
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 18, No. 2 (2022), pp. 215-228

DOI: 10.56827/SEAJMMS.2022.1802.20 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

RELATION BETWEEN GENERAL RANDIĆ INDEX AND
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Abstract: The general Randić index is the sum of weights of (d(u).d(v))k for every
edge uv of a molecular graph G. On the other hand general Sum-Connectivity index
is the sum of the weights (d(u) + d(v))k for every edge uv of G, where k is a real
number and d(u) is the degree of vertex u. Both families of topological indices are
well known and closely related. In fact the correlation coefficient value of these two
families of indices for the trees representing the Octane Isomers vary between 0.915
to 0.998. In the recent years these families of indices have been extensively explored
and studied. The major research on these indices mostly consists of the application
in QSPR/QSAR analysis, computation of these indices for various molecular graphs
and bounds of the indices for certain graphs, satisfying certain conditions. The
main focus of this paper is a comparative study on these two families of indices for
various families of graphs. We find a few algebraic relationships between general
Randić index and general Sum-connectivity index of certain graphs.
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1. Introduction
In 1975, Milan Randić [6] proposed the first genuine degree-based topological

index to measure the extent of branching of the carbon-atom skeleton of saturated
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hydrocarbons. Though Randić named the index as “branching index”, it was soon
re-named to “connectivity index”. Nowadays, most authors refer to it after his
name as the “Randić index”. Certainly the Randić index is one of the most used
topological indices in view of chemistry and chemical graph theory. It was defined
as

R(G) =
∑
uvεE

1√
d(u).d(v)

with summation going over all pairs of adjacent vertices of the molecular graph G.
In 1998 Bollobas and Erdos [1] generalized this index by replacing the exponent
-0.5 with any real number k, which is called the general Randić index. For a
chemical graph G = (V,E), the general Randić index Rk(G) is defined as the sum
of (d(u).d(v))k over all edges uv of G, where d(u) denotes the degree of the vertex
u of G, i.e.,

Rk(G) =
∑
uvεE

(d(u).d(v))k where k is an arbitrary real number.

Following are the six variants of the general Randić index.

1.Randić Index [7] : R−0.5(G) =
∑
uvεE

1√
(d(u).d(v))

2.Reciprocal Randić Index [5] : R0.5(G) =
∑
uvεE

√
(d(u).d(v))

3.Second Reciprocal Zagreb Index : R−1(G) =
∑
uvεE

1

(d(u).d(v))

4.Second Zagreb Index [2] : R1(G) =
∑
uvεE

(d(u).d(v))

which is 2 times the SK1 Index [8].

5.Second Reciprocal Hyper Zagreb Index : R−2(G) =
∑
uvεE

1

(d(u).d(v))2

6.Second Hyper Zagreb Index [9] : R2(G) =
∑
uvεE

(d(u).d(v))2

On the other hand the Sum-Connectivity index is a recent invention by Zhou and
Trinajstić [10]. They noticed that in the definition of Randić index there is no a
priori reason for using the product d(u).d(v) of vertex degrees, and this term may
be replaced by the sum d(u)+d(v) [4]. Hence the new index was defined as

SCI(G) =
∑
uvεE

1√
d(u) + d(v)
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In 2010 Zhou and Trinajstić [11] modified the concept of general Randić index and
obtained a new index called the general Sum-Connectivity index and defined as
follows:

SCIk(G) =
∑
uvεE

(d(u) + d(v))k where k is an arbitrary real number.

Following are the six variants of the general Sum-Connectivity index.

1.Sum Connectivity Index [10] : SCI−0.5(G) =
∑
uvεE

1√
(d(u) + d(v))

2.Reciprocal Sum Connectivity Index : SCI0.5(G) =
∑
uvεE

√
(d(u) + d(v))

3.First Reciprocal Zagreb Index : SCI−1(G) =
∑
uvεE

1

(d(u) + d(v))

4.First Zagreb Index [3] : SCI1(G) =
∑
uvεE

(d(u) + d(v))

which is 2 times the SK Index [8].

5.First Reciprocal Hyper Zagreb Index : SCI−2(G) =
∑
uvεE

1

(d(u) + d(v))2

6.First Hyper Zagreb Index [9] : SCI2(G) =
∑
uvεE

(d(u) + d(v))2

which is 4 times the SK2 Index [8].

The general Randić and general Sum-Connectivity indices are both well explored
and extensively studied topological indices. Apart from the quantitative struc-
ture–property relationship (QSPR) and quantitative structure–activity relationship
(QSAR), the interest in these topological indices is mainly related to the mathe-
matical properties they posses.
The main focus of this paper is on the algebraic relation between general Randić
index and general Sum-Connectivity index of certain families of graphs. A few re-
sults may be found in the mathematico-chemical literature based on the algebraic
relation between the Randić and Sum-Connectivity indices such as;
1. SCI(G) ≥ R(G) for all graphs G without pendant vertices [10].
2. SCI(Pn) < R(Pn) for all path graphs Pn with n vertices [10].
We extend these and propose new results relating general Randić and general Sum-
Connectivity indices.
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2. Motivation

In the recent years, one of the prominent areas of research in chemical graph
theory has been finding the bounds of topological descriptors. For example Zhou
B and Wei Luo [12] obtained a lower bound of general Randić index for the graphs
with n vertices and m ≥ 1 edges, given as

Rk(G) ≥ 4kn−2km1+2k where k≥ 1

Suppose SCIk(G) ≥ Rk(G) is an inequality for the same family of graphs with
n vertices and m ≥ 1 edges, then one could easily extend the lower bound of the
general Randić index to the general Sum-connectivity index by stating,

SCIk(Pk) ≥ 4kn−2km1+2k where k≥ 1

The inequalities derived in this paper help in extending the existing bounds to
the new topological descriptors.

3. Preliminaries

A molecular graph is a simple graph without loops and multiple edges represent-
ing the carbon-atom skeleton of an organic molecule (usually, of a hydrocarbon).
Thus, the vertices of a molecular graph represent the carbon atoms, and its edges
are the carbon-carbon bonds. Let G=(V,E) be a molecular graph, where V = V(G)
is a non-empty set of elements called vertices or points and E = E(G) is a set of
unordered pairs of distinct elements of V (G) called edges or lines. Two vertices
of G, connected by an edge, are said to be “adjacent”. If two vertices u and v are
adjacent, they form an edge denoted as uv. The number of vertices of G, adjacent
to a given vertex u, is called the degree of u, and is denoted by d(u). The concept
of degree in graph theory is closely related (but not identical) to the concept of
valence in chemistry [4]. Depending upon the number of vertices, number of edges,
interconnectivity, and their overall structure graphs can be classified as path graph,
star graph, regular graph, bipartite graph etc. Let Pn and Sn denote the Path and
the Star graphs of order n respectively. A complete Bipartite graph, denoted as
Km,n, is a graph whose vertex-set V can be partitioned into two subsets V1 and V2
such that every vertex of V1 is adjacent to every vertex of V2 [11].

4. Main Result

Lemma 1. Let R:N × N → N and S:N × N → N be two functions defined as
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R(x,y)=(xy)k and S(x,y)=(x+y)k for all x, y ∈ N and for any fixed k∈ R+. Then

1.R(x, y) = S(x, y) for x, y = 2

2.R(x, y) < S(x, y) for (x = 1 and y ≥ 1) or (x ≥ 1 and y = 1)

3.R(x, y) ≥ S(x, y) for all x, y ≥ 2

Proof.
Case 1: when x, y = 2
It is an obvious case as (2.2)k = (2+2)k

Hence R(x,y) = S(x, y).
Case 2: when (x = 1 and y ≥ 1) or (x ≥ 1 and y = 1)
Without loss of generality let x = n and y = 1 for all n ∈ N.
Consider

S(x, y) =(n+ 1)k

=
∞∑
r=0

k(k − 1)(k − 2)....(k − r + 1)

r!
nk−r1r

=(nk + knk−1 +
k(k − 1)

2!
nk−2........)

>nk

=R(x, y)

Hence S(x, y) >R(x, y).

Case 3: when x, y ≥ 2
Let x = 1 + n and y = 1 + m for all n, m ∈ N
Consider

R(x, y) = ((1 + n).(1 +m))k

= (1 + n+m+ nm)k

= ((2 + n+m) + (nm− 1))k

≥ (2 + n+m)k

= S(x, y)

Hence R(x, y) ≥ S(x, y)

The equality holds when m=n=1.

Lemma 2. Let R:N×N→ Q and S:N×N→ Q be two functions defined as R(x,y)
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= 1
(x.y)k

and S(x,y)= 1
(x+y)k

for all x, y ∈ N and for any fixed k∈ R+. Then

1.R(x, y) = S(x, y) for x, y = 2

2.R(x, y) > S(x, y) for (x = 1 and y ≥ 1) or (x ≥ 1 and y = 1)

3.R(x, y) ≤ S(x, y) for all x, y ≥ 2

Proof.
Case 1: when x, y =2
It is an obvious case as 1

(2.2)k
= 1

(2+2)k

Hence R(x, y) = S(x, y)
Case 2: when (x = 1 and y ≥ 1) or (x ≥ 1 and y = 1)
Without loss of generality let x = n and y = 1 for all n ∈ N
Consider

R(x, y) =
1

(1.n)k
>

1

(nk + knk−1 + k(k−1)
2!

nk−2........)
=

1

(n+ 1)k
= S(x, y)

Case 3: when x, y ≥ 2
Let x = 1 + n and y = 1 + m for all n, m ∈ N
Consider

S(x, y) =
1

((1 + n) + (1 +m))k

=
1

((2 + n+m))k

≥ 1

((1 + n+m+ nm))k

=
1

((1 + n).(1 +m))k

= R(x, y)

The equality holds when m=n=1.
In the following theorems 1 to 5 we will be using the above lemmas to find

the algebraic relationships between the general Randić index and general Sum-
Connectivity index of certain graphs in which we will assume x = d(u) and y =
d(v) for every edge uv, where d(u) and d(v) are the degree of vertices u and v
respectively.

Theorem 1. For all path graphs Pn of order n ≥ 2

SCIk(Pn) > Rk(Pn) when k > 0

SCIk(Pn) < Rk(Pn) when k < 0
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Proof. Let Eij denote the set of edges uv such that d(u) = i and d(v) = j.
Case 1: when k > 0
Any path graph Pn of order n ≥ 2 has edges belonging to either E12 and E22 or
E11.
Consider uv ∈ E12

By Lemma 1, (d(u)+d(v))k > (d(u).d(v))k

Consider uv ∈ E22

By Lemma 1, (d(u)+d(v))k = (d(u).d(v))k

Consider uv ∈ E11

By Lemma 1, (d(u)+d(v))k > (d(u).d(v))k

Hence it is clear that
SCIk(Pn) > Rk(Pn)
Case 2: when k < 0
Any path graph Pn of order n ≥ 2 has edges belonging to either E12 and E22 or
E11.
Consider uv ∈ E12

By Lemma 2, (d(u)+d(v))k < (d(u).d(v))k
Consider uv ∈ E22

By Lemma 2, (d(u)+d(v))k = (d(u).d(v))k
Consider uv ∈ E11

By Lemma 2, (d(u)+d(v))k < (d(u).d(v))k
Hence it is clear that
SCIk(Pn) < Rk(Pn)

Theorem 2. For all Star Graphs Sn of order n > 1

SCIk(Sn) > Rk(Sn) when k > 0

SCIk(Sn) < Rk(Sn) when k < 0

Proof. Let Eij denote the set of edges uv such that d(u) = i and d(v) = j.
Any Star graph Sn of order n > 1 has edges belonging to E1(n−1).
Case 1: when k > 0
Consider uv ∈ E1(n−1)
By Lemma 1, (d(u) + d(v))k > (d(u).d(v))k

Hence it is clear that SCIk(Sn) > Rk(Sn)
Case 2: when k < 0
Consider uv ∈ E1(n−1)
By Lemma 2, (d(u) + d(v))k < (d(u).d(v))k

Hence it is clear that SCIk(Sn) < Rk(Sn)
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In Theorem 3 if G is a disconnected graph, then G = G1 ∪ G2 ∪ ... ∪ Gm such
that

SCIk(G) = SCIk(G1) + SCIk(G2) + ....+ SCIk(Gm).

Rk(G) = Rk(G1) +Rk(G2) + ....+Rk(Gm).

Theorem 3. For all r-Regular graphs G of order n ≥ 2 and r ≥ 1.

SCIk(G) > Rk(G) when k > 0 and r = 1

SCIk(G) = Rk(G) when k > 0 and r = 2

SCIk(G) < Rk(G) when k > 0 and r ≥ 3

SCIk(G) < Rk(G) when k < 0 and r = 1

SCIk(G) = Rk(G) when k < 0 and r = 2

SCIk(G) > Rk(G) when k < 0 and r ≥ 3

Proof. Let Eij denote the set of edges uv such that d(u) = i and d(v) = j.
Case 1: when k > 0 and r = 1
Let G be a 1-regular graph of order n ≥ 2. Now either G = e11 or G = G1 ∪G2 ∪
...∪Gn

2
such that every Gi for i = 1, 2,...n

2
is e11. Hence every edge of G belonging

to E11.
Consider uv ∈ E11

By Lemma 1, (d(u) + d(v))k > (d(u).d(v))k

Hence it is clear that SCIk(G) > Rk(G)
Case 2: when k > 0 and r=2
Let G be a 2-regular graph of order n ≥ 2. Now either G is a Cycle or G =
G1 ∪G2 ∪ ...∪Gm such that every Gi for i = 1, 2,...m is a Cycle. Hence every edge
of G belonging to E22.
Consider uv ∈ E22

By Lemma 1, (d(u) + d(v))k = (d(u).d(v))k

Hence it is clear that SCIk(G) = Rk(G)
Case 3: when k > 0 and r ≥ 3
Let G be a r-regular graph of order n ≥ 2. Now irrespective of G is connected or
disconnected, every edge of G belongs to Err.
Consider uv ∈ Err
By Lemma 1, (d(u) + d(v))k < (d(u).d(v))k

Hence it is clear that SCIk(G) < Rk(G)
Case 4: when k < 0 and r = 1
Let G be a 1-regular graph of order n ≥ 2. Now either G = e11 or G = G1 ∪G2 ∪
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...∪Gn
2

such that every Gi for i = 1, 2,...n
2

is e11. Hence every edge of G belonging
to E11.
Consider uv ∈ E11

By Lemma 2, (d(u) + d(v))k < (d(u).d(v))k

Hence it is clear that SCIk(G) < Rk(G)
Case 5: when k < 0 and r= 2
Let G be a 2-regular graph of order n ≥ 2. Now either G is a Cycle or G =
G1 ∪G2 ∪ ...∪Gm such that every Gi for i = 1, 2,...m is a Cycle. Hence every edge
of G belonging to E22.
Consider uv ∈ E22

By Lemma 2, (d(u) + d(v))k = (d(u).d(v))k

Hence it is clear that SCIk(G) = Rk(G)
Case 6: when k < 0 and r ≥ 3
Let G be a r-regular graph of order n ≥ 2. Now irrespective of G is connected or
disconnected, every edge of G belongs to Err.
Consider uv ∈ Err
By Lemma 2, (d(u) + d(v))k > (d(u).d(v))k

Hence it is clear that SCIk(G) > Rk(G)

Theorem 4. For all complete Bipartite graphs Km,n

SCIk(Km,n) > Rk(Km,n) when k > 0, m = 1 and n ≥ 1

SCIk(Km,n) < Rk(Km,n) when k < 0, m = 1 and n ≥ 1

SCIk(Km,n) ≤ Rk(Km,n) when k > 0, and m,n ≥ 2

SCIk(Km,n) ≥ Rk(Km,n) when k < 0, and m,n ≥ 2

Proof. Let Eij denote the set of edges uv such that d(u) = i and d(v) = j.
Case 1: when k > 0, m = 1 and n ≥ 1
Suppose m = 1 and n = p for all p ∈ N
A Complete Bipartite graph K1,p has edges belonging to E1p.
Consider uv ∈ E1p

By Lemma 1, (d(u) + d(v))k > (d(u).d(v))k

Hence it is clear that SCIk(Km,n) > Rk(Km,n)
Case 2: when k < 0, m = 1 and n ≥ 1
Suppose m = 1 and n = p for all p ∈ N
A complete bipartite graph K1,p has edges belonging to E1p

Consider uv ∈ E1p

By Lemma 2, (d(u) + d(v))k < (d(u).d(v))k

Hence it is clear that SCIk(Km,n) < Rk(Km,n)



224 South East Asian J. of Mathematics and Mathematical Sciences

Case 3: when k > 0, and m,n ≥ 2
Any Complete Bipartite graph Km,n with m, n ≥ 2 has edges belonging to Emn.
Consider uv ∈ Emn
By Lemma 1, (d(u) + d(v))k ≤ (d(u).d(v))k

Hence it is clear that SCIk(Km,n) ≤ Rk(Km,n)
Case 4: when k < 0, and m,n ≥ 2
Any Complete Bipartite graph Km,n with m, n ≥ 2 has edges belonging to Emn.
Consider uv ∈ Emn
By Lemma 2, (d(u) + d(v))k ≥ (d(u).d(v))k

Hence it is clear that SCIk(Km,n) ≥ Rk(Km,n)

Theorem 5. For any connected graph G of order n ≥ 3 having no pendent vertices,

SCIk(G) ≤ Rk(G) when k > 0

SCIk(G) ≥ Rk(G) when k < 0

Proof. Let Eij denote the set of edges uv such that d(u) = i and d(v) = j.
In a connected graph G of order n ≥ 3 having no pendent vertices, every edge uv
is such that d(u), d(v) ≥ 2.
Case 1: When k > 0
Consider uv ∈ Eij
By Lemma 1, (d(u) + d(v))k ≤ (d(u).d(v))k

Hence it is clear that SCIk(G) ≤ Rk(G)
Case 2: When k < 0
Consider uv ∈ Eij
By Lemma 2, (d(u) + d(v))k ≥ (d(u).d(v))k

Hence it is clear that SCIk(G) ≥ Rk(G)

Theorem 6. For any tree T, in which every vertex other than the pendent vertices,
is of degree 3 and has n number of vertices with degree 3,

Rk(T ) > SCIk(T ) when k ≥ 1 and n ≥ 3

Rk(T ) ≥ SCIk(T ) when k ≤ −0.5 and n ≥ 1

Proof. Consider a tree T, in which every vertex other than the pendent vertices,
is of degree 3. Let n be the number of vertices of degree 3. In the tree T, every
edge uv belong to E13 or E33, where |E13| = (n+ 2) and |E33| = (n− 1).
Case 1: When k ≥ 1

Consider Rk(T )− SCIk(T )

=
(
|E13|(1.3)k + |E33|(3.3)k

)
−
(
|E13|(1 + 3)k + |E33|(3 + 3)k

)
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=
(
(n+ 2)3k + (n− 1)9k

)
−
(
(n+ 2)4k + (n− 1)6k

)
= (n− 1)(9k − 6k)− (n+ 2)(4k − 3k)

= (n− 1)(9k − 6k)− (n− 1)(4k − 3k)− 3(4k − 3k)

= (n− 1)((9k − 6k)− (4k − 3k))− 3(4k − 3k)

≥ (n− 1)(3(4k − 3k)− (4k − 3k))− 3(4k − 3k) [∵ 9k − 6k ≥ 3(4k − 3k) for k ≥ 1]

= (n− 1)(2(4k − 3k))− 3(4k − 3k)

= (2n− 5)(4k − 3k) > 0 for all n ≥ 3

Hence Rk(T ) > SCIk(T ) for all n ≥ 3.
Case 2: When k ≤ -0.5

Consider Rk(T )− SCIk(T )

=
(
|E13|(1.3)k + |E33|(3.3)k

)
−
(
|E13|(1 + 3)k + |E33|(3 + 3)k

)
=
(
(n+ 2)3k + (n− 1)9k

)
−
(
(n+ 2)4k + (n− 1)6k

)
= (n+ 2)(3k − 4k)− (n− 1)(6k − 9k)

= 3(3k − 4k) + (n− 1)(3k − 4k)− (n− 1)(6k − 9k)

= 3(3k − 4k) + (n− 1)((3k − 4k)− (6k − 9k) ≥ 0

[∵ 3k − 4k ≥ 0 and (3k − 4k)− (6k − 9k) ≥ 0 for all k ≥ -0.5]

Hence Rk(T ) ≥ SCIk(T ) for all n ≥ 1

Theorem 7. For any tree T, in which every vertex other than the pendent vertices,
is of degree 4 and has n number of vertices with degree 4,

Rk(T ) > SCIk(T ) when k ≥ 1 and n ≥ 2

Rk(T ) ≥ SCIk(T ) when k ≤ −0.5 and n ≥ 1

Proof. Consider a tree T, in which every vertex other than the pendent vertices,
is of degree 4. Let n be the number of vertices of degree 4. In the tree T, every
edge uv belong to E14 or E44, where |E14| = (2n+ 2) and |E33| = (n− 1).
Case 1: When k ≥ 1

Consider Rk(T )− SCIk(T )

=
(
|E14|(1.4)k + |E44|(4.4)k

)
−
(
|E14|(1 + 4)k + |E44|(4 + 4)k

)
=
(
(2n+ 2)4k + (n− 1)16k

)
−
(
(2n+ 2)5k + (n− 1)8k

)
= (n− 1)(16k − 8k)− (2n+ 2)(5k − 4k)

≥ (n− 1)8(5k − 4k)− (2n+ 2)(5k − 4k) [∵ 16k − 8k ≥ 8(5k − 4k) for k ≥ 1]
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= (5k − 4k)(8n− 8− 2n− 2)

= (5k − 4k)(6n− 10) > 0 for all n ≥ 2

Hence Rk(T ) > SCIk(T ) for all n ≥ 2

Case 2: When k ≤ -0.5

Consider Rk(T )− SCIk(T )

=
(
|E14|(1.4)k + |E44|(4.4)k

)
−
(
|E14|(1 + 4)k + |E44|(4 + 4)k

)
=
(
(2n+ 2)4k + (n− 1)16k

)
−
(
(2n+ 2)5k + (n− 1)8k

)
= (2n+ 2)(4k − 5k)− (n− 1)(8k − 16k)

= (n+ 3)(4k − 5k) + (n− 1)(4k − 5k)− (n− 1)(8k − 16k)

= (n+ 3)(4k − 5k) + (n− 1)((4k − 5k)− (8k − 16k))

= 4(4k − 5k) + (n− 1)(2(4k − 5k)− (8k − 16k)) ≥ 0 for all n ≥ 1

[∵ (4k − 5k) ≥ 0 and 2(4k − 5k)− (8k − 16k) ≥ 0 for all k ≤ -0.5]

Hence Rk(T ) ≥ SCIk(T ) for all n ≥ 1

5. Conclusion
We obtained a few inequalities relating the general Randić index and general

Sum-Connectivity index for a few families of graphs. Similar inequalities can be
derived for nanostuctures such as 2D-lattice, nanotube and nanotorus. In fact,
there is still scope to work in the same line on many other general families of
graphs such as acyclic graphs, bipartite graphs, line graphs, subdivision graphs and
so on. One could also explore the algebraic relationships between other topological
descriptors for the above discussed families of graphs.
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