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Abstract: Duplicate graph of a graph is constructed from a graph with vertex set
V of p vertices and edge set E of q edges as a new graph with vertex set union of
V, V ′ where V ′ is a set disjoint with V having p vertices such that uv is an edge in
the graph G if and only if uv′ and u′v are the edges in its duplicate graph. Super-
edge magic total labeling of a graph is a bijection which labels the vertices with
integers 1 to p and edges with integers p + 1 to p + q such that the induced edge
sum of edges defined as “sum of labels of end vertices and label of that edge” are
all same. In this paper, we provide algorithms and prove existence of super-edge
magic total labeling in extended duplicate graphs of twig, comb, star and bi-star
graphs.
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1. Introduction
Graph labeling is a branch of Graph theory having wide applications in the field

of circuit design, networks, molecular biology, neural networks etc. In 1967, Rosa
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[12] formally initiated labeling on graphs. Since then, over 2000 papers on labeling
were published on variety of labeling. Intrigued and fascinated by magic squares
in number theory, in 1963 Sedlacek introduced magic labeling in graph theory. In
1970, Kotzig and Rosa defined the concept of edge magic total labeling.

Definition 2.1. [13] For a graph G with vertex set V construct another graph as
follows: Let V ′ be the set such that ∩V ′ = φ, |V | = |V ′|, and f : V → V ′ be
bijective. For a ∈ V f(a) ∈ V ′ we write as a′ for convenience. Consider the graph
DG on the vertex set V ∪ V ′, whose edges are given as follows: In the graph G, ab
is an edge if and only if both ab′ and a′b are edges in DG. The graph DG is called
Duplicate graph of G.

Definition 1.2. A path Pn is a sequence of arrangement of vertices v1, v2, . . . , vn
where the edges are in the form of vivi+1, i = 1, 2, . . . , n− 1.

Definition 1.3. A comb CBn is obtained by connecting a new pendant edge with
each vertex of path Pn. Comb CBn has 2n vertices and 2n−1 edges and its duplicate
graphs has 4n vertices and 4n − 2 edges. As this duplicate graph is disconnected,
connecting any two vertices, preferably, one from vi and one from v′i makes it con-
nected and called extended duplicate graph of CBn. Here, the vertices v2n−1, v

′
2n−1

are connected by an edge to get extended duplicate graph EDG(CBn).

Definition 1.4. A twig Tn is a graph obtained by connecting two new pendant edges
with each of the internal vertices in Pn+2. Twig Tn has 3n+ 2 vertices and 3n+ 1
edges and its duplicate graph has 6n + 4 vertices and 6n + 2 edges. The vertices
v3n−1, v

′
3n−1 are connected by an edge to get extended duplicate graph EDG(Tn).

Definition 1.5. A star graph K1,n is a graph having one apex vertex v1 connected
by an edge with each of n pendant vertices v2, v3, . . . , vn+1. Star K1,n has n + 1
vertices and n edges and its duplicate graph has 2n+ 2 vertices and 2n edges. The
vertices v1, v

′
1 are connected by an edge to get extended duplicate graph EDG(K1,n).

Definition 1.6. A bi-star graph Bm,n is a graph having two apex vertices v1, v2
connected by an edge and each of these apex vertices are connected to n pendant
vertices. Bi-star graph Bm,n has m + n + 2 vertices and m + n + 1 edges and its
duplicate graph 2m+ 2n+ 4 vertices and 2m+ 2n+ 2 edges. The vertices v′1, v

′
2 are

connected by an edge to get extended duplicate graph EDG(Bm,n).

Definition 1.7. In a graph G with p vertices and q edges, a bijection φ : {1, 2, 3, . . . ,
p + q} → V ∪ E is called an edge magic total labeling if the edge induced function
φ∗ defined by φ∗(uv) = φ(u) + φ(v) + φ(uv) assigns the same value (constant) for
all the edges.
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Illustration of above graphs and their duplicate graphs are given below:
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Figure 1: (a) Comb graph CB3 (b) Duplicate graph of Comb DG(CB3)

(b)(a)

a

b

c

d

e

f f ′

a′

b′

c′

d′

e′

g

h

g′

h′

a b

c

d

e

f

g

h

Figure 2: (a) Twig graph T2 (b) Duplicate graph of Twig DG(T2)
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Figure 3: (a) Star graph K1,3 (b) Duplicate graph DG(K1,3)

Definition 1.8. An edge magic labeling is called a super-edge magic total labeling
if vertices are labeled with integers from 1 to p and edges are labeled with integers
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Figure 4: (a) Bi-star graph B3,3 (b) Duplicate graph DG(B3,3)

from p+ 1 to p+ q.

2. Main Results

Theorem 2.1. The extended duplicate graph of twig EDG(Tn), n ≥ 2, admits
super-edge magic total labeling.
Proof. The vertices of EDG(Tn) are labeled as below.

f(v1) = 6n+ 4 f(v′1) = 1

f(v3n+2) =

{
9n+6

2
, n is even

9n+5
2
, n is odd

f(v′3n+2) =

{
3n+4

2
, n is even

3n+5
2
, n is odd

For i = 1, 3, 5, . . . 2
⌈
n
2

⌉
− 1

f(v3i) = 6n+ 3− 3i−3
2
, f(v3i+1) = 6n+ 2− 3i−3

2
,

f(v3i−1) = 3n+ 3 + 3i−3
2
, f(v′3i) = 3i+1

2
,

f(v′3i+1) = 1 + 3i+1
2
, f(v′3i−1) = 3n+ 2− 3i−3

2
.

For i = 2, 4, 6, . . . 2
⌊
n
2

⌋
f(v3i) = 3n+ 4 + 3i−6

2
, f(v3i+1) = 3n+ 5 + 3i−6

2
,

f(v3i−1) = 6n+ 4− 3i
2
, f(v′3i) = 3n+ 1− 3i−6

2
,

f(v′3i+1) = 3n− 3i−6
2
, f(v′3i−1) = 1 + 3i

2
,

The edges of EDG(Tn) are labeled as follows:

f(v1v
′
2) = 6n+ 5 f(v′1v2) = 12n+ 7

For i = 1, 3, 5, . . . 2
⌈
n
2

⌉
− 1

f(v3i−1v
′
3i+2) = 12n+ 7− 3i, f(v3iv

′
3i−1) = 6n+ 3 + 3i,

f(v3i+1v
′
3i−1) = 6n+ 4 + 3i, f(v′3i−1v3i+2) = 6n+ 5 + 3i,

f(v′3iv3i−1) = 12n+ 9− 3i, f(v′3i+1v3i−1) = 12n+ 8− 3i.

For i = 2, 4, 6, . . . 2
⌊
n
2

⌋
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f(v3i−1v
′
3i+2) = 6n+ 5 + 3i, f(v3iv

′
3i−1) = 12n+ 9− 3i,

f(v3i+1v
′
3i−1) = 12n+ 8− 3i, f(v′3i−1v3i+2) = 12n+ 7− 3i,

f(v′3iv3i−1) = 6n+ 3 + 3i, f(v′3i+1v3i−1) = 6n+ 4 + 3i, and
f(v3n+1v

′
3n+1) = 9n+ 6.

The induced edge sum function f ∗ defined by f ∗(uv) = f(u) + f(v) + f(uv), gives
the induced edge sums as below.

f ∗(v1v
′
2) = 6n+ 4 + 3n+ 2 + 6n+ 5 = 15n+ 11

f ∗(v′1v2) = 1 + 3n+ 3 + 12n+ 7 = 15n+ 11

For i = 1, 3, 5, . . . 2
⌈
n
2

⌉
− 1

f ∗(v3i−1v
′
3i+2) = 3n+ 3 + 3i−3

2
+ 1 + 3i+2+1

2
+ 12n+ 7− 3i = 15n+ 11,

f ∗(v3iv
′
3i−1) = 6n+ 3− 3i−3

2
+ 3n+ 2− 3i−3

2
+ 6n+ 3 + 3i = 15n+ 11,

f ∗(v3i+1v
′
3i−1) = 6n+ 2− 3i−3

2
+ 3n+ 2− 3i−3

2
+ 6n+ 4 + 3i = 15n+ 11,

f ∗(v′3i−1v3i+2) = 3n+ 2− 3i−3
2

+ 6n+ 4− 3i+2+1
2

+ 6n+ 5 + 3i = 15n+ 11,

f ∗(v′3iv3i−1) = 1+3i
2

+ 3n+ 3 + 3i−3
2

+ 12n+ 9− 3i = 15n+ 11,

f ∗(v′3i+1v3i−1) = 3i+1
2

+ 1 + 3n+ 3 + 3i−3
2

+ 12n+ 8− 3i = 15n+ 11,

For i = 2, 4, 6, . . . 2
⌊
n
2

⌋
f ∗(v3i−1v

′
3i+2) = 6n+ 4− 3i

2
+ 3n+ 2− 3i+3−3

2
+ 6n+ 5 + 3i = 15n+ 11,

f ∗(v3iv
′
3i−1) = 3n+ 4 + 3i−6

2
+ 1 + 3i

2
+ 12n+ 9− 3i = 15n+ 11,

f ∗(v3i+1v
′
3i−1) = 3n+ 5 + 3i−6

2
+ 1 + 3i

2
+ 12n+ 8− 3i = 15n+ 11,

f ∗(v′3i−1v3i+2) = 1 + 3i
2

+ 3n+ 3 + 3i+3−3
2

+ 12n+ 7− 3i = 15n+ 11,

f ∗(v′3iv3i−1) = 3n+ 1− 3i−6
2

+ 6n+ 4− 3i
2

+ 6n+ 3 + 3i = 15n+ 11,

f ∗(v′3i+1v3i−1) = 3n− 3i−6
2

+ 6n+ 4− 3i
2

+ 6n+ 4 + 3i = 15n+ 11,

and for the edge v3n−1v
′
3n−1 the edge induced sum is

f ∗(v3n−1v
′
3n−1)

=

{
3n+ 3 + 3i−3

2
+ 3n+ 2− 3i−3

2
+ 9n+ 6 = 15n+ 11, n is odd

6n+ 4− 3i
2

+ 1 + 3i
2

+ 9n+ 6 = 15n+ 11, n is even

Hence the extended duplicate graph of twig EDG(Tn), n ≥ 2 is super-edge magic
total graph.

An illustration is given in Figure 5 (a).

Theorem 2.2. The extended duplicate graph of comb EDG(CBn), n > 2, admits
super-edge magic total labeling.
Proof. The vertices of EDG(CBn) are labeled as follows:
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for i = 1 to 2n

f(vi) =


i
2
, i ≡ 2 mod 4

i+2
2
, i ≡ 3 mod 4

2n−
(
i−1
2

)
, i ≡ 1 mod 4

2n−
(
i−2
2

)
, i ≡ 0 mod 4

f(v′i) =


4n−

(
i−2
2

)
, i ≡ 2 mod 4

4n−
(
i−1
2

)
, i ≡ 3 mod 4

2n+ 1 +
(
i−1
2

)
, i ≡ 1 mod 4

2n+ 1 +
(
i−2
2

)
, i ≡ 0 mod 4

The edges of EDG(CBn) are labeled as follows:

For, k = 1, 3, 5, . . . 2
⌊
n
2

⌋
− 1

f(v2k−1v
′
2k) = 4n+ 2k − 1, f(v′2k−1v2k) = 8n− 2k + 1,

f(v2k−1v
′
2k+1) = 4n+ 2k, f(v′2k−1v2k+1) = 8n− 2k,

For k = 2, 4, 6, . . . 2(
⌈
n
2

⌉
− 1)

f(v2k−1v
′
2k) = 8n− 2k + 1, f(v′2k−1v2k) = 4n+ 2k − 1,

f(v2k−1v
′
2k+1) = 8n− 2k, f(v′2k−1v2k+1) = 4n+ 2k,

f(v2n−1v
′
2n−1) = 6n

f(v2n−1v
′
2n) =

{
6n− 1, n is odd

6n+ 1, n is even
f(v′2n−1v2n) =

{
6n+ 1, n is odd

6n− 1, n is even

The induced edge-sums f ∗(uv) = f(u) + f(v) + f(uv) are calculated as follows:

For k = 1, 3, 5, . . . 2
⌊
n
2

⌋
− 1

f ∗(v2k−1v
′
2k) = 2n−

(
2k−1−1

2

)
+ 4n− 2k−2

2
+ 4n+ 2k − 1 = 10n+ 1,

f ∗(v′2k−1v2k) = 2n+ 1 + 2k−1−1
2

+ 2k
2

+ 8n− 2k + 1 = 10n+ 1,

f ∗(v2k−1v
′
2k+1) = 2n− 2k−1−1

2
+ 4n− 2k+1−1

2
+ 4n+ 2k = 10n+ 1,

f ∗(v′2k−1v2k+1) = 2n+ 1 + 2k−1−1
2

+ 2k+1+1
2

+ 8n− 2k = 10n+ 1,

For k = 2, 4, 6, . . . 2(
⌈
n
2

⌉
− 1)

f ∗(v2k−1v
′
2k) = 2k−1+1

2
+ 2n+ 1 + 2k−2

2
+ 8n− 2k + 1 = 10n+ 1,

f ∗(v′2k−1v2k) = 4n− 2k−1−1
2

+ 2n− 2k−2
2

+ 4n+ 2k − 1 = 10n+ 1,

f ∗(v2k−1v
′
2k+1) = 2k−1+1

2
+ 2n+ 1 + 2k+1−1

2
+ 8n− 2k = 10n+ 1,

f ∗(v′2k−1v2k+1) = 4n−
(
2k−1−1

2

)
+ 2n−

(
2k+1−1

2

)
+ 4n+ 2k = 10n+ 1,
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and for the edge v2n−1v
′
2n−1 the induced edge sum is

f ∗(v2n−1v
′
2n−1)

=


2n−1+1

2
+ 4n− 2n−1−1

2
+ 6n = 10n+ 1, n ≡ 0 mod 4

2n− 2n−1−1
2

+ 2n+ 1 + 2n−1−1
2

+ 6n = 10n+ 1, n ≡ 1 mod 4
2n−1+1

2
+ 4n− 2n−1−1

2
+ 6n = 10n+ 1, n ≡ 2 mod 4

2n− 2n−1−1
2

+ 2n+ 1 + 2n−1−1
2

+ 6n = 10n+ 1, n ≡ 3 mod 4

Also, the edge induced sums for the edges

f ∗(v2n−1v
′
2n) = 10n+ 1 and f ∗(v2nv

′
2n−1) = 10n+ 1 for all n

which results into a super-edge magic total labeling of EDG(CBn),
n > 2.

An illustration is given in Figure 5 (b).
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Figure 5: (a) Super-edge magic total labeling of EDG(T2), (b) Super-edge magic
total labeling of EDG(CB3)

Theorem 2.3. The extended duplicate graph of star EDG(K1,n), n ≥ 2 admits
super-edge magic total labeling.
Proof. The vertices of EDG(K1,n) are labeled as follows:

f(vi) = 2n+ 3− i, i = 1, 2, . . . , n+ 1 f(v′i) = i, i = 1, 2, . . . , n+ 1

The edges of EDG(K1,n) are labeled as follows:

f(v1v
′
i) = 3n+ 4− i, i = 1, 2, 3, . . . , n+ 1

f(v′1vi) = 3n+ 2 + i, i = 1, 2, 3, . . . , n+ 1
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The induced edge sums f ∗(uv) = f(u) + f(v) + f(uv) are

f ∗(v1v
′
i) = 2n+ 2 + i+ 3n+ 4− i = 5n+ 6

f ∗(v′1vi) = 1 + 2n+ 3− i+ 3n+ 2 + i = 5n+ 6 for i = 1, 2, . . . , n+ 1

Thus labeling is super-edge magic total labeling for n ≥ 2
An illustration is given in Figure 6 (a).

Theorem 2.4. The extended duplicate graph of bi-star EDG(Bm,m), m ≥ 1 admits
super-edge magic total labeling.
Proof. The vertices of EDG(Bm,m) are labeled as follows:

f(v1) = 4m+ 4 f(v2) = 1 f(v′1) = 3m+ 3 f(v′2) = m+ 2

f(vi) = i− 1, 2 ≤ i ≤ m+ 2

f(vi) = 2m+ 1 + i,m+ 3 ≤ i ≤ 2m+ 2

f(v′i) = m+ i, 2 ≤ i ≤ 2m+ 2

The edges of EDG(Bm,m) are labeled as follows:

f(v1v
′
2) = 5m+ 5 f(v′1v

′
2) = 6m+ 6 f(v′1v2) = 7m+ 7

f(v1v
′
i) = 5m+ 7− i, 3 ≤ i ≤ m+ 2

f(v′1vi) = 7m+ 9− i, 3 ≤ i ≤ m+ 2

f(v′2vi) = 7m+ 8− i,m+ 3 ≤ i ≤ 2m+ 2

f(v2v
′
i) = 9m+ 10− i,m+ 3 ≤ i ≤ 2m+ 2

The induced edge-sums are calculated as f ∗(uv) = f(u) + f(v) + f(uv)

f ∗(v1v
′
i) = 4m+ 4 +m+ i+ 5m+ 7− i = 10m+ 11, i = 2, 3, . . . ,m+ 2

f ∗(v′1v
′
2) = 3m+ 3 +m+ 2 + 6m+ 6 = 10m+ 11,

f ∗(v′1v2) = 3m+ 3 +m+ 1 + 7m+ 7 = 10m+ 11,

f ∗(v′1vi) = 3m+ 3 + i− 1 + 7m+ 9− i = 10m+ 11, i = 3, 4, . . . ,m+ 2

f ∗(v′2vi) = m+ 2 + 2m+ 1 + i+ 7m+ 8− i = 10m+ 11,m+ 3 ≤ i ≤ 2m+ 2

f ∗(v2v
′
i) = 1 +m+ i+ 9m+ 10− i = 10m+ 11,m+ 3 ≤ i ≤ 2m+ 2

and so the labeling is super-edge magic total labeling for m ≥ 1.
An illustration is given in Figure 6 (b).
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Figure 6: (a) Super-edge magic total labeling of EDG(K1,4), (b) Super-edge magic
total labeling of EDG(B3,3)

3. Conclusion
We proved that extended duplicate graphs of Twig, Comb, Star and Bi-star

admit Super-edge magic total labeling.
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