South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 2 (2022), pp. 171-184

DOI: 10.56827/SEAJMMS.2022.1802.16

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

S₅-DECOMPOSITION OF KNESER GRAPHS

C. Sankari, R. Sangeetha and K. Arthi

Department of Mathematics, A. V. V. M. Sri Pushpam College, Poondi, Thanjavur - 613503, Tamil Nadu, INDIA

E-mail : sankari9791@gmail.com, jaisangmaths@yahoo.com, arthi1505@gmail.com

(Received: Apr. 28, 2021 Accepted: Jul. 20, 2022 Published: Aug. 30, 2022)

Abstract: Let $A = \{1, 2, 3, ..., n\}$ and $\mathcal{P}_k(A)$ denotes the set of all k-element subsets of A. The Kneser graph $KG_{n,2}$ has the vertex set $V(KG_{n,2}) = \mathcal{P}_2(A)$ and edge set $E(KG_{n,2}) = \{XY|X, Y \in \mathcal{P}_2(A) \text{ and } X \cap Y = \emptyset\}$. A star with k edges is denoted by S_k . In this paper, we show that the graph $KG_{n,2}$ can be decomposed into S_5 if and only if $n \geq 7$ and $n \equiv 0, 1, 2, 3 \pmod{5}$.

Keywords and Phrases: Decomposition, Tensor Product, Complete Bipartite Graph, Kneser Graph, Crown Graph, Star.

2020 Mathematics Subject Classification: 05C70, 05C76.

1. Introduction

All the graphs considered in this paper are finite. For a graph G, $G(\lambda)$ is the graph obtained from G by replacing each of its edges by λ parallel edges. If a graph G has no edges, then it is called a *null graph*. Let $K_{m,n}$ denote a *complete bipartite graph* with m and n vertices in the parts. A *star* with k edges is denoted by S_k and $S_k \cong K_{1,k}$. A *path* with k edges is denoted by P_k and a *cycle* with k edges is denoted by G. A graph G is *Hamilton cycle* of G is a cycle that contains every vertex of G. A graph G is *Hamiltonian* if it contains a Hamilton cycle. The degree of a vertex x of G, denoted by $deg_G x$ is the number of edges incident with x in G. Let k be a positive integer. A graph G is said to be k-regular, if each vertex in G is of degree k. If H_1, H_2, \ldots, H_l are edge disjoint subgraphs of a graph G such that

 $E(G) = \bigcup_{i=1}^{l} E(H_i)$, then we say that $H_1, H_2, ..., H_l$ decompose G and we denote it by $G = \bigoplus_{i=1}^{l} H_i$. If $H_i \cong S_k$ for i = 1, 2, ..., l, then we say that G is S_k -decomposable and we denote it by $S_k|G$. For positive integers l and n with $1 \leq l \leq n$, the crown $C_{n,l}$ is the bipartite graph with bipartition (A, B), where $A = \{a_0, a_1, \dots, a_{n-1}\}$ and $B = \{b_0, b_1, \dots, b_{n-1}\}$, and the edge set $\{a_i b_j | 1 \leq j - i \leq l \text{ with arithmetic modulo}\}$ n}. Note that $C_{n,n} \cong K_{n,n}$ and $C_{n,n-1} \cong K_{n,n} - I$, where I is a 1-factor of $K_{n,n}$. The tensor product of G and H, denoted by $G \times H$ has vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ and $h_1h_2 \in E(H)$. The line graph L(G) of a graph G is the graph with V(L(G)) = E(G)and $e_i e_j \in E(L(G))$ if and only if the edges e_i and e_j are incident with a common end vertex in G. The complete graph on n vertices is denoted by K_n . The line graph of the complete graph K_n is denoted by $L(K_n)$. Let $A = \{1, 2, 3, ..., n\}$ and $\mathcal{P}_k(A)$ denotes the set of all k-element subsets of A. The Kneser graph $KG_{n,2}$ is defined as follows: $V(KG_{n,2}) = \mathcal{P}_2(A)$ and $E(KG_{n,2}) = \{XY|X, Y \in \mathcal{P}_2(A) \text{ and }$ $X \cap Y = \emptyset$. Note that, the graph $KG_{n,2} \cong \overline{L(K_n)}$, where $\overline{L(K_n)}$ denotes the complement of the graph $L(K_n)$. Also, it is interesting to note that $KG_{5,2}$ is the Petersen graph. The Generalized Kneser Graph, $GKG_{n,k,r}$ is the graph whose vertices are the k-element subsets of some set of n elements, in which two vertices are adjacent if and only if they intersect in precisely r elements.

In 1955, M. Kneser [3] introduced the Kneser graph. In 2000, Chen [1] proved that $KG_{n,2}$ is Hamiltonian, when $n \geq 3k$, $k \geq 1$. In 2004, Shields and Savage [7] proved that all connected Kneser graphs (except $KG_{5,2}$) have Hamilton cyles, when $n \leq 27$ and the problem $KG_{n,2}$ ($n \neq 5$) is Hamiltonian is still open. In 2015, Rodger and Whitt [5] established the necessary and sufficient conditions for a P_3 -decomposition of the Kneser graph $KG_{n,2}$ and the Generalized Kneser Graph $GKG_{n,3,1}$. In 2015, Whitt and Rodger [8] proved that the Kneser graph $KG_{n,2}$ is P_4 -decomposable if and only if $n \equiv 0, 1, 2, 3 \pmod{8k}, k \geq 2$, then the Kneser graph $KG_{n,2}$ can be decomposed into paths of length 2k. In the same paper they also proved that, for $k = 2^l$, $l \geq 1$, $KG_{n,2}$ has a P_{2k} -decomposition if and only if $n \equiv 0, 1, 2, 3 \pmod{2^{l+3}}$. Recently, the authors [6] proved that, $KG_{n,2}$ is clawdecomposable, for all $n \geq 6$. In this paper, we discuss S_5 -decomposition of the Kneser graphs. It is obtained that $KG_{n,2}$ is S_5 -decomposable if and only if $n \geq 7$ and $n \equiv 0, 1, 2, 3 \pmod{5}$.

2. Preliminaries

Let G be a graph on n vertices and $\{1, 2, 3, ..., k\} \subset V(G)$. The notation (1; 2, 3, ..., k) denotes a star with a center vertex 1 and k - 1 pendent edges 12, 13, ..., 1k. Let X and Y be two disjoint subsets of V(G). Then E(X, Y) denotes the

set of edges in G, whose one end vertex is in X and the other end vertex is in Y. The notation $\langle E(X,Y) \rangle$ denotes the graph induced by the edges of E(X,Y). To prove our results we use the following:

Theorem 2.1. (Lin et al. [4]) Let λ, k, l and n be positive integers. The graph $C_{n,l}(\lambda)$ is S_k -decomposable if and only if $k \leq l$ and $\lambda nl \equiv 0 \pmod{k}$.

Theorem 2.2. (Yamamoto et al. [9]) Let k, m and $n \in \mathbb{Z}_+$ with $m \leq n$. There exists an S_k -decomposition of $K_{m,n}$ if and only if one of the following holds:

(i) $k \leq m$ and $mn \equiv 0 \pmod{k}$;

(ii) $m < k \le n$ and $n \equiv 0 \pmod{k}$.

Note that, the graphs $KG_{2,2}$ and $KG_{3,2}$ are null graphs. For $n \geq 5$, $|E(KG_{n,2})| = \frac{n(n-1)(n-2)(n-3)}{8}$, which is divisible by 5 only when $n \equiv 0, 1, 2, 3 \pmod{5}$. We know that the graph $KG_{5,2}$ (Petersen graph) is 3-regular, hence doesn't admit an S_5 -decomposition. In the following Lemma, we prove that the graph $KG_{6,2}$ can't be decomposed into S_5 .

Lemma 2.1. There doesn't exist an S_5 -decomposition in $KG_{6,2}$.

proof. (Necessity). For n=6, $|E(KG_{6,2})|=45$, which is divisible by 5.

(Sufficiency). Vertex set of $KG_{6,2}$ is $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2$ $\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}$ and $deg_{KG_{6,2}}v=6$, for all vertices $v \in V(KG_{6,2})$. Without loss of generality, we choose an S_5 , centered at $\{1, 2\}$ $i.e.S^1: (\{1,2\}; \{3,4\}, \{3,5\}, \{3,6\}, \{4,5\}, \{4,6\})$. In $G^1 = KG_{6,2} \smallsetminus S^1$, the degree of the vertex $\{1, 2\}$ is 1 which implies that the edge $\{1, 2\}$ $\{5, 6\}$ can only be included in the star centered at $\{5, 6\}$. Therefore, we choose $S^2 : (\{5, 6\}; \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{1, 4\}, \{2, 3\}, \{1, 4\}, \{2, 3\}, \{3, 4\}, \{3, 4\}, \{4, 3\}, \{4, 4\}, \{4, 3\}, \{4, 4\}, \{$ 3}, $\{2, 4\}$). In $G^2 = G^1 \setminus S^2$, the degree of the vertex $\{5, 6\}$ is 1 which implies that the edge $\{5, 6\}$ $\{3, 4\}$ can only be included in the star centered at $\{3, 4\}$. We choose $S^3: (\{3,4\};\{5,6\},\{1,5\},\{1,6\},\{2,5\},\{2,6\})$. In $G^3 = G^2 \setminus S^3$, the degrees of the 5, we can choose any vertex as a center vertex for the next star. Suppose we choose $\{1,3\}$ as a center vertex, then $S^4: (\{1,3\};\{2,4\},\{2,5\},\{2,6\},\{4,5\},\{4,6\})$. In $G^4 = G^3 \setminus S^4$, the degrees of the vertices become $\{0, 0, 5, 5, 5, 5, 4, 4, 4, 0, 5, 5, 4, 4, 0\}$. There are 6 vertices of degree 5. These vertices are $\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 3\}, \{3, 5\}, \{1, 6\}, \{2, 3\}, \{3, 5\}, \{1, 6\}, \{2, 3\}, \{3, 5\},$ $\{3,5\}$ and $\{3,6\}$. To choose the next star, we have the following cases. Case (i).

Suppose we choose $\{1, 4\}$ as a center vertex. Then $S^5:(\{1, 4\}; \{2, 3\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\})$. In $G^5 = G^4 \smallsetminus S^5$, the degrees of the vertices become $\{0, 0, 0, 5, 5, 4, 4, 3, 3, 0, 4, 4, 4, 0\}$. We note that there are only two vertices of degree 5. Hence it is impossible to choose four more stars.

Case (ii).

Suppose we choose $\{1, 5\}$ as a center vertex. Then $S^5:(\{1, 5\}; \{2, 3\}, \{2, 4\}, \{2, 6\}, \{3, 6\}, \{4, 6\})$. In $G^5 = G^4 \smallsetminus S^5$, the degrees of the vertices become $\{0, 0, 5, 0, 5, 4, 3, 4, 3, 0, 5, 4, 4, 3, 0\}$. We note that there are only three vertices of degree 5. Hence it is impossible to choose four more stars.

Case (iii).

Suppose we choose $\{1, 6\}$ as a center vertex. Then $S^5:(\{1, 6\}; \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{4, 5\})$. In $G^5 = G^4 \smallsetminus S^5$, the degrees of the vertices become $\{0, 0, 5, 5, 0, 4, 3, 3, 4, 0, 4, 5, 3, 4, 0\}$. As there are only three vertices of degree 5, it is impossible to choose four more stars.

Case (iv).

Suppose we choose $\{2,3\}$ as a center vertex. Then $S^5:(\{2,3\};\{1,4\},\{1,5\},\{1,6\},\{4,5\},\{4,6\})$. In $G^5=G^4\smallsetminus S^5$, the degrees of the vertices become $\{0,0,4,4,4,0,4,4,4,0,5,5,3,3,0\}$. We note that there are only two vertices of degree 5. Hence it is impossible to choose four more stars.

Case (v).

Suppose we choose $\{3, 5\}$ as a center vertex. Then $S^5:(\{3, 5\}; \{1, 4\}, \{1, 6\}, \{2, 4\}, \{2, 6\}, \{4, 6\})$. In $G^5 = G^4 \smallsetminus S^5$, the degrees of the vertices become $\{0, 0, 4, 5, 4, 5, 3, 4, 3, 0, 0, 5, 4, 3, 0\}$. As there are only three vertices of degree 5, it is impossible to choose four more stars.

Case (vi).

Suppose we choose $\{3, 6\}$ as a center vertex. Then $S^5:(\{3, 6\}; \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{4, 5\})$. In $G^5 = G^4 \smallsetminus S^5$, the degrees of the vertices become $\{0, 0, 4, 4, 5, 5, 3, 3, 4, 0, 5, 0, 3, 4, 0\}$. We note that there are only three vertices of degree 5. Hence it is impossible to choose four more stars.

So, there doesn't exist an S_5 -decomposition in $KG_{6,2}$.

3. S_5 -decomposition of $KG_{n,2}$

In this section, we prove that $KG_{n,2}$ is S_5 -decomposable if and only if $n \ge 7$ and $n \equiv 0, 1, 2, 3 \pmod{5}$.

Let $n \geq 10$, $n_1 \geq 3$ and $n_2 \geq 5$ be positive integers such that $n = n_1 + n_2$. We define $V_1 = \{1, 2, 3, ..., n_1\}$, $V_2 = \{n_1 + 1, n_1 + 2, ..., n\}$ and $V(KG_{n,2}) = A_1 \cup A_2 \cup A_3$, where $A_1 = \mathcal{P}_2(V_1)$, $A_2 = \mathcal{P}_2(V_2)$ and $A_3 = \{\{i, j\} | \{i, j\} \in V_1 \times V_2\}$. For $i \in V_1$, $i \times V_2 = \{\{i, j\} | j \in V_2\}$ is called the *i*th layer of the vertices of A_3 and we denote it by Z_i . We define the graphs $G_i, 1 \leq i \leq 6$ as follows:

$V(G_1) = A_1$;	$E(G_1) = \{XY X, Y \in A_1 \text{ and } X \cap Y = \emptyset\}$
$V(G_2) = A_2$;	$E(G_2) = \{XY X, Y \in A_2 \text{ and } X \cap Y = \emptyset\}$
$V(G_3) = A_3$;	$E(G_3) = \{XY X, Y \in A_3 \text{ and } X \cap Y = \emptyset\}$

$V(G_4) = A_1 \cup A_2 ; $	$E(G_4) = \{XY X \in A_1, Y \in A_2 \text{ and } X \cap Y = \emptyset\}$
$V(G_5) = A_1 \cup A_3 ; $	$E(G_5) = \{XY X \in A_1, Y \in A_3 and X \cap Y = \emptyset\}$
$V(G_6) = A_2 \cup A_3 ;$	$E(G_6) = \{XY X \in A_2, Y \in A_3 \text{ and } X \cap Y = \emptyset\}$

We observe that, $G_1 \cong KG_{n_1,2}, G_2 \cong KG_{n_2,2}, G_3 \cong K_{n_1} \times K_{n_2}, G_4 \cong K_{|A_1|,|A_2|}, G_5 \cong \langle E(A_1, A_3) \rangle, G_6 \cong \langle E(A_2, A_3) \rangle$ and $KG_{n,2} = \bigoplus_{i=1}^6 G_i.$

Lemma 3.1. The graph $KG_{7,2}$ is S_5 -decomposable. Proof. An S_5 -decomposition of $KG_{7,2}$ is as follows: $(\{1,2\}; \{3,4\}, \{3,5\}, \{3,6\}, \{3,7\}, \{5,6\}), (\{1,3\}; \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \{5,7\}),$ $(\{1,4\}; \{2,3\}, \{2,5\}, \{2,6\}, \{2,7\}, \{3,5\}), (\{1,5\}; \{2,3\}, \{2,4\}, \{2,6\}, \{2,7\}, \{3,4\}),$ $(\{1,6\}; \{2,3\}, \{2,4\}, \{2,5\}, \{2,7\}, \{3,4\}), (\{1,7\}; \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,4\}),$ $(\{2,3\}; \{4,5\}, \{4,6\}, \{4,7\}, \{5,6\}, \{5,7\}), (\{2,4\}; \{3,5\}, \{3,6\}, \{3,7\}, \{5,6\}, \{5,7\}),$ $(\{2,5\}; \{3,4\}, \{3,6\}, \{3,7\}, \{4,6\}, \{4,7\}), (\{2,6\}; \{3,4\}, \{3,5\}, \{3,7\}, \{4,5\}, \{4,7\}),$ $(\{2,7\}; \{3,4\}, \{5,6\}, \{3,6\}, \{4,5\}, \{4,6\}), (\{3,5\}; \{4,6\}, \{4,7\}, \{2,7\}, \{1,6\}, \{1,7\}),$ $(\{3,6\}; \{5,7\}, \{4,7\}, \{1,4\}, \{1,5\}, \{1,7\}), (\{3,7\}; \{4,5\}, \{4,6\}, \{1,4\}, \{1,5\}, \{1,6\}),$ $(\{4,5\}; \{3,6\}, \{1,6\}, \{1,7\}, \{1,3\}, \{1,2\}), (\{4,6\}; \{5,7\}, \{1,2\}, \{1,3\}, \{1,5\}, \{1,7\}),$ $(\{4,7\}; \{5,6\}, \{1,2\}, \{1,3\}, \{1,5\}, \{1,6\}), (\{5,6\}; \{3,4\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}),$ $(\{6,7\}; \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}).$

Lemma 3.2. The graph $KG_{8,2}$ is S_5 -decomposable.

Proof. An S_5 -decomposition of $KG_{8,2}$ is as follows:

 $(\{1,3\};\{2,4\},\{2,5\},\{2,6\},\{2,7\},\{2,8\}),(\{1,4\};\{2,3\},\{2,5\},\{2,6\},\{2,7\},\{2,8\}),$ $(\{1,5\};\{2,3\},\{2,4\},\{2,6\},\{2,7\},\{2,8\}),(\{1,6\};\{2,3\},\{2,4\},\{2,5\},\{2,7\},\{2,8\}),$ $(\{1,7\};\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,8\}),(\{1,8\};\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}),$ $(\{1,6\};\{3,7\},\{3,8\},\{4,5\},\{4,7\},\{4,8\}),(\{1,7\};\{3,6\},\{3,8\},\{4,5\},\{4,6\},\{4,8\}),$ $(\{1,8\};\{3,6\},\{3,7\},\{4,5\},\{4,6\},\{4,7\}),(\{2,4\};\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\}),$ $(\{2,5\};\{4,6\},\{4,7\},\{4,8\},\{6,7\},\{6,8\}),(\{2,6\};\{3,4\},\{3,5\},\{3,7\},\{3,8\},\{4,5\}),$ $(\{2,7\};\{3,4\},\{3,5\},\{3,6\},\{3,8\},\{4,5\}),(\{2,8\};\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{4,5\}),$ $(\{3,4\};\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\}),(\{3,5\};\{4,6\},\{4,7\},\{4,8\},\{6,7\},\{6,8\}),$ $(\{3,6\};\{4,5\},\{4,7\},\{4,8\},\{5,7\},\{5,8\}),(\{3,7\};\{4,5\},\{4,6\},\{4,8\},\{5,6\},\{5,8\}),$ $(\{3,8\};\{4,5\},\{4,6\},\{4,7\},\{5,6\},\{5,7\}),(\{4,5\};\{6,7\},\{6,8\},\{7,8\},\{1,2\},\{1,3\}),$ $(\{4,6\};\{5,7\},\{5,8\},\{7,8\},\{1,2\},\{1,3\}),(\{4,7\};\{5,6\},\{5,8\},\{6,8\},\{1,2\},\{1,3\}),$ $(\{4,8\};\{5,6\},\{5,7\},\{6,7\},\{1,2\},\{1,3\}),(\{5,6\};\{1,2\},\{1,3\},\{1,4\},\{1,7\},\{1,8\}),$ $(\{5,7\};\{1,2\},\{1,3\},\{1,4\},\{1,6\},\{1,8\}),(\{5,8\};\{1,2\},\{1,3\},\{1,4\},\{1,6\},\{1,7\}),$ $(\{6,7\};\{1,2\},\{1,3\},\{1,4\},\{1,8\},\{5,8\}),(\{6,8\};\{1,2\},\{1,3\},\{1,4\},\{1,7\},\{5,7\}),$ $(\{1,2\};\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{3,8\}),(\{7,8\};\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}),$ $(\{7, 8\}; \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{5, 6\})$ and $(\{1, 5\}; \{4, 6\}, \{4, 7\}, \{4, 8\}, \{6, 7\}, \{6, 6\})$ 8}). Now, consider the subgraph G_1 obtained by deleting all these stars from $KG_{8,2}$.

In G_1 , the degree of the vertex $\{2,3\}$ is exactly 10. Let $6 \le j_1 \le 8$ and $4 \le j_2 \le 8$, then the degree of the vertices $\{2, j_1\}$ and $\{3, j_2\}$ is exactly 5 in G_1 . Now, by fixing these vertices as center vertices, we get an S_5 -decomposition in G_1 .

Lemma 3.3. The graph $KG_{10,2}$ is S_5 -decomposable.

Proof. Let $n_1, n_2=5$. In $G_1 \cup G_2 \cup G_4$, consider the following stars: $S^1 : (\{1, 2\}; \{3, 4\}, \{3, 5\}, \{4, 5\}, \{7, 8\}, \{7, 9\})$, $S^2 : (\{1, 3\}; \{2, 4\}, \{2, 5\}, \{4, 5\}, \{7, 8\}, \{7, 9\})$, $S^3 : (\{1, 4\}; \{2, 3\}, \{2, 5\}, \{3, 5\}, \{6, 7\}, \{7, 9\})$, $S^4 : (\{1, 5\}; \{2, 3\}, \{2, 4\}, \{3, 4\}, \{6, 10\}, \{7, 10\})$, $S^5 : (\{2, 3\}; \{4, 5\}, \{6, 7\}, \{6, 8\}, \{6, 9\}, \{6, 10\})$, $S^6 : (\{2, 4\}; \{3, 5\}, \{6, 7\}, \{6, 8\}, \{6, 9\}, \{6, 10\})$, $S^7 : (\{2, 5\}; \{3, 4\}, \{6, 7\}, \{6, 8\}, \{6, 9\}, \{6, 10\})$, $S^8 : (\{6, 7\}; \{8, 9\}, \{8, 10\}, \{9, 10\}, \{1, 3\}, \{3, 4\})$, $S^9 : (\{6, 8\}; \{7, 9\}, \{7, 10\}, \{9, 10\}, \{1, 2\}, \{3, 4\})$, $S^{10} : (\{6, 9\}; \{7, 8\}, \{7, 10\}, \{8, 10\}, \{1, 4\}, \{1, 5\}, \{3, 4\}, \{2, 5\})$, $S^{13} : (\{7, 9\}; \{8, 10\}, \{1, 2\}, \{3, 4\})$, $\{1, 2\}, \{1, 3\}$, $S^{12} : (\{7, 8\}; \{9, 10\}, \{1, 4\}, \{1, 5\}, \{3, 4\}, \{2, 5\})$, $S^{13} : (\{7, 9\}; \{8, 10\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{3, 4\})$ and $S^{14} : (\{7, 10\}; \{8, 9\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\})$.

Figure 1: The subgraph F' of $G_3 \cup G_5$

In $(G_1 \cup G_2 \cup G_4) \setminus E(\bigcup_{i=1}^{14} S^i)$, the degree of the vertices $\{3,5\}$ and $\{4,5\}$ is exactly 10, the degree of each vertex of $A_1 \setminus \{\{3,5\}, \{4,5\}\}$ is (where $V(G_1 \cup G_2 \cup G_4) = A_1 \cup A_2$) exactly 5. Now, by fixing each vertex of A_1 as a center vertex, we get an S_5 -decomposition in $(G_1 \cup G_2 \cup G_4) \smallsetminus E(\bigcup_{i=1}^{14} S^i)$. In $G_3 \cup G_5$, we partition the vertex set $A_1 = \bigcup_{i=1}^4 T_i$, where $T_1 = \{\{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}\},$ $T_2 = \{\{1,3\}, \{3,5\}, \{4,5\}\}, T_3 = \{\{1,2\}, \{1,4\}\}$ and $T_4 = \{\{1,5\}\}$. For $1 \le i \le 4$, $i < j \le 5$, we define $F_i = \langle E(\{i,y\}, \{j,y'\}) \rangle \cup \langle E(\{i,y\}, \{a_i,b_i\}) \rangle$, where $6 \le y \ne$ $y' \le 10$ and for all $\{a_i, b_i\} \in T_i$. Consider the subgraph $F' = \bigcup_{i=1}^4 F_i$, see Figure 1. Note that, the degree of the vertex $\{i, y\}$ is exactly $5(5 - i), 1 \le i \le 4$ in F_i . In $(G_3 \cup G_5) \smallsetminus E(F')$, the degree each vertex of A_1 is exactly 10. Now, by fixing each vertex of A_3 and A_1 as a center vertex, we get an S_5 -decomposition in F' and $(G_3 \cup G_5) \smallsetminus E(F')$. In G_6 , the degree of each vertex of A_2 is exactly 15 and by fixing each vertex of A_2 as a center vertex (ofcourse, 3 times), we get an S_5 -decomposition in G_6 .

Lemma 3.4. The graph $KG_{11,2}$ is S_5 -decomposable.

Proof. Let $n_1=5$ and $n_2=6$. In G_3 , the vertex set A_3 has 5 layers and each layer has 6 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \leq i < j \leq 5$ of G_3 form a crown graph $C_{6.5}$. By Theorem 2.1, the graph G_3 is S_5 -decomposable. In $G_1 \cup G_4$, we choose the following stars: $S^1: (\{1,2\};\{3,4\},\{3,5\},\{4,5\},\{6,7\},\{6,8\}), S^2:$ $(\{1,3\};\{2,4\},\{2,5\},\{4,5\},\{6,7\},\{6,8\}), S^3:(\{1,4\};\{2,3\},\{2,5\},\{3,5\},\{6,9\},\{6$ $(10), S^4: (\{1,5\}; \{2,3\}, \{2,4\}, \{3,4\}, \{6,9\}, \{6,10\}), S^5: (\{2,3\}; \{4,5\}, \{6,7\}, \{$ $\{6,9\},\{6,10\},S^6:(\{2,4\};\{3,5\},\{6,7\},\{6,8\},\{6,9\},\{6,10\}) \text{ and } S^7:(\{2,5\};\{6,10\},\{6,10\})$ $3,4\},\{6,7\},\{6,8\},\{6,9\},\{6,10\}).$ Let $B'=\{\{6,7\},\{6,8\},\{6,9\},\{6,10\}\},B''=$ $\{\{6,11\}\{7,8\}\}. \text{ Then } B', B'' \subset A_2 \subset V((G_1 \cup G_4) \smallsetminus E(\bigcup_{i=1}^7 S^i)). \text{ We write } \\ [(G_1 \cup G_4) \smallsetminus E(\bigcup_{i=1}^7 S^i)] \cup G_5 = F_1 \cup F_2 \cup F_3 \text{ where } F_1 = \langle E(A_1, A_3) \rangle \cup \langle E(A_1, B'') \rangle,$ $F_2 = \langle E(A_1, B') \rangle$ and $F_3 = \langle E(A_1, A_2 \smallsetminus (B' \cup B'')) \rangle$, see Figure 2. Note that, the degree of each vertex of A_1 is 20 in F_1 , B' is 5 in F_2 and $A_2 < (B' \cup B'')$ is 10 in F_3 . By fixing each vertex of A_1 , B' and $A_2 \\ (B' \cup B'')$ as a center vertex, we get an S_5 -decomposition in $[(G_1 \cup G_4) \\ (\bigcup_{i=1}^7 S^i)] \cup G_5$. In $G_2 \cup G_6$, consider the following stars: S^1 : ({6,7}; {8,9}, {8,10}, {8,11}, {9,10}, {9,11}), S^2: $(\{6,8\};\{7,9\},\{7,10\},\{7,11\},\{9,10\},\{9,11\}), S^3:(\{6,9\};\{7,8\},\{7,10\},\{7,11\},\{8,10\},\{9,11\}), S^3:(\{6,9\};\{7,8\},\{7,10\},\{7,11\},\{8,10\},\{1,11\},\{8,10\},\{1,11$ $\{10\}, \{8, 11\}, S^4: (\{6, 10\}; \{7, 8\}, \{7, 9\}, \{7, 11\}, \{8, 9\}, \{8, 11\}), S^5: (\{6, 11\}; \{7, 8\})$ $\{7,9\},\{7,10\},\{8,9\},\{8,10\},S^{6}:(\{10,11\};\{6,7\},\{6,8\},\{6,9\},\{7,8\},\{7,9\}),S^{7}:$ $(\{8,9\};\{7,10\},\{7,11\},\{10,11\},\{1,6\},\{1,7\}), S^8:(\{8,10\};\{7,9\},\{7,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{9,11\},\{1,1\},\{$ 1, 6, $\{1, 7\}$, S^9 : ($\{8, 11\}$; $\{7, 9\}$, $\{7, 10\}$, $\{9, 10\}$, $\{1, 6\}$, $\{1, 7\}$), S^{10} : ($\{9, 10\}$; $\{6, 11\}$ $\{7, 8\}, \{7, 11\}, \{1, 6\}, \{1, 7\}$ and $S^{11}: (\{9, 11\}; \{6, 10\}, \{7, 8\}, \{7, 10\}, \{1, 6\}, \{1, 7\})$. In $(G_2 \cup G_6) \setminus E(\bigcup_{i=1}^{11} S^i)$, The degree of the vertices $\{1, 6\}$ and $\{1, 7\}$ is exactly 5. The degree of each vertex of $A_3 \setminus \{\{1, 6\}, \{1, 7\}\}$ is exactly 10. By fixing each vertex of A_3 as a center vertex, we get an S_5 -decomposition in $(G_2 \cup G_6) \smallsetminus E(\bigcup_{i=1}^{11} S^i)$.

Figure 2: The induced subgraph $F_1 \cup F_2 \cup F_3$

Lemma 3.5. The graph $KG_{15,2}$ is S_5 -decomposable.

Proof. Let $n_1=5$ and $n_2=10$. The graph G_2 is S_5 -decomposable, by Lemma 3.3. In G_3 , the vertex set A_3 has 5 layers and each layer has 10 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \le i < j \le 5$ of G_3 form a crown graph $C_{10,9}$, see Figure 3.

Figure 3: The subgraph $\langle E(Z_i, Z_j) \rangle$ of $KG_{15,2}$

By Theorem 2.1, the graph G_3 is S_5 -decomposable. In $G_1 \cup G_4$, consider the following stars: S^1 : ({1,2}; {3,4}, {3,5}, {4,5}, {6,7}, {6,8}), S^2 : ({1,3}; {2,4}, {2,5}, {4,5}, {4,5}, {6,7}, {6,8}), S^3 : ({1,4}; {2,3}, {2,5}, {3,5}, {6,9}, {6,10}), S^4 : ({1,5}; {2,3}, {2,4}, {3,4}, {6,9}, {6,10}), S^5 : ({2,3}; {4,5}, {6,7}, {6,8}, {6,9}, {6,10}),

 S^{6} : ({2,4}; {3,5}, {6,7}, {6,8}, {6,9}, {6,10}), S^{7} : ({2,5}; {3,4}, {6,7}, {6,8}, {6,9}, {6,10}). Let $B' = \{\{6,7\}, \{6,8\}, \{6,9\}, \{6,10\}\} \subset A_2$. In $(G_1 \cup G_4) \smallsetminus E(\bigcup_{i=1}^{7} S^i)$, the degree of each vertex of $A_2 \smallsetminus B'$ and B' is exactly 10 and 5, respectively. Now, by fixing each vertex of A_2 as a center vertex, we get an S_5 -decomposition in $(G_1 \cup G_4) \smallsetminus E(\bigcup_{i=1}^{7} S^i)$. In G_5 and G_6 , the degree of each vertex of A_1 and A_2 is exactly 30 and 40 respectively. So, by fixing each vertex of A_1 and A_2 as a center vertex, we get an S_5 -decomposition in G_5 and G_6 .

Lemma 3.6. The graph $KG_{16,2}$ is S_5 -decomposable.

Proof. Let $n_1=6$ and $n_2=10$. The graph G_2 is S_5 -decomposable, by Lemma 3.3. In G_3 , the vertex set A_3 has 6 layers and each layer has 10 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \leq i < j \leq 6$ of G_3 form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_3 is S₅-decomposable. Let $T' = \{\{1,2\}, \{1,3\}\} \subset A_1 \subset V(G_4)$. In $\langle E(A_1 \smallsetminus T', A_2) \rangle$, the degree of each vertex of $A_1 \smallsetminus T'$ is exactly 45. By fixing each vertex of $A_1 \smallsetminus T'$ as a center vertex, we get an S_5 -decomposition in $\langle E(A_1 \smallsetminus T', A_2) \rangle$. In $[G_4 \smallsetminus \langle E(A_1 \smallsetminus T', A_2) \rangle]$, the degree of each vertex of A_2 is exactly two. In G_6 , the degree of each vertex of A_2 is exactly 48. In $[G_4 \smallsetminus \langle E(A_1 \smallsetminus T', A_2) \rangle] \cup G_6$, the degree of each vertex of A_2 is exactly 50. Now, by fixing each vertex of A_2 as a center vertex, we get an S₅-decomposition in $[G_4 \smallsetminus \langle E(A_1 \smallsetminus T', A_2) \rangle] \cup G_6$. In $G_1 \cup G_5$, consider the following stars: S^1 : ({1,2}; {3,4}, {3,5}, {3,6}, {4,5}, {4,6}), S^2: $(\{1,3\};\{2,4\},\{2,5\},\{2,6\},\{4,5\},\{4,6\}), S^3:(\{1,4\};\{2,3\},\{2,5\},\{2,6\},\{3,5\},\{3$ $,6\}),\,S^4:(\{1,5\};\{2,3\},\{2,4\},\{2,6\},\{3,4\},\{3,6\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\};\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,3\},\{2,4\},\{2,5\}),\,S^5:(\{1,6\},\{2,4\},\{2,5$ $\{3,4\},\{3,5\},S^6:(\{5,6\};\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,7\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,3\},\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\};\{1,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\},\{2,4\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{2,3\}),S^7:(\{3,4\},\{3,4\}),S^7:$ $\{2,5\},\{2,6\},\{5,6\}), S^8:(\{3,5\};\{1,7\},\{1,8\},\{2,4\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,4\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\};\{1,7\},\{1,8\},\{2,6\},\{2,6\},\{4,6\}), S^9:(\{3,6\},\{2,6\}$ $\{1,7\},\{1,8\},\{2,4\},\{2,5\},\{4,5\}), S^{10}:(\{4,5\};\{1,6\},\{1,7\},\{1,8\},\{2,3\},\{2,6\})$ and $S^{11}: (\{4, 6\}; \{1, 5\}, \{1, 7\}, \{1, 8\}, \{2, 3\}, \{2, 5\})$. In $(G_1 \cup G_5) \smallsetminus E(\bigcup_{i=1}^{11} S^i)$, the degree of each vertex of $A_3 \setminus \{\{1, 7\}, \{1, 8\}\}$ is 10. The degree of the vertices $\{1, 7\}$ and $\{1, 8\}$ is exactly 5. Now, by fixing each vertex of A_3 as a center vertex, we get an S₅-decomposition in $(G_1 \cup G_5) \setminus E(\bigcup_{i=1}^{11} S^i)$.

Lemma 3.7. If $n \in \{12, 17\}$, then $KG_{n,2}$ is S_5 -decomposable.

Proof. Let $N_1 = \{\{1, y\} | 2 \le y \le n\}$ and $N_2 = \{\{x, y\} | 2 \le x < y \le n\}$, we partition the vertex set $V(KG_{n,2}) = N_1 \cup N_2$. We write, $KG_{n,2} = \langle E(N_1) \rangle \cup \langle E(N_2) \rangle \cup \langle E(N_1, N_2) \rangle$, where $\langle E(N_1) \rangle$ and $\langle E(N_2) \rangle$ denote the graphs induced by the vertices of N_1 and N_2 respectively. The graph $\langle E(N_1) \rangle$ is a null graph. The graph $\langle E(N_2) \rangle \cong KG_{n-1,2}$ is S₅-decomposable by Lemma 3.4, if n=12 and Lemma 3.6, if n=17. In $\langle E(N_1, N_2) \rangle$, the degree of each vertex of N_1 is exactly 45 (if n=12) or 105 (if n=17). By fixing each vertex of N_1 as a center vertex, we get an S_5 decomposition in $\langle E(N_1, N_2) \rangle$.

Lemma 3.8. If $n \in \{13, 18\}$, then $KG_{n,2}$ is S_5 -decomposable.

Proof. Let $n_2=10$. Then $n_1=3$ if n=13 and $n_1=8$ if n=18. If $n_1=3$, the graph G_1 is a null graph and if $n_1=8$, the graph G_1 is S_5 -decomposable, by Lemma 3.2. The graph G_2 is S_5 -decomposable, by Lemma 3.3. In G_3 , the vertex set A_3 has n_1 layers and each layer has 10 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \leq i < j \leq n_1$ of G_3 form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_3 is S_5 -decomposable. In G_5 , the degree of each vertex of A_1 is exactly 10 (if n=13) or 60 (if n=18). Now, by fixing each vertex of A_1 as a center vertex, we get an S_5 -decomposition in G_5 . In G_4 , let $T' = \{\{1,2\},\{1,3\}\} \subset A_1$. In $\langle E(T', A_2) \rangle$, the degree of each vertex of A_2 is exactly 1 (if n=13) or 26 (if n=18). In G_6 , the degree of each vertex of A_2 is exactly 24 (if n=13) or 64 (if n=13) or 90 (if n=18). By fixing each vertex of A_2 as a center vertex, we get an S_5 -decomposition in $[G_4 \smallsetminus \langle E(T', A_2) \rangle] \cup G_6$.

Theorem 3.1. If $n \equiv 0, 1, 3 \pmod{5}$, then $KG_{n,2}$ is S_5 -decomposable. **Proof.** Let $l \geq 1$ be positive integer and let

$$n = \begin{cases} 5l & \text{if } n \equiv 0 \pmod{5} \\ 5l + 1 & \text{if } n \equiv 1 \pmod{5} \\ 5l + 3 & \text{if } n \equiv 3 \pmod{5} \end{cases}$$

If l=1, then $n \in \{5, 6, 8\}$. Clearly, there doesn't exist an S_5 -decomposition in $KG_{5,2}$. By Lemma 2.1, there doesn't exist an S_5 -decomposition in $KG_{6,2}$. By Lemma 3.2, there exists an S_5 -decomposition in $KG_{8,2}$. If l = 2, 3, then $n \in \{10, 11, 13, 15, 16, 18\}$. The graph $KG_{n,2}$ is S_5 -decomposable, by Lemma 3.3, 3.4, 3.5, 3.6 and 3.8. Hence, the result is true for l = 1, 2, 3. We apply mathematical induction on l. Assume that the result is true for all $4 \leq l < k$. Now, we prove that the result is true for $l = k, l \geq 4$. Let $n_2=10$. Then $n_1 = n - n_2$. The graph G_1 is S_5 -decomposable, by our assumption and G_2 is S_5 -decomposable, by Lemma 3.3. In G_3 , the vertex set A_3 has n_1 layers and each layer has 10 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \leq i < j \leq n_1$ of G_3 form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_3 is S_5 -decomposable. It is enough to prove that the graph G_4 , G_5 and G_6 are S_5 -decomposable. Now, we divide the proof into the following three cases:

Case 1. Let $n \equiv 0 \pmod{5}$. By Theorem 2.2, the graph G_4 is S_5 -decomposable. In G_5 and G_6 , the degree of each vertex of A_1 and A_2 is exactly $10(n_1 - 2)$ and $8n_1$, note that $n_1 \equiv 0 \pmod{5}$. So, by fixing each vertex of A_1 and A_2 as a center vertex, we get an S_5 -decomposition in G_5 and G_6 .

Case 2. Let $n \equiv 1 \pmod{5}$. By Theorem 2.2, the graph G_4 is S_5 -decomposable. In G_5 , we define three induced subgraphs F_1 , F_2 and F_3 as follows: For $n_1+1 \leq y \leq n$,

Figure 4: The induced subgraph F_1 of G_5

• $F_1 = \bigcup_{i=1}^{n_1-2} E_i$, where $E_i = \langle E(\{i+1, i+2\}, \{i, y\}) \rangle$, see Fig 4.

•
$$F_2 = \langle E(\{1, n_1\}, \{n_1 - 1, y\}) \rangle$$

•
$$F_3 = \langle E(\{1,2\},\{n_1,y\}) \rangle.$$

Note that, the degree of the vertices $\{i + 1, i + 2\}, 1 \leq i \leq n_1 - 2, \{1, n_1\}$ and $\{1, 2\}$ is exactly 10 in F_1 , F_2 and F_3 , respectively. Now, by fixing $\{i + 1, i + 2\}, 1 \leq i \leq n_1 - 2, \{1, n_1\}$ and $\{1, 2\}$ as center vertices, we get an S_5 -decomposition in F_1 , F_2 and F_3 , respectively. In $G_5 \smallsetminus E(\bigcup_{i=1}^3 F_i)$, the degree of each vertex of A_3 is $\frac{1}{2}[(n_1 - 1)(n_1 - 2) - 2]$. In G_6 , the degree of each vertex of A_3 is exactly 36. In $[G_5 \smallsetminus E(\bigcup_{i=1}^3 F_i)] \cup G_6$, the degree of each vertex of A_3 is $\frac{1}{2}[(n_1 - 1)(n_1 - 2) - 2] + 35$. Now, by fixing each vertex of A_3 as a center vertex, we get an S_5 -decomposition in $[G_5 \smallsetminus E(\bigcup_{i=1}^3 F_i)] \cup G_6$. **Case 3.** Let $n \equiv 3 \pmod{5}$. In G_4 , let $T' = \{\{1, 2\}, \{1, 3\}\} \subset A_1$. In $\langle E(T', A_2) \rangle$,

Case 3. Let $n \equiv 3 \pmod{5}$. In G_4 , let $T' = \{\{1,2\},\{1,3\}\} \subset A_1$. In $\langle E(T',A_2) \rangle$, the degree of each vertex of T' is exactly 45, see Fig 5. Now, by fixing each vertex of T' as a center vertex, we get an S_5 -decomposition in $\langle E(T',A_2) \rangle$. In $G_4 \smallsetminus \langle E(T',A_2) \rangle$, the degree of each vertex of A_2 is $\binom{n_1}{2} - 2$. In G_6 , the degree of each vertex of A_2 is exactly $8n_1$. In $[G_4 \smallsetminus \langle E(T',A_2) \rangle] \cup G_6$, the degree of each vertex of A_2 is $\binom{n_1}{2} - 2 + 8n_1 = \frac{1}{2}[n_1(n_1 + 15) - 4]$. Now, by fixing each vertex of A_2

as a center vertex, we get an S_5 -decomposition in $[G_4 \smallsetminus \langle E(T', A_2) \rangle] \cup G_6$. In G_5 , the degree of each vertex of A_1 is exactly $10(n_1 - 2)$. Now, by fixing each vertex of A_1 as a center vertex, we get an S_5 -decomposition in G_5 . By the principle of mathematical induction, the graph $KG_{n,2}$ is S_5 -decomposable.

Figure 5: The induced subgraph $\langle E(T', A_2) \rangle$ of G_4

Lemma 3.9. If $n \equiv 2 \pmod{5}$, then $KG_{n,2}$ is S_5 -decomposable.

Proof. Let $l \geq 1$ be positive integer and let n=5l+2. If l=1,2,3, then $n \in \{7,12,17\}$. The graph $KG_{n,2}$ is S_5 -decomposable, by Lemma 3.1 and 3.7. Now, we prove that the result is true for all $l \geq 4$. Let $n_2=11$. Then $n_1 = n - n_2$. By Lemma 3.4, the graph $KG_{11,2}$ is S_5 -decomposable. By Theorem 3.1, the graph G_1 is S_5 -decomposable. In G_3 , the vertex set A_3 has n_1 layers and each layer has 11 vertices. Note that, each subgraph $\langle E(Z_i, Z_j) \rangle$, $1 \leq i < j \leq n_1$ of G_3 form a crown graph $C_{11,10}$. By Theorem 2.1, the graph G_3 is S_5 -decomposable. By Theorem 2.2, the graph G_4 is S_5 -decomposable. In G_5 and G_6 , the degree of each vertex of A_3 is exactly $\binom{n_1}{2} - (n_1 - 1) = \frac{(n_1 - 1)(n_1 - 2)}{2}$ and 45 respectively. Now, by fixing each vertex of A_3 as a center vertex, we get an S_5 -decomposition in G_5 and G_6 .

By combining the Lemmas 3.1 to 3.9 and Theorem 3.1, we get the following:

Theorem 3.2. The graph $KG_{n,2}$ is S_5 -decomposable if and only if $n \ge 7$ and $n \equiv 0, 1, 2, 3 \pmod{5}$.

Acknowledgment

The authors thank the anonymous referee for the valuable comments and suggestions, which improved the quality of the paper.

References

- [1] Chen, Y., Kneser graphs are Hamiltonian for $n \ge 3k$, J. Combin. Theory Ser. B, 80 (2000), 69-79.
- [2] Ganesamurthy, S., Paulraja, P., Existence of a P_{2k+1} -decomposition in the Kneser graph $KG_{n,2}$, Discrete Math., 341 (2018), 2113-2116.
- [3] Kneser, M., Aufgabe, Jahresbericht der Deutschen Mathematiker-Vereinigung,
 2, Abteilung 58 (1955), 27.
- [4] Lin, C., Lin, J.-J., and Shyu, T.-W., Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin., 53 (1999), 249-256.
- [5] Rodger, C. A., Whitt III, T. R., Path decompositions of Kneser and Generalized Kneser Graphs, Canad. Math. Bull., 58 (3) (2015), 610-619.
- [6] Sankari, C., Sangeetha, R., and Arthi, K., Claw-decomposition of Kneser Graphs, Trans. Comb., 11 (1) (2022), 53-61.
- [7] Shields, I., Savage, C. D., A note on Hamilton cycles in Kneser graphs, Bull. Inst. Combin. Appl., 40 (2004), 13-22.
- [8] Whitt, T. R., Rodger, C. A., Decomposition of the Kneser graph into paths of length four, Discrete Math., 338 (2015), 1284-1288.
- [9] Yamamoto, S., Ikeda, H., Shige-eda, S., Ushio, K., and Hamada, N., On claw decomposition of complete graphs and complete bipartite graphs, Hiroshima Math. J., 5(1) (1975), 33-42.