe that (E.A) property of (f, h) together with the
closeness of h(X) implies common limit in the range of h property. Chauhan et. al.
extended the concept of (CLR) property to the common (CLR) property [5]. Let



Common Fixed Point Theorem For Six Mappings 231

(X, d) be a metric space and f, g, h and J : X → X be four self-maps. The pairs
(f, h) and (g, J) satisfy the common limit range property with respect to mappings
h and J, denoted by CLR(h,J) if there exist two sequences {xn} and {yn} in X such
that

lim
n to∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = t ∈ h(X) ∩ J(X).

V. Popa [23] introduced a new class of mappings and proved some results for
common fixed point theorem. Let (X, d) be a metric space and f, g and T : X → X
be three self-maps. The pair (f, g) is said to satisfy common limit range property
with respect to T [23], denoted CLR(f,g),T if there exists a sequence {xn} in X such
that

lim
n→∞

fxn = lim
n→∞

gxn = t ∈ g(X) ∩ T (X).

The author has given a remark that if (f, h) and (g, T) satisfy the common limit
range property with respect to mappings h and T, then (f, h) satisfy the CLR(f,h),T .
But the converse is not true. Let f be a continuous selfmap of a metric space (X,
d). A selfmap g of X is said to be f-contractive [24] if d(gx, gy) < d(fx, fy) for
each x, y in X for which gx 6= gy. The definitions quoted above have been used in
the following theorems to obtain a common fixed point.

Theorem 1.1. [8] Let f be a continuous selfmap of a complete metric space (X,
d). Then f has a fixed point in X if and only if there exists an α ∈ (0, 1) and
a mapping g : X → X which commutes with f and satisfies g(X) ⊂ f(X) and
d(gx, gy) ≤ αd(f(x), f(y)) for all x, y ∈ X. Indeed, f and g have a unique common
fixed point.

Theorem 1.2. [6] Let S and T be continuous selfmaps of a complete metric space
(X, d). Then S and T have a common fixed point in X if and only if there exists a
continuous mapping A of X into S(X) ∩ T (X) such that AS = SA,AT = TA and
d(Ax,Ay) ≤ αd(Sx, Ty) for all x, y ∈ X and 0 < α < 1. Indeed, S, T and A have
a unique common fixed point.

Theorem 1.3. [17] Let S and T be continuous selfmaps of a Hilbert space X. Then
S and T have a common fixed point in X if and only if there exists a continuous
mapping A of X into S(X)∩T (X) which commutes with S and T and satisfies the
inequality

‖Ax− Ay‖ ≤ α‖Ax− Sx‖+ β‖Ay − Ty‖+ γ‖Sx− Ty‖

for all x, y in X, where α, β, γ ≥ 0 with 0 < α+β+ γ < 1. Indeed S, T and A then
have a unique common fixed point.
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Theorem 1.4. [22] A continuous selfmap f of a metric space (X, d) has a fixed
point if and only if there exists an f-contractive map g, which commutes with f, a
subset M ⊂ X, and a point x0 ∈M such that

d(fx, fx0)− d(gx, gx0) ≥ 2d(fx0, gx0)

for every x ∈ X/M , and g maps M into a compact subset of X. Indeed, f and g
have a unique common fixed point.

Theorem 1.5. [24] Let f and g be continuous selfmaps of a complete metric space
(X, d). Then f and g have a common fixed point in X if and only if there exists
a continuous map h : X → f(X) ∩ g(X) which is compitable with f and g which
satisfies

d(hx, hy) ≤ max
{
d(hx, fy), d(hy, gy), d(fx, gy),

d(hx, gy) + d(hy, fx)

2

}
−ω
(

max
{
d(hx, fy), d(hy, gy), d(fx, gy),

d(hx, gy) + d(hy, fx)

2

})
for all x, y ∈ X where ω : R+ → R+ is a continuous function such that 0 <
ω(r) < r for all r > 0. . Indeed f, g and h have a unique common fixed point.

Let R+ denote the set of nonnegative reals and ω : R+ → R+ a continuous
function such that 0 < ω(r) < r for all r > 0.

2. Main Result

Theorem 2.1. Let, (X, d) be a complete metric space. Let A, B, S, T, P and Q
be self mappings satisfying P (X) ⊂ AB(X), Q(X) ⊂ ST (X),

AB = BA, ST = TS,BQ = QB,PT = TP, TQ = QT

and

d(Px,Qy) ≤ max
{
d(STx,ABy), d(Px, STx), d(Qy,ABy),

d(Px,ABy) + d(Qy, STx)

2

}

−ω
(

max
{
d(STx,ABy), d(Px, STx), d(Qy,ABy),

d(Px,ABy) + d(Qy, STx)

2

})
where ω : R+ → R+ be a continuous function which satisfies 0 < ω(t) < t.
Again (P, ST) and (Q, AB) are weakly compatible.
Then A, B, S, T, P and Q have a unique common fixed point if either P(X) or
Q(X) is complete.
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Proof. Since P (x) ⊂ AB(x), then for any x0 ∈ X,Px0 ∈ P (X) and there exists
x1 ∈ X such that Px0 = ABx1.
Again Q(x) ⊂ ST (X), then for Qx1, there exists x2 ∈ X such that Qx1 = STx2.
Proceding in the similar way we can construct a sequence {yn} where

y2n = Px2n = ABx2n+1

y2n+1 = Qx2n+1 = ST2n+2, n = 0, 1, 2 . . .

First we proof that limn→∞ d(yn, yn+1) = 0.
Define: dn = d(yn, yn+1) i.e. d2n = d(y2n, y2n+1). Now

d(y2n, y2n+1) = d(Px2n, Qx2n+1)

≤ max
{
d(STx2n, ABx2n+1), d(Px2n, STx2n), d(Qx2n+1, ABx2n+1),

d(Px2n, ABx2n+1) + d(Qx2n+1, STx2n)

2

}
−ω
(

max
{
d(STx2n, ABx2n+1), d(Px2n, STx2n), d(Qx2n+1, ABx2n+1),

d(Px2n, ABx2n+1) + d(Qx2n+1, STx2n)

2

})
= max

{
d(y2n−1, y2n), d(y2n, y2n−1), d(y2n, y2n+1),

d(y2n, y2n) + d(y2n+1, y2n−1)

2

}
−ω
(

max
{
d(y2n−1, y2n), d(y2n, y2n−1), d(y2n, y2n+1),

d(y2n, y2n) + d(y2n+1, y2n−1)

2

})
If d2n−1 < d2n then from the above inequality we get

d2n ≤ d2n − ω(d2n), where ω(t) > 0 for t > 0, which is a contradiction.

Therefore d2n ≤ d2n−1 and so

d2n ≤ d2n−1 − ω(d2n−1)

i.e. ω(d2n−1) ≤ d2n−1 − d2n.
Similarly we get w(d2n) ≤ d2n − d2n+1.
Therefore

∑n
i=0 ω(di) ≤ d0 − dn+1 ≤ d0.
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Hence
∑∞

n=1 ω(dn) is convergent and so limn→∞ ω(dn) = 0.
The sequence {dn} being a non-increasing sequence of +ve numbers is convergent.
Say the limit is p i.e. limn→∞ dn = p.
If p > 0, then limn→∞ ω(dn) = ω(p) = 0, since ω is continuous.
But for p > 0, ω(p) > 0.
Therefore limn→∞ dn = limn→∞ d(yn, yn+1) = 0.
Claim. {yn} is Cauchy sequence in (X, d).
In order to show that {yn}is Cauchy sequence, it is sufficient to show that {y2n} is
Cauchy sequence since limn→∞ d(yn, yn+1) = 0.
If possible let {y2n} is not a Cauchy sequence.
Then for every ε > 0 and every positive integer k there exists two positive integers
2m(k) and 2n(k) such that

d(y2m(k), y2n(k)) > ε for 2m(k) > 2n(k) > k.

Let 2m(k) be the least +ve integer for which d(y2m(k), y2n(k)) > ε and
d(y2m(k)−2, y2n(k)) ≤ ε.
Now,

ε < d(y2m(k), y2n(k)) ≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

≤ ε+ d2m(k)−2 + d2m(k)−1.

Taking the limit n→∞ in the above inequality, we get

ε = lim
n→∞

d(y2m(k), y2n(k)).

By triangle inequality, we get

|d(y2m(k), y2n(k))− d(y2m(k), y2n(k)+1)| ≤ d(y2n(k), y2n(k)+1)

|d(y2m(k), y2n(k)+1)− d(y2n(k)+1, y2m(k)+1)| ≤ d(y2m(k), y2m(k)+1)

|d(y2n(k)+1, y2m(k)+1)− d(y2m(k)+1, y2n(k)+2)| ≤ d(y2n(k)+1, y2n(k)+2)

|d(y2m(k), y2n(k)+2)− d(y2m(k)+1, y2n(k)+2)| ≤ d(y2m(k), y2m(k)+2). (1)

Taking limit n→∞ in the above inequalities, we get

ε = lim
n→∞

d(y2m(k), y2n(k)+1),

= lim
n→∞

d(y2n(k)+1, y2m(k)+1),

= lim
n→∞

d(y2m(k)+1, y2n(k)+2).
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Now, d(y2n(k)+2, y2m(k)+1)

= d(Px2n(k)+2, Qx2m(k)+1)

≤ max
{
d(STx2n(k)+2, ABx2m(k)+1), d(Px2n(k)+2, STx2n(k)+2),

d(Qx2m(k)+1, ABx2m(k)+1),

d(Px2n(k)+2, ABx2m(k)+1) + d(STx2n(k)+2, Qx2m(k)+1)

2

}
−

ω

(
(max

{
d(STx2n(k)+2, ABx2m(k)+1), d(Px2n(k)+2, STx2n(k)+2),

d(Qx2m(k)+1, ABx2m(k)+1),

d(Px2n(k)+2, ABx2m(k)+1) + d(STx2n(k)+2, Qx2m(k)+1)

2

})
= max

{
d(y2n(k)+1, y2m(k)), d(y2n(k)+2, d2n(k)+1), d(y2m(k)+1, y2m(k)),

d(y2n(k)+2, y2m(k)) + d(y2n(k)+1, y2m(k)+1)

2

}
−

ω

(
max

{
d(y2n(k)+1, y2m(k)), d(y2n(k)+2, d2n(k)+1), d(y2m(k)+1, y2m(k)),

d(y2n(k)+2, y2m(k)) + d(y2n(k)+1, y2m(k)+1)

2

})
= max

{
d(y2n(k)+1, y2m(k)), d(y2n(k)+2, y2n(k)+1), d(y2m(k)+1, y2m(k)),

d(y2n(k)+2, y2n(k)+1) + d(y2n(k)+1, y2n(k)) + d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)+1)

2

}
−

ω

(
max

{
d(y2n(k)+1, y2m(k)), d(y2n(k)+2, y2n(k)+1), d(y2m(k)+1, y2m(k)),

d(y2n(k)+2, y2n(k)+1) + d(y2n(k)+1, y2n(k)) + d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)+1)

2

})
Taking limit n→∞, we get

ε ≤ max
{
ε, 0, 0,

0 + 0 + ε+ ε

2

}
− ω

(
max

{
ε, 0, 0,

0 + 0 + ε+ ε

2

})
= ε− ω(ε), which is a contraction.

Hence {yn} is a Cauchy sequence.
Since (X, d) is complete. So {yn} is convergent in (X, d), say {yn} converges to z,
z ∈ X.
Then {Px2n}, {Qx2n+1}, {ABx2n+1}, {STx2n+2} begin a subsequences of {yn} also
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converge to z, i.e.
limn→∞ Px2n = limn→∞Qx2n+1 = limn→∞ABx2n+1 = limn→∞ STx2n+2 = z.
Case 1. Let P(X) is complete.
Then z ∈ P (X). Since P (X) ⊂ AB(X). Then there exists a point u ∈ AB such
that z = ABu.
We shall prove that Qu = z.
If possible that z 6= Qu.

d(Qu, z) ≤ d(Qu, Px2n(k)+2) + d(Px2n(k)+2, z)

≤ max
{
d(STx2n(k)+2, ABu), d(Px2n(k)+2, STx2n(k)+2), d(Qu,ABu),

d(Px2n(k)+2, ABu) + d(Qu, STx2n(k)+2)

2

}
−

ω

(
max

{
d(STx2n(k)+2, ABu), d(Px2n(k)+2, STx2n(k)+2), d(Qu,ABu),

d(Px2n(k)+2, ABu) + d(Qu, STx2n(k)+2)

2

})
+ d(Px2n(k)+2, z).

Taking limit n→∞ we get

d(Qu, z) ≤ max
{
d(z, z), d(z, z), d(Qu, z),

d(z, z) + d(Qu, z)

2

}
−

ω

(
max

{
d(z, z), d(z, z), d(Qu, z),

d(z, z) + d(Qu, z)

2

})
= max

{
0, 0, d(Qu, z),

d(Qu, z)

2

}
− ω

(
max

{
0, 0, d(Qu, z),

d(Qu, z)

2

})
= d(Qu, z)− w(d(Qu, z)), a contradiction.

Hence Qu = z and so we have Qu = ABu = z.
Since Q(X) ⊂ ST (X), and z ∈ Q(X). Then there exists v in X such that z = STv.
Now we shall prove that Pv = z.
If possible let Pv 6= z.

d(Pv, z) = d(Pv,Qu)

≤ max
{
d(STv,ABu), d(Pv, STv), d(Qu,ABu),

d(Pv,ABu) + d(Qu, STv)

2

}
−

ω

(
max

{
d(STv,ABu), d(Pv, STv), d(Qu,ABu),

d(Pv,ABu) + d(Qu, STv)

2

})
= max

{
d(z, z), d(Pv, z), d(z, z),

d(Pv, z) + d(z, z)

2

}
−
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ω

(
max

{
d(z, z), d(Pv, z), d(z, z),

d(Pv, z) + d(z, z)

2

})
= d(Pv, z)− w(d(Pv, z)), a contradiction.

Therefore we have Pv = z and so Qu = ABu = Pv = STv = z.
Case 2. If Q(X) is complete the similarly we have,
Qu = ABu = Pv = STv = z.
Since (P, ST) is weakly compatible and
Pv = STv = z.
So, ST (Pv) = P (STv) i.e. STz = Pz.
Again, since (Q, AB) is weakly compatible and Qu = ABu = z So, Q(ABu) =
AB(Qu) i.e. Qz = ABz.
Now, we show that z is fixed point of P.
If Pz = z, then

d(Pz, z) = d(Pz,Qu)

≤ max
{
d(STz,ABu), d(Pz, STz), d(Qu,ABu),

d(Pz,ABu) + d(Qu, STz)

2

}
−

ω

(
max

{
d(STz,ABu), d(Pz, STz), d(Qu,ABu),

d(Pz,ABu) + d(Qu, STz)

2

})
= max

{
d(Pz, z), 0, 0,

d(Pz, z) + d(z, Pz)

2

}
−

ω

(
max

{
d(Pz, z), 0, 0,

d(Pz, z) + d(z, Pz)

2

})
= d(Pz, z)− w(d(Pz, z)), a contradiction.

So, Pz = z.
Hence STz = Pz = z.
Claim: Tz = z
If possible let Tz 6= z. Let x = Tz, y = x2n+1.

d(P (Tz), Qx2n+1) ≤ max
{
d(ST (Tz), ABx2n+1), d(P (Tz), ST (Tz)),

d(Qx2n+1, ABx2n+1),
d(P (Tz), ABx2n+1) + d(Qx2n+1, ST (Tz))

2

}
−

ω

(
max

{
d(ST (Tz), ABx2n+1), d(P (Tz), ST (Tz)), d(Qx2n+1, ABx2n+1),

d(P (Tz), ABx2n+1) + d(Qx2n+1, ST (Tz))

2

})
.
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Taking n→∞

d(P (Tz), z) ≤ max
{
d(Tz, z), 0, 0,

d(Tz, z) + d(Tz, z)

2

}
−ω
(

max
{
d(Tz, z), 0, 0,

d(Tz, z) + d(Tz, z)

2

})
⇒ d(Tz, z) ≤ d(Tz, z)− w(d(Tz, z)), a contradiction.

Therefore Tz = z.
Hence Pz = ABz = Sz = Tz = z.
Claim Bz =z.
If Bz 6= z then let x = z, y = Bz. d(Pz, Q(Bz))

≤ max
{
d(STz,AB(Bz)), d(Pz, STz), d(Q(Bz), AB(Bz)),

d(Pz,AB(Bz)) + d(Q(Bz), STz)

2

}
−

ω

(
max

{
d(STz,AB(Bz)), d(Pz, STz), d(Q(Bz), AB(Bz)),

d(Pz,AB(Bz)) + d(Q(Bz), STz)

2

})
= max

{
d(z,Bz), 0, 0, d(z,Bz)

}
− ω

(
max

{
d(z, Bz), 0, 0, d(z,Bz)

)
= d(Bz, z)− w(d(Bz, z)), a contradiction.

Therefore Bz = z.
Hence Pz = Qz = Sz = Tz = Az = Bz = z.
Uniqueness.
Let z′ ∈ X be such that Pz′ = Qz′ = Az′ = Bz′ = Sz′ = Tz′ = z′ and z′ 6= z.

d(z, z′) = d(Pz,Qz′)

≤ max
{
d(STz,ABz′), d(Pz, STz), d(Qz′, ABz′),

d(Pz,ABz′) + d(Qz, STz)

2

}
−

ω

(
max

{
d(STz,ABz′), d(Pz, STz), d(Qz′, ABz′),

d(Pz,ABz′) + d(Qz, STz)

2

})
= max

{
d(z, z′), 0, 0, d(z, z′)

}
− ω

(
max

{
d(z, z′), 0, 0, d(z, z′)

})
= d(z, z′)− w(d(z, z′)), a contradiction.
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Hence z = z′.

Corollary 2.1. Let, (X, d) be a complete metric space. Let A, B, P and Q be self
mappings satisfying P (X) ⊆ A(X), Q(X) ⊆ S(X), and

d(Px,Qy) ≤ max
{
d(Sx,Ay), d(Px, Sx), d(Qy,Ay),

d(Px,Ay) + d(Qy, Sx)

2

}
−ω
(

max
{
d(Sx,Ay), d(Px, Sx), d(Qy,Ay),

d(Px,Ay) + d(Qy, Sx)

2

})
where ω : R+ → R+ be a continuous function which satisfies 0 < ω(t) < t.
Again (P, S) and (Q, A) are weakly compatible.
Then A, B, P and Q have a unique common fixed point if either P(X) or Q(X) is
complete.
Proof. This result easily follows from Theorem 2.1 by taking B= T= I, the identity
map.

Corollary 2.2. Let, (X, d) be a complete metric space. Let P and Q be onto
mappings on (X, d) and

d(x, y) ≤ max
{
d(Qx, Py), d(x,Qx), d(y, Py),

d(x, Py) + d(y,Qx)

2

}
−ω
(

max
{
d(x, y), d(x,Qx), d(y, Py),

d(x, Py) + d(y,Qx)

2

})
where ω : R+ → R+ be a continuous function which satisfies 0 < ω(t) < t.
Then P and Q have a unique common fixed point.
Proof. Set P = Q = I, the identity mapping and A → P and B → Q in the
Corollary 2.1.

Corollary 2.3. Let, (X, d) be a complete metric space. Let P be onto mapping on
(X, d) and

d(x, y) ≤ max
{
d(Px, Py), d(x, Px), d(y, Py),

d(x, Py) + d(y, Px)

2

}
−ω
(

max
{
d(Px, Py), d(x, Px), d(y, Py),

d(x, Py) + d(y, Px)

2

})
where ω : R+ → R+ be a continuous function which satisfies 0 < ω(t) < t.
Then P has a unique common fixed point.
Proof. Let P= Q in Corollary 2.2.
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To validate the conditions used in theorem 2.1. we exhibit the following exam-
ple:

Example 1. Let X = [0, 1] be a set with the metric d : X × X → R given by
d(x, y) = 0, if x = y and d(x, y) = x+y

2
, if x 6= y and ω : R+ → R+, defined by

ω(t) = t
4

be a continuous function which satisfies 0 < ω(t) < t.
Define P,A,B,Q, S, T : X ×X → X by
P (x) = x

4
, A(x) = x,B(x) = x

2
, Q(x) = x

12
, S(x) = x

3
, T (x) = x

2
.

Now AB(x) = A(x
2
) = x

2
and ST (x) = S(x

2
) = x

6
. So P (X) = [0, 1

4
] ⊂ [0, 1

2
] =

AB(X) and Q(X) = [0, 1
12

] ⊂ [0, 1
6
] = ST (X).

One can easily verify that AB(x) = x
2

= BA(x), ST (x) = x
6

= TS(x), BQ(x) =
x
12

= QB(x), PT (x) = x
8

= TP (x), and TQ(x) = x
24

= QT (x).
Now

d(Px,Qy) ≤ max
{
d(STx,ABy), d(Px, STx), d(Qy,ABy),

d(Px,ABy) + d(Qy, STx)

2

}
− ω

(
max

{
d(STx,ABy), d(Px, STx),

d(Qy,ABy),
d(Px,ABy) + d(Qy, STx)

2

})
d(

x

4
,
y

2
) ≤ max

{
d(

x

6
,
y

2
), d(

x

4
,
x

6
), d(

y

12
,
y

2
),
d(x2 ,

y
2 ) + d( y

12 ,
x
6 )

2

}
−ω
(
max

{
d(

x

6
,
y

2
), d(

x

4
,
x

6
), d(

y

12
,
y

2
),
d(x2 ,

y
2 ) + d( y

12 ,
x
6 )

2

})
1

2

(x
4
+

y

12

)
≤ max

{1
2

(y
6
+

x

2

)
,
1

2

(x
4
+

x

6

)
,
1

2

(y
2
+

y

12

)
,
1

2.2

(x
4
+

y

2
+

y

12
+

x

6

)}
−ω
(
max

{1
2

(y
6
+

x

2

)
,
1

2

(x
4
+

x

6

)
,
1

2

(y
2
+

y

12

)
,
1

2.2

(x
4
+

y

2
+

y

12
+

x

6

)})
3x+ y

24
≤ max

{3y + x

12
,
5x

24
,
7y

24
,
5x+ 6y

48

}
−ω
(
max

{3y + x

12
,
5x

24
,
7y

24
,
5x+ 6y

48

})
.

Case 1. If x = y, then 3x+y
24

= x
6

and max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

}
−ω
(

max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

})
= max

{
x
3
, 5x
24
, 7x
24
, 11x

48

}
−ω
(

max
{

x
3
, 5x
24
, 7x
24
, 11x

48

})
=

x
3
− ω(x

3
) = x

3
− x

12
= x

4
.

The inequality holds.

Case 2. If x < y, then max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

}
−ω
(

max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

})
≤
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max
{

y
3
, 5y
24
, 7y
24
, y
48

}
− ω

(
max

{
y
3
, 5y
24
, 7y
24
, y
48

})
= y

3
− ω(y

3
) = y

4
.

and 3x+y
24
≤ y

4
i.e. 3x ≤ 5y, which is true. Thus the inequality holds.

Case 3. If y < x, then max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

}
−ω
(

max
{

3y+x
12

, 5x
24
, 7y
24
, 5x+6y

48

})
≤

max
{

x
3
, 5x
24
, 7x
24
, x
48

}
− ω

(
max

{
x
3
, 5x
24
, 7x
24
, x
48

})
= x

3
− ω(x

3
) = x

4
.

and 3x+y
24
≤ x

4
i.e. y ≤ 3x, which is true. Thus the inequality holds.

All the necessary conditions of theorem 2.1. have been satisfied. So all these six
functions, A,B, P,Q, S and T have unique common fixed point which is 0.

3. Conclusion
The results of the paper give generalisation of the works which are quoted in

the introduction. The results of the paper can be applied to obtain common fixed
point for point valued and set valued mappings using Hausdorff metric.
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