S_{5}-DECOMPOSITION OF KNESER GRAPHS

C. Sankari, R. Sangeetha and K. Arthi
Department of Mathematics, A. V. V. M. Sri Pushpam College,
Poondi, Thanjavur-613503, Tamil Nadu, INDIA
E-mail : sankari9791@gmail.com, jaisangmaths@yahoo.com, arthi1505@gmail.com

(Received: Apr. 28, 2021 Accepted: Jul. 20, 2022 Published: Aug. 30, 2022)
Abstract: Let $A=\{1,2,3, \ldots, n\}$ and $\mathcal{P}_{k}(A)$ denotes the set of all k-element subsets of A. The Kneser graph $K G_{n, 2}$ has the vertex set $V\left(K G_{n, 2}\right)=\mathcal{P}_{2}(A)$ and edge set $E\left(K G_{n, 2}\right)=\left\{X Y \mid X, Y \in \mathcal{P}_{2}(A)\right.$ and $\left.X \cap Y=\emptyset\right\}$. A star with k edges is denoted by S_{k}. In this paper, we show that the graph $K G_{n, 2}$ can be decomposed into S_{5} if and only if $n \geq 7$ and $n \equiv 0,1,2,3(\bmod 5)$.
Keywords and Phrases: Decomposition, Tensor Product, Complete Bipartite Graph, Kneser Graph, Crown Graph, Star.
2020 Mathematics Subject Classification: 05C70, 05C76.

1. Introduction

All the graphs considered in this paper are finite. For a graph $G, G(\lambda)$ is the graph obtained from G by replacing each of its edges by λ parallel edges. If a graph G has no edges, then it is called a null graph. Let $K_{m, n}$ denote a complete bipartite graph with m and n vertices in the parts. A star with k edges is denoted by S_{k} and $S_{k} \cong K_{1, k}$. A path with k edges is denoted by P_{k} and a cycle with k edges is denoted by C_{k}. A Hamilton cycle of G is a cycle that contains every vertex of G. A graph G is Hamiltonian if it contains a Hamilton cycle. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$ is the number of edges incident with x in G. Let k be a positive integer. A graph G is said to be k-regular, if each vertex in G is of degree k. If $H_{1}, H_{2}, \ldots, H_{l}$ are edge disjoint subgraphs of a graph G such that
$E(G)=\bigcup_{i=1}^{l} E\left(H_{i}\right)$, then we say that $H_{1}, H_{2}, \ldots, H_{l}$ decompose G and we denote it by $G=\oplus_{i=1}^{l} H_{i}$. If $H_{i} \cong S_{k}$ for $i=1,2, \ldots, l$, then we say that G is S_{k}-decomposable and we denote it by $S_{k} \mid G$. For positive integers l and n with $1 \leq l \leq n$, the crown $C_{n, l}$ is the bipartite graph with bipartition (A, B), where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$, and the edge set $\left\{a_{i} b_{j} \mid 1 \leq j-i \leq l\right.$ with arithmetic modulo $n\}$. Note that $C_{n, n} \cong K_{n, n}$ and $C_{n, n-1} \cong K_{n, n}-I$, where I is a 1-factor of $K_{n, n}$. The tensor product of G and H, denoted by $G \times H$ has vertex set $V(G) \times V(H)$ in which two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent whenever $g_{1} g_{2} \in E(G)$ and $h_{1} h_{2} \in E(H)$. The line graph $L(G)$ of a graph G is the graph with $V(L(G))=E(G)$ and $e_{i} e_{j} \in E(L(G))$ if and only if the edges e_{i} and e_{j} are incident with a common end vertex in G. The complete graph on n vertices is denoted by K_{n}. The line graph of the complete graph K_{n} is denoted by $L\left(K_{n}\right)$. Let $A=\{1,2,3, \ldots, n\}$ and $\mathcal{P}_{k}(A)$ denotes the set of all k-element subsets of A. The Kneser graph $K G_{n, 2}$ is defined as follows: $V\left(K G_{n, 2}\right)=\mathcal{P}_{2}(A)$ and $E\left(K G_{n, 2}\right)=\left\{X Y \mid X, Y \in \mathcal{P}_{2}(A)\right.$ and $X \cap Y=\emptyset\}$. Note that, the graph $K G_{n, 2} \cong \overline{L\left(K_{n}\right)}$, where $\overline{L\left(K_{n}\right)}$ denotes the complement of the graph $L\left(K_{n}\right)$. Also, it is interesting to note that $K G_{5,2}$ is the Petersen graph. The Generalized Kneser Graph, $G K G_{n, k, r}$ is the graph whose vertices are the k-element subsets of some set of n elements, in which two vertices are adjacent if and only if they intersect in precisely r elements.

In 1955, M. Kneser [3] introduced the Kneser graph. In 2000, Chen [1] proved that $K G_{n, 2}$ is Hamiltonian, when $n \geq 3 k, k \geq 1$. In 2004, Shields and Savage [7] proved that all connected Kneser graphs (except $K G_{5,2}$) have Hamilton cyles, when $n \leq 27$ and the problem $K G_{n, 2}(n \neq 5)$ is Hamiltonian is still open. In 2015, Rodger and Whitt [5] established the necessary and sufficient conditions for a P_{3}-decomposition of the Kneser graph $K G_{n, 2}$ and the Generalized Kneser Graph $G K G_{n, 3,1}$. In 2015, Whitt and Rodger [8] proved that the Kneser graph $K G_{n, 2}$ is P_{4}-decomposable if and only if $n \equiv 0,1,2,3(\bmod 16)$. In 2018 , Ganesamurthy and Paulraja [2] proved that if $n \equiv 0,1,2,3(\bmod 8 k), k \geq 2$, then the Kneser graph $K G_{n, 2}$ can be decomposed into paths of length $2 k$. In the same paper they also proved that, for $k=2^{l}, l \geq 1, K G_{n, 2}$ has a $P_{2 k}$-decomposition if and only if $n \equiv 0,1,2,3\left(\bmod 2^{l+3}\right)$. Recently, the authors [6] proved that, $K G_{n, 2}$ is clawdecomposable, for all $n \geq 6$. In this paper, we discuss S_{5}-decomposition of the Kneser graphs. It is obtained that $K G_{n, 2}$ is S_{5}-decomposable if and only if $n \geq 7$ and $n \equiv 0,1,2,3(\bmod 5)$.

2. Preliminaries

Let G be a graph on n vertices and $\{1,2,3, \ldots, k\} \subset V(G)$. The notation $(1 ; 2,3, \ldots, k)$ denotes a star with a center vertex 1 and $k-1$ pendent edges 12,13 , $\ldots, 1 k$. Let X and Y be two disjoint subsets of $V(G)$. Then $E(X, Y)$ denotes the
set of edges in G, whose one end vertex is in X and the other end vertex is in Y. The notation $\langle E(X, Y)\rangle$ denotes the graph induced by the edges of $E(X, Y)$. To prove our results we use the following:
Theorem 2.1. (Lin et al. [4]) Let λ, k, l and n be positive integers. The graph $C_{n, l}(\lambda)$ is S_{k}-decomposable if and only if $k \leq l$ and $\lambda n l \equiv 0(\bmod k)$.
Theorem 2.2. (Yamamoto et al. [9]) Let k, m and $n \in \mathbb{Z}_{+}$with $m \leq n$. There exists an S_{k}-decomposition of $K_{m, n}$ if and only if one of the following holds:
(i) $k \leq m$ and $m n \equiv 0(\bmod k)$;
(ii) $m<k \leq n$ and $n \equiv 0(\bmod k)$.

Note that, the graphs $K G_{2,2}$ and $K G_{3,2}$ are null graphs. For $n \geq 5,\left|E\left(K G_{n, 2}\right)\right|=$ $\frac{n(n-1)(n-2)(n-3)}{8}$, which is divisible by 5 only when $n \equiv 0,1,2,3(\bmod 5)$. We know that the graph $K G_{5,2}$ (Petersen graph) is 3-regular, hence doesn't admit an $S_{5^{-}}$ decomposition. In the following Lemma, we prove that the graph $K G_{6,2}$ can't be decomposed into S_{5}.

Lemma 2.1. There doesn't exist an S_{5}-decomposition in $K G_{6,2}$.
proof. (Necessity). For $n=6,\left|E\left(K G_{6,2}\right)\right|=45$, which is divisible by 5 .
(Sufficiency). Vertex set of $K G_{6,2}$ is $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\}$, $\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}$ and $\operatorname{deg}_{K G_{6,2}} v=6$, for all vertices $v \in V\left(K G_{6,2}\right)$. Without loss of generality, we choose an S_{5}, centered at $\{1,2\}$ i.e. $S^{1}:(\{1,2\} ;\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\})$. In $G^{1}=K G_{6,2} \backslash S^{1}$, the degree of the vertex $\{1,2\}$ is 1 which implies that the edge $\{1,2\}\{5,6\}$ can only be included in the star centered at $\{5,6\}$. Therefore, we choose $S^{2}:(\{5,6\} ;\{1,2\},\{1,3\},\{1,4\},\{2$, $3\},\{2,4\})$. In $G^{2}=G^{1} \backslash S^{2}$, the degree of the vertex $\{5,6\}$ is 1 which implies that the edge $\{5,6\}\{3,4\}$ can only be included in the star centered at $\{3,4\}$. We choose $S^{3}:(\{3,4\} ;\{5,6\},\{1,5\},\{1,6\},\{2,5\},\{2,6\})$. In $G^{3}=G^{2} \backslash S^{3}$, the degrees of the vertices are $\{0,5,5,5,5,5,5,5,5,0,5,5,5,5,0\}$. Among these 12 vertices of degree 5 , we can choose any vertex as a center vertex for the next star. Suppose we choose $\{1,3\}$ as a center vertex, then $S^{4}:(\{1,3\} ;\{2,4\},\{2,5\},\{2,6\},\{4,5\},\{4,6\})$. In $G^{4}=G^{3} \backslash S^{4}$, the degrees of the vertices become $\{0,0,5,5,5,5,4,4,4,0,5,5,4,4,0\}$. There are 6 vertices of degree 5 . These vertices are $\{1,4\},\{1,5\},\{1,6\},\{2,3\}$, $\{3,5\}$ and $\{3,6\}$. To choose the next star, we have the following cases.
Case (i).
Suppose we choose $\{1,4\}$ as a center vertex. Then $S^{5}:(\{1,4\} ;\{2,3\},\{2,5\},\{2,6\},\{3$, $5\},\{3,6\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,0,5,5,4,4,3,3,0$, $4,4,4,4,0\}$. We note that there are only two vertices of degree 5 . Hence it is impossible to choose four more stars.

Case (ii).
Suppose we choose $\{1,5\}$ as a center vertex. Then $S^{5}:(\{1,5\} ;\{2,3\},\{2,4\},\{2,6\},\{3$, $6\},\{4,6\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,5,0,5,4,3,4,3,0$, $5,4,4,3,0\}$. We note that there are only three vertices of degree 5 . Hence it is impossible to choose four more stars.
Case (iii).
Suppose we choose $\{1,6\}$ as a center vertex. Then $S^{5}:(\{1,6\} ;\{2,3\},\{2,4\},\{2,5\},\{3$, $5\},\{4,5\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,5,5,0,4,3,3,4,0$, $4,5,3,4,0\}$. As there are only three vertices of degree 5 , it is impossible to choose four more stars.
Case (iv).
Suppose we choose $\{2,3\}$ as a center vertex. Then $S^{5}:(\{2,3\} ;\{1,4\},\{1,5\},\{1,6\},\{4$, $5\},\{4,6\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,4,4,4,0,4,4,4,0$, $5,5,3,3,0\}$. We note that there are only two vertices of degree 5 . Hence it is impossible to choose four more stars.
Case (v).
Suppose we choose $\{3,5\}$ as a center vertex. Then $S^{5}:(\{3,5\} ;\{1,4\},\{1,6\},\{2,4\},\{2$, $6\},\{4,6\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,4,5,4,5,3,4,3,0$, $0,5,4,3,0\}$. As there are only three vertices of degree 5 , it is impossible to choose four more stars.
Case (vi).
Suppose we choose $\{3,6\}$ as a center vertex. Then $S^{5}:(\{3,6\} ;\{1,4\},\{1,5\},\{2,4\},\{2$, $5\},\{4,5\})$. In $G^{5}=G^{4} \backslash S^{5}$, the degrees of the vertices become $\{0,0,4,4,5,5,3,3,4,0$, $5,0,3,4,0\}$. We note that there are only three vertices of degree 5 . Hence it is impossible to choose four more stars.
So, there doesn't exist an S_{5}-decomposition in $K G_{6,2}$.
3. S_{5}-decomposition of $K G_{n, 2}$

In this section, we prove that $K G_{n, 2}$ is S_{5}-decomposable if and only if $n \geq 7$ and $n \equiv 0,1,2,3(\bmod 5)$.
Let $n \geq 10, n_{1} \geq 3$ and $n_{2} \geq 5$ be positive integers such that $n=n_{1}+n_{2}$. We define $V_{1}=\left\{1,2,3, \ldots, n_{1}\right\}, V_{2}=\left\{n_{1}+1, n_{1}+2, \ldots, n\right\}$ and $V\left(K G_{n, 2}\right)=A_{1} \cup A_{2} \cup A_{3}$, where $A_{1}=\mathcal{P}_{2}\left(V_{1}\right), A_{2}=\mathcal{P}_{2}\left(V_{2}\right)$ and $A_{3}=\left\{\{i, j\} \mid\{i, j\} \in V_{1} \times V_{2}\right\}$. For $i \in V_{1}$, $i \times V_{2}=\left\{\{i, j\} \mid j \in V_{2}\right\}$ is called the $i^{t h}$ layer of the vertices of A_{3} and we denote it by Z_{i}. We define the graphs $G_{i}, 1 \leq i \leq 6$ as follows:

$$
\begin{array}{lll}
V\left(G_{1}\right)=A_{1} & ; & E\left(G_{1}\right)=\left\{X Y \mid X, Y \in A_{1} \text { and } X \cap Y=\emptyset\right\} \\
V\left(G_{2}\right)=A_{2} ; & E\left(G_{2}\right)=\left\{X Y \mid X, Y \in A_{2} \text { and } X \cap Y=\emptyset\right\} \\
V\left(G_{3}\right)=A_{3} \quad ; & E\left(G_{3}\right)=\left\{X Y \mid X, Y \in A_{3} \text { and } X \cap Y=\emptyset\right\}
\end{array}
$$

$$
\begin{array}{lll}
V\left(G_{4}\right)=A_{1} \cup A_{2} ; & E\left(G_{4}\right)=\left\{X Y \mid X \in A_{1}, Y \in A_{2} \text { and } X \cap Y=\emptyset\right\} \\
V\left(G_{5}\right)=A_{1} \cup A_{3} ; & E\left(G_{5}\right)=\left\{X Y \mid X \in A_{1}, Y \in A_{3} \text { and } X \cap Y=\emptyset\right\} \\
V\left(G_{6}\right)=A_{2} \cup A_{3} ; & E\left(G_{6}\right)=\left\{X Y \mid X \in A_{2}, Y \in A_{3} \text { and } X \cap Y=\emptyset\right\}
\end{array}
$$

We observe that, $G_{1} \cong K G_{n_{1}, 2}, G_{2} \cong K G_{n_{2}, 2}, G_{3} \cong K_{n_{1}} \times K_{n_{2}}, G_{4} \cong K_{\left|A_{1}\right|,\left|A_{2}\right|}$, $G_{5} \cong\left\langle E\left(A_{1}, A_{3}\right)\right\rangle, G_{6} \cong\left\langle E\left(A_{2}, A_{3}\right)\right\rangle$ and $K G_{n, 2}=\oplus_{i=1}^{6} G_{i}$.
Lemma 3.1. The graph $K G_{7,2}$ is S_{5}-decomposable.
Proof. An S_{5}-decomposition of $K G_{7,2}$ is as follows:
(\{1, 2\}; \{3, 4\}, \{3, 5\}, \{3,6\}, \{3,7\}, \{5,6\}), (\{1,3\}; \{2, 4\}, \{2, 5\}, \{2, 6\}, \{2, 7\}, \{5, 7\}), $(\{1,4\} ;\{2,3\},\{2,5\},\{2,6\},\{2,7\},\{3,5\}),(\{1,5\} ;\{2,3\},\{2,4\},\{2,6\},\{2,7\},\{3,4\})$, $(\{1,6\} ;\{2,3\},\{2,4\},\{2,5\},\{2,7\},\{3,4\}),(\{1,7\} ;\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{3,4\})$, $(\{2,3\} ;\{4,5\},\{4,6\},\{4,7\},\{5,6\},\{5,7\}),(\{2,4\} ;\{3,5\},\{3,6\},\{3,7\},\{5,6\},\{5,7\})$, $(\{2,5\} ;\{3,4\},\{3,6\},\{3,7\},\{4,6\},\{4,7\}),(\{2,6\} ;\{3,4\},\{3,5\},\{3,7\},\{4,5\},\{4,7\})$, $(\{2,7\} ;\{3,4\},\{5,6\},\{3,6\},\{4,5\},\{4,6\}),(\{3,5\} ;\{4,6\},\{4,7\},\{2,7\},\{1,6\},\{1,7\})$, $(\{3,6\} ;\{5,7\},\{4,7\},\{1,4\},\{1,5\},\{1,7\}),(\{3,7\} ;\{4,5\},\{4,6\},\{1,4\},\{1,5\},\{1,6\})$, $(\{4,5\} ;\{3,6\},\{1,6\},\{1,7\},\{1,3\},\{1,2\}),(\{4,6\} ;\{5,7\},\{1,2\},\{1,3\},\{1,5\},\{1,7\})$, $(\{4,7\} ;\{5,6\},\{1,2\},\{1,3\},\{1,5\},\{1,6\}),(\{5,6\} ;\{3,4\},\{1,3\},\{1,4\},\{1,7\},\{3,7\})$, $(\{5,7\} ;\{1,2\},\{3,4\},\{1,4\},\{1,6\},\{2,6\}),(\{6,7\} ;\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\})$, $(\{6,7\} ;\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\})$.
Lemma 3.2. The graph $K G_{8,2}$ is S_{5}-decomposable.
Proof. An S_{5}-decomposition of $K G_{8,2}$ is as follows:
$(\{1,3\} ;\{2,4\},\{2,5\},\{2,6\},\{2,7\},\{2,8\}),(\{1,4\} ;\{2,3\},\{2,5\},\{2,6\},\{2,7\},\{2,8\})$, (\{1, 5\}; \{2, 3\}, \{2, 4\}, \{2,6\}, \{2,7\}, \{2, 8\}), (\{1,6\};\{2,3\}, \{2, 4\}, \{2, 5\}, \{2, 7\}, \{2, 8\}), ($\{1,7\} ;\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,8\}),(\{1,8\} ;\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\})$, $(\{1,6\} ;\{3,7\},\{3,8\},\{4,5\},\{4,7\},\{4,8\}),(\{1,7\} ;\{3,6\},\{3,8\},\{4,5\},\{4,6\},\{4,8\})$, $(\{1,8\} ;\{3,6\},\{3,7\},\{4,5\},\{4,6\},\{4,7\}),(\{2,4\} ;\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\})$, $(\{2,5\} ;\{4,6\},\{4,7\},\{4,8\},\{6,7\},\{6,8\}),(\{2,6\} ;\{3,4\},\{3,5\},\{3,7\},\{3,8\},\{4,5\})$, $(\{2,7\} ;\{3,4\},\{3,5\},\{3,6\},\{3,8\},\{4,5\}),(\{2,8\} ;\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{4,5\})$, $(\{3,4\} ;\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\}),(\{3,5\} ;\{4,6\},\{4,7\},\{4,8\},\{6,7\},\{6,8\})$, $(\{3,6\} ;\{4,5\},\{4,7\},\{4,8\},\{5,7\},\{5,8\}),(\{3,7\} ;\{4,5\},\{4,6\},\{4,8\},\{5,6\},\{5,8\})$, $(\{3,8\} ;\{4,5\},\{4,6\},\{4,7\},\{5,6\},\{5,7\}),(\{4,5\} ;\{6,7\},\{6,8\},\{7,8\},\{1,2\},\{1,3\})$, $(\{4,6\} ;\{5,7\},\{5,8\},\{7,8\},\{1,2\},\{1,3\}),(\{4,7\} ;\{5,6\},\{5,8\},\{6,8\},\{1,2\},\{1,3\})$, $(\{4,8\} ;\{5,6\},\{5,7\},\{6,7\},\{1,2\},\{1,3\}),(\{5,6\} ;\{1,2\},\{1,3\},\{1,4\},\{1,7\},\{1,8\})$, $(\{5,7\} ;\{1,2\},\{1,3\},\{1,4\},\{1,6\},\{1,8\}),(\{5,8\} ;\{1,2\},\{1,3\},\{1,4\},\{1,6\},\{1,7\})$, $(\{6,7\} ;\{1,2\},\{1,3\},\{1,4\},\{1,8\},\{5,8\}),(\{6,8\} ;\{1,2\},\{1,3\},\{1,4\},\{1,7\},\{5,7\})$, $(\{1,2\} ;\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{3,8\}),(\{7,8\} ;\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\})$, $(\{7,8\} ;\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{5,6\})$ and $(\{1,5\} ;\{4,6\},\{4,7\},\{4,8\},\{6,7\},\{6$, $8\}$). Now, consider the subgraph G_{1} obtained by deleting all these stars from $K G_{8,2}$.

In G_{1}, the degree of the vertex $\{2,3\}$ is exactly 10 . Let $6 \leq j_{1} \leq 8$ and $4 \leq j_{2} \leq 8$, then the degree of the vertices $\left\{2, j_{1}\right\}$ and $\left\{3, j_{2}\right\}$ is exactly 5 in G_{1}. Now, by fixing these vertices as center vertices, we get an S_{5}-decomposition in G_{1}.

Lemma 3.3. The graph $K G_{10,2}$ is S_{5}-decomposable.
Proof. Let $n_{1}, n_{2}=5$. In $G_{1} \cup G_{2} \cup G_{4}$, consider the following stars: $S^{1}:(\{1,2\} ;\{3,4\}$, $\{3,5\},\{4,5\},\{7,8\},\{7,9\}), S^{2}:(\{1,3\} ;\{2,4\},\{2,5\},\{4,5\},\{7,8\},\{7,9\}), S^{3}:$ $(\{1,4\} ;\{2,3\},\{2,5\},\{3,5\},\{6,7\},\{7,9\}), S^{4}:(\{1,5\} ;\{2,3\},\{2,4\},\{3,4\},\{6,10\}$, $\{7,10\}), S^{5}:(\{2,3\} ;\{4,5\},\{6,7\},\{6,8\},\{6,9\},\{6,10\}), S^{6}:(\{2,4\} ;\{3,5\},\{6,7\}$, $\{6,8\},\{6,9\},\{6,10\}), S^{7}:(\{2,5\} ;\{3,4\},\{6,7\},\{6,8\},\{6,9\},\{6,10\}), S^{8}:(\{6,7\} ;$ $\{8,9\},\{8,10\},\{9,10\},\{1,3\},\{3,4\}), S^{9}:(\{6,8\} ;\{7,9\},\{7,10\},\{9,10\},\{1,2\},\{3,4\})$, $S^{10}:(\{6,9\} ;\{7,8\},\{7,10\},\{8,10\},\{1,4\},\{1,5\}), S^{11}:(\{6,10\} ;\{7,8\},\{7,9\},\{8,9\}$, $\{1,2\},\{1,3\}), S^{12}:(\{7,8\} ;\{9,10\},\{1,4\},\{1,5\},\{3,4\},\{2,5\}), S^{13}:(\{7,9\} ;\{8,10\}$, $\{1,5\},\{2,3\},\{2,4\},\{3,4\})$ and $S^{14}:(\{7,10\} ;\{8,9\},\{1,2\},\{1,3\},\{1,4\},\{3,4\})$.

Figure 1: The subgraph F^{\prime} of $G_{3} \cup G_{5}$

In $\left(G_{1} \cup G_{2} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{14} S^{i}\right)$, the degree of the vertices $\{3,5\}$ and $\{4,5\}$ is exactly 10, the degree of each vertex of $A_{1} \backslash\{\{3,5\},\{4,5\}\}$ is (where $V\left(G_{1} \cup\right.$ $\left.G_{2} \cup G_{4}\right)=A_{1} \cup A_{2}$) exactly 5 . Now, by fixing each vertex of A_{1} as a center ver-
tex, we get an S_{5}-decomposition in $\left(G_{1} \cup G_{2} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{14} S^{i}\right)$. In $G_{3} \cup G_{5}$, we partition the vertex set $A_{1}=\bigcup_{i=1}^{4} T_{i}$, where $T_{1}=\{\{2,3\},\{2,4\},\{2,5\},\{3,4\}\}$, $T_{2}=\{\{1,3\},\{3,5\},\{4,5\}\}, T_{3}=\{\{1,2\},\{1,4\}\}$ and $T_{4}=\{\{1,5\}\}$. For $1 \leq i \leq 4$, $i<j \leq 5$, we define $F_{i}=\left\langle E\left(\{i, y\},\left\{j, y^{\prime}\right\}\right)\right\rangle \cup\left\langle E\left(\{i, y\},\left\{a_{i}, b_{i}\right\}\right)\right\rangle$, where $6 \leq y \neq$ $y^{\prime} \leq 10$ and for all $\left\{a_{i}, b_{i}\right\} \in T_{i}$. Consider the subgraph $F^{\prime}=\bigcup_{i=1}^{4} F_{i}$, see Figure 1. Note that, the degree of the vertex $\{i, y\}$ is exactly $5(5-i), 1 \leq i \leq 4$ in F_{i}. In $\left(G_{3} \cup G_{5}\right) \backslash E\left(F^{\prime}\right)$, the degree each vertex of A_{1} is exactly 10 . Now, by fixing each vertex of A_{3} and A_{1} as a center vertex, we get an S_{5}-decomposition in F^{\prime} and $\left(G_{3} \cup G_{5}\right) \backslash E\left(F^{\prime}\right)$. In G_{6}, the degree of each vertex of A_{2} is exactly 15 and by fixing each vertex of A_{2} as a center vertex (ofcourse, 3 times), we get an S_{5}-decomposition in G_{6}.

Lemma 3.4. The graph $K G_{11,2}$ is S_{5}-decomposable.
Proof. Let $n_{1}=5$ and $n_{2}=6$. In G_{3}, the vertex set A_{3} has 5 layers and each layer has 6 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle, 1 \leq i<j \leq 5$ of G_{3} form a crown graph $C_{6,5}$. By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. In $G_{1} \cup G_{4}$, we choose the following stars: $S^{1}:(\{1,2\} ;\{3,4\},\{3,5\},\{4,5\},\{6,7\},\{6,8\}), S^{2}$: $(\{1,3\} ;\{2,4\},\{2,5\},\{4,5\},\{6,7\},\{6,8\}), S^{3}:(\{1,4\} ;\{2,3\},\{2,5\},\{3,5\},\{6,9\},\{6$, 10\}), $S^{4}:(\{1,5\} ;\{2,3\},\{2,4\},\{3,4\},\{6,9\},\{6,10\}), S^{5}:(\{2,3\} ;\{4,5\},\{6,7\},\{6$, 8\}, $\{6,9\},\{6,10\}), S^{6}:(\{2,4\} ;\{3,5\},\{6,7\},\{6,8\},\{6,9\},\{6,10\})$ and $S^{7}:(\{2,5\} ;\{$ $3,4\},\{6,7\},\{6,8\},\{6,9\},\{6,10\})$. Let $B^{\prime}=\{\{6,7\},\{6,8\},\{6,9\},\{6,10\}\}, B^{\prime \prime}=$ $\{\{6,11\}\{7,8\}\}$. Then $B^{\prime}, B^{\prime \prime} \subset A_{2} \subset V\left(\left(G_{1} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{7} S^{i}\right)\right)$. We write $\left[\left(G_{1} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{7} S^{i}\right)\right] \cup G_{5}=F_{1} \cup F_{2} \cup F_{3}$ where $F_{1}=\left\langle E\left(A_{1}, A_{3}\right)\right\rangle \cup\left\langle E\left(A_{1}, B^{\prime \prime}\right)\right\rangle$, $F_{2}=\left\langle E\left(A_{1}, B^{\prime}\right)\right\rangle$ and $F_{3}=\left\langle E\left(A_{1}, A_{2} \backslash\left(B^{\prime} \cup B^{\prime \prime}\right)\right)\right\rangle$, see Figure 2. Note that, the degree of each vertex of A_{1} is 20 in F_{1}, B^{\prime} is 5 in F_{2} and $A_{2} \backslash\left(B^{\prime} \cup B^{\prime \prime}\right)$ is 10 in F_{3}. By fixing each vertex of A_{1}, B^{\prime} and $A_{2} \backslash\left(B^{\prime} \cup B^{\prime \prime}\right)$ as a center vertex, we get an S_{5}-decomposition in $\left[\left(G_{1} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{7} S^{i}\right)\right] \cup G_{5}$. In $G_{2} \cup G_{6}$, consider the following stars: $S^{1}:(\{6,7\} ;\{8,9\},\{8,10\},\{8,11\},\{9,10\},\{9,11\}), S^{2}$: $(\{6,8\} ;\{7,9\},\{7,10\},\{7,11\},\{9,10\},\{9,11\}), S^{3}:(\{6,9\} ;\{7,8\},\{7,10\},\{7,11\},\{8$, 10\}, $\{8,11\}), S^{4}:(\{6,10\} ;\{7,8\},\{7,9\},\{7,11\},\{8,9\},\{8,11\}), S^{5}:(\{6,11\} ;\{7,8\}$ $,\{7,9\},\{7,10\},\{8,9\},\{8,10\}), S^{6}:(\{10,11\} ;\{6,7\},\{6,8\},\{6,9\},\{7,8\},\{7,9\}), S^{7}:$ $(\{8,9\} ;\{7,10\},\{7,11\},\{10,11\},\{1,6\},\{1,7\}), S^{8}:(\{8,10\} ;\{7,9\},\{7,11\},\{9,11\},\{$ $1,6\},\{1,7\}), S^{9}:(\{8,11\} ;\{7,9\},\{7,10\},\{9,10\},\{1,6\},\{1,7\}), S^{10}:(\{9,10\} ;\{6,11$ $\},\{7,8\},\{7,11\},\{1,6\},\{1,7\})$ and $S^{11}:(\{9,11\} ;\{6,10\},\{7,8\},\{7,10\},\{1,6\},\{1,7\})$. In $\left(G_{2} \cup G_{6}\right) \backslash E\left(\bigcup_{i=1}^{11} S^{i}\right)$, The degree of the vertices $\{1,6\}$ and $\{1,7\}$ is exactly 5 . The degree of each vertex of $A_{3} \backslash\{\{1,6\},\{1,7\}\}$ is exactly 10 . By fixing each vertex of A_{3} as a center vertex, we get an S_{5}-decomposition in $\left(G_{2} \cup G_{6}\right) \backslash E\left(\bigcup_{i=1}^{11} S^{i}\right)$.

Figure 2: The induced subgraph $F_{1} \cup F_{2} \cup F_{3}$
Lemma 3.5. The graph $K G_{15,2}$ is S_{5}-decomposable.
Proof. Let $n_{1}=5$ and $n_{2}=10$. The graph G_{2} is S_{5}-decomposable, by Lemma 3.3. In G_{3}, the vertex set A_{3} has 5 layers and each layer has 10 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle, 1 \leq i<j \leq 5$ of G_{3} form a crown graph $C_{10,9}$, see Figure 3.

Figure 3: The subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle$ of $K G_{15,2}$
By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. In $G_{1} \cup G_{4}$, consider the following stars: $S^{1}:(\{1,2\} ;\{3,4\},\{3,5\},\{4,5\},\{6,7\},\{6,8\}), S^{2}:(\{1,3\} ;\{2,4\},\{2,5\}$ $,\{4,5\},\{6,7\},\{6,8\}), S^{3}:(\{1,4\} ;\{2,3\},\{2,5\},\{3,5\},\{6,9\},\{6,10\}), S^{4}:(\{1,5\} ;$ $\{2,3\},\{2,4\},\{3,4\},\{6,9\},\{6,10\}), S^{5}:(\{2,3\} ;\{4,5\},\{6,7\},\{6,8\},\{6,9\},\{6,10\})$,
$S^{6}:(\{2,4\} ;\{3,5\},\{6,7\},\{6,8\},\{6,9\},\{6,10\}), S^{7}:(\{2,5\} ;\{3,4\},\{6,7\},\{6,8\}$, $\{6,9\},\{6,10\})$. Let $B^{\prime}=\{\{6,7\},\{6,8\},\{6,9\},\{6,10\}\} \subset A_{2}$. In $\left(G_{1} \cup G_{4}\right) \backslash$ $E\left(\bigcup_{i=1}^{7} S^{i}\right)$, the degree of each vertex of $A_{2} \backslash B^{\prime}$ and B^{\prime} is exactly 10 and 5 , respectively. Now, by fixing each vertex of A_{2} as a center vertex, we get an S_{5} decomposition in $\left(G_{1} \cup G_{4}\right) \backslash E\left(\bigcup_{i=1}^{7} S^{i}\right)$. In G_{5} and G_{6}, the degree of each vertex of A_{1} and A_{2} is exactly 30 and 40 respectively. So, by fixing each vertex of A_{1} and A_{2} as a center vertex, we get an S_{5}-decomposition in G_{5} and G_{6}.
Lemma 3.6. The graph $K G_{16,2}$ is S_{5}-decomposable.
Proof. Let $n_{1}=6$ and $n_{2}=10$. The graph G_{2} is S_{5}-decomposable, by Lemma 3.3. In G_{3}, the vertex set A_{3} has 6 layers and each layer has 10 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle, 1 \leq i<j \leq 6$ of G_{3} form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. Let $T^{\prime}=\{\{1,2\},\{1,3\}\} \subset A_{1} \subset V\left(G_{4}\right)$. In $\left\langle E\left(A_{1} \backslash T^{\prime}, A_{2}\right)\right\rangle$, the degree of each vertex of $A_{1} \backslash T^{\prime}$ is exactly 45 . By fixing each vertex of $A_{1} \backslash T^{\prime}$ as a center vertex, we get an S_{5}-decomposition in $\left\langle E\left(A_{1} \backslash T^{\prime}, A_{2}\right)\right\rangle$. In $\left[G_{4} \backslash\left\langle E\left(A_{1} \backslash T^{\prime}, A_{2}\right)\right\rangle\right]$, the degree of each vertex of A_{2} is exactly two. In G_{6}, the degree of each vertex of A_{2} is exactly 48. In $\left[G_{4} \backslash\left\langle E\left(A_{1} \backslash T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$, the degree of each vertex of A_{2} is exactly 50 . Now, by fixing each vertex of A_{2} as a center vertex, we get an S_{5}-decomposition in $\left[G_{4} \backslash\left\langle E\left(A_{1} \backslash T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$. In $G_{1} \cup G_{5}$, consider the following stars: $S^{1}:(\{1,2\} ;\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\}), S^{2}$: $(\{1,3\} ;\{2,4\},\{2,5\},\{2,6\},\{4,5\},\{4,6\}), S^{3}:(\{1,4\} ;\{2,3\},\{2,5\},\{2,6\},\{3,5\},\{3$,6\}), $S^{4}:(\{1,5\} ;\{2,3\},\{2,4\},\{2,6\},\{3,4\},\{3,6\}), S^{5}:(\{1,6\} ;\{2,3\},\{2,4\},\{2,5\}$ $,\{3,4\},\{3,5\}), S^{6}:(\{5,6\} ;\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}), S^{7}:(\{3,4\} ;\{1,7\},\{1$, 8$\},\{2,5\},\{2,6\},\{5,6\}), S^{8}:(\{3,5\} ;\{1,7\},\{1,8\},\{2,4\},\{2,6\},\{4,6\}), S^{9}:(\{3,6\} ;$ $\{1,7\},\{1,8\},\{2,4\},\{2,5\},\{4,5\}), S^{10}:(\{4,5\} ;\{1,6\},\{1,7\},\{1,8\},\{2,3\},\{2,6\})$ and $S^{11}:(\{4,6\} ;\{1,5\},\{1,7\},\{1,8\},\{2,3\},\{2,5\})$. In $\left(G_{1} \cup G_{5}\right) \backslash E\left(\bigcup_{i=1}^{11} S^{i}\right)$, the degree of each vertex of $A_{3} \backslash\{\{1,7\},\{1,8\}\}$ is 10 . The degree of the vertices $\{1,7\}$ and $\{1,8\}$ is exactly 5 . Now, by fixing each vertex of A_{3} as a center vertex, we get an S_{5}-decomposition in $\left(G_{1} \cup G_{5}\right) \backslash E\left(\bigcup_{i=1}^{11} S^{i}\right)$.
Lemma 3.7. If $n \in\{12,17\}$, then $K G_{n, 2}$ is S_{5}-decomposable.
Proof. Let $N_{1}=\{\{1, y\} \mid 2 \leq y \leq n\}$ and $N_{2}=\{\{x, y\} \mid 2 \leq x<y \leq n\}$, we partition the vertex set $V\left(K G_{n, 2}\right)=N_{1} \cup N_{2}$. We write, $K G_{n, 2}=\left\langle E\left(N_{1}\right)\right\rangle \cup\left\langle E\left(N_{2}\right)\right\rangle \cup$ $\left\langle E\left(N_{1}, N_{2}\right)\right\rangle$, where $\left\langle E\left(N_{1}\right)\right\rangle$ and $\left\langle E\left(N_{2}\right)\right\rangle$ denote the graphs induced by the vertices of N_{1} and N_{2} respectively. The graph $\left\langle E\left(N_{1}\right)\right\rangle$ is a null graph. The graph $\left\langle E\left(N_{2}\right)\right\rangle \cong K G_{n-1,2}$ is S_{5}-decomposable by Lemma 3.4, if $n=12$ and Lemma 3.6, if $n=17$. In $\left\langle E\left(N_{1}, N_{2}\right)\right\rangle$, the degree of each vertex of N_{1} is exactly 45 (if $n=12$) or 105 (if $n=17$). By fixing each vertex of N_{1} as a center vertex, we get an $S_{5^{-}}$ decomposition in $\left\langle E\left(N_{1}, N_{2}\right)\right\rangle$.

Lemma 3.8. If $n \in\{13,18\}$, then $K G_{n, 2}$ is S_{5}-decomposable.
Proof. Let $n_{2}=10$. Then $n_{1}=3$ if $n=13$ and $n_{1}=8$ if $n=18$. If $n_{1}=3$, the graph G_{1} is a null graph and if $n_{1}=8$, the graph G_{1} is S_{5}-decomposable, by Lemma 3.2. The graph G_{2} is S_{5}-decomposable, by Lemma 3.3. In G_{3}, the vertex set A_{3} has n_{1} layers and each layer has 10 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle$, $1 \leq i<j \leq n_{1}$ of G_{3} form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. In G_{5}, the degree of each vertex of A_{1} is exactly 10 (if $n=13$) or 60 (if $n=18$). Now, by fixing each vertex of A_{1} as a center vertex, we get an S_{5}-decomposition in G_{5}. In G_{4}, let $T^{\prime}=\{\{1,2\},\{1,3\}\} \subset A_{1}$. In $\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$, the degree of each vertex of T^{\prime} is exactly 45 . Now, by fixing each vertex of T^{\prime} as a center vertex, we get an S_{5}-decomposition in $\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$. In $G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$, the degree of each vertex of A_{2} is exactly 1 (if $n=13$) or 26 (if $n=18$). In G_{6}, the degree of each vertex of A_{2} is exactly 24 (if $n=13$) or 64 (if $n=18$). In $\left[G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$, the degree of each vertex of A_{2} is exactly 25 (if $n=13$) or 90 (if $n=18$). By fixing each vertex of A_{2} as a center vertex, we get an S_{5}-decomposition in $\left[G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$.
Theorem 3.1. If $n \equiv 0,1,3(\bmod 5)$, then $K G_{n, 2}$ is S_{5}-decomposable.
Proof. Let $l \geq 1$ be positive integer and let

$$
n= \begin{cases}5 l & \text { if } n \equiv 0(\bmod 5) \\ 5 l+1 & \text { if } n \equiv 1(\bmod 5) \\ 5 l+3 & \text { if } n \equiv 3(\bmod 5)\end{cases}
$$

If $l=1$, then $n \in\{5,6,8\}$. Clearly, there doesn't exist an S_{5}-decomposition in $K G_{5,2}$. By Lemma 2.1, there doesn't exist an S_{5}-decomposition in $K G_{6,2}$. By Lemma 3.2, there exists an S_{5}-decomposition in $K G_{8,2}$. If $l=2,3$, then $n \in$ $\{10,11,13,15,16,18\}$. The graph $K G_{n, 2}$ is S_{5}-decomposable, by Lemma 3.3, 3.4, $3.5,3.6$ and 3.8. Hence, the result is true for $l=1,2,3$. We apply mathematical induction on l. Assume that the result is true for all $4 \leq l<k$. Now, we prove that the result is true for $l=k, l \geq 4$. Let $n_{2}=10$. Then $n_{1}=n-n_{2}$. The graph G_{1} is S_{5}-decomposable, by our assumption and G_{2} is S_{5}-decomposable, by Lemma 3.3. In G_{3}, the vertex set A_{3} has n_{1} layers and each layer has 10 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle, 1 \leq i<j \leq n_{1}$ of G_{3} form a crown graph $C_{10,9}$. By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. It is enough to prove that the graph G_{4}, G_{5} and G_{6} are S_{5}-decomposable. Now, we divide the proof into the following three cases:
Case 1. Let $n \equiv 0(\bmod 5)$. By Theorem 2.2, the graph G_{4} is S_{5}-decomposable. In G_{5} and G_{6}, the degree of each vertex of A_{1} and A_{2} is exactly $10\left(n_{1}-2\right)$ and
$8 n_{1}$, note that $n_{1} \equiv 0(\bmod 5)$. So, by fixing each vertex of A_{1} and A_{2} as a center vertex, we get an S_{5}-decomposition in G_{5} and G_{6}.
Case 2. Let $n \equiv 1(\bmod 5)$. By Theorem 2.2, the graph G_{4} is S_{5}-decomposable. In G_{5}, we define three induced subgraphs F_{1}, F_{2} and F_{3} as follows: For $n_{1}+1 \leq y \leq n$,

Figure 4: The induced subgraph F_{1} of G_{5}

- $F_{1}=\bigcup_{i=1}^{n_{1}-2} E_{i}$, where $E_{i}=\langle E(\{i+1, i+2\},\{i, y\})\rangle$, see Fig 4 .
- $F_{2}=\left\langle E\left(\left\{1, n_{1}\right\},\left\{n_{1}-1, y\right\}\right)\right\rangle$.
- $F_{3}=\left\langle E\left(\{1,2\},\left\{n_{1}, y\right\}\right)\right\rangle$.

Note that, the degree of the vertices $\{i+1, i+2\}, 1 \leq i \leq n_{1}-2,\left\{1, n_{1}\right\}$ and $\{1,2\}$ is exactly 10 in F_{1}, F_{2} and F_{3}, respectively. Now, by fixing $\{i+1, i+2\}$, $1 \leq i \leq n_{1}-2,\left\{1, n_{1}\right\}$ and $\{1,2\}$ as center vertices, we get an S_{5}-decomposition in F_{1}, F_{2} and F_{3}, respectively. In $G_{5} \backslash E\left(\bigcup_{i=1}^{3} F_{i}\right)$, the degree of each vertex of A_{3} is $\frac{1}{2}\left[\left(n_{1}-1\right)\left(n_{1}-2\right)-2\right]$. In G_{6}, the degree of each vertex of A_{3} is exactly 36 . In $\left[G_{5} \backslash E\left(\bigcup_{i=1}^{3} F_{i}\right)\right] \cup G_{6}$, the degree of each vertex of A_{3} is $\frac{1}{2}\left[\left(n_{1}-1\right)\left(n_{1}-2\right)-2\right]+36=$ $\frac{1}{2}\left[\left(n_{1}-1\right)\left(n_{1}-2\right)\right]+35$. Now, by fixing each vertex of A_{3} as a center vertex, we get an S_{5}-decomposition in $\left[G_{5} \backslash E\left(\bigcup_{i=1}^{3}, F_{i}\right)\right] \cup G_{6}$.
Case 3. Let $n \equiv 3(\bmod 5)$. In G_{4}, let $T^{\prime}=\{\{1,2\},\{1,3\}\} \subset A_{1}$. In $\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$, the degree of each vertex of T^{\prime} is exactly 45 , see Fig 5 . Now, by fixing each vertex of T^{\prime} as a center vertex, we get an S_{5}-decomposition in $\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$. In $G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$, the degree of each vertex of A_{2} is $\binom{n_{1}}{2}-2$. In G_{6}, the degree of each vertex of A_{2} is exactly $8 n_{1}$. In $\left[G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$, the degree of each vertex of A_{2} is $\binom{n_{1}}{2}-2+8 n_{1}=\frac{1}{2}\left[n_{1}\left(n_{1}+15\right)-4\right]$. Now, by fixing each vertex of A_{2}
as a center vertex, we get an S_{5}-decomposition in $\left[G_{4} \backslash\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle\right] \cup G_{6}$. In G_{5}, the degree of each vertex of A_{1} is exactly $10\left(n_{1}-2\right)$. Now, by fixing each vertex of A_{1} as a center vertex, we get an S_{5}-decomposition in G_{5}. By the principle of mathematical induction, the graph $K G_{n, 2}$ is S_{5}-decomposable.

Figure 5: The induced subgraph $\left\langle E\left(T^{\prime}, A_{2}\right)\right\rangle$ of G_{4}

Lemma 3.9. If $n \equiv 2(\bmod 5)$, then $K G_{n, 2}$ is S_{5}-decomposable.
Proof. Let $l \geq 1$ be positive integer and let $n=5 l+2$. If $l=1,2,3$, then $n \in$ $\{7,12,17\}$. The graph $K G_{n, 2}$ is S_{5}-decomposable, by Lemma 3.1 and 3.7. Now, we prove that the result is true for all $l \geq 4$. Let $n_{2}=11$. Then $n_{1}=n-n_{2}$. By Lemma 3.4, the graph $K G_{11,2}$ is S_{5}-decomposable. By Theorem 3.1, the graph G_{1} is S_{5}-decomposable. In G_{3}, the vertex set A_{3} has n_{1} layers and each layer has 11 vertices. Note that, each subgraph $\left\langle E\left(Z_{i}, Z_{j}\right)\right\rangle, 1 \leq i<j \leq n_{1}$ of G_{3} form a crown graph $C_{11,10}$. By Theorem 2.1, the graph G_{3} is S_{5}-decomposable. By Theorem 2.2, the graph G_{4} is S_{5}-decomposable. In G_{5} and G_{6}, the degree of each vertex of A_{3} is exactly $\binom{n_{1}}{2}-\left(n_{1}-1\right)=\frac{\left(n_{1}-1\right)\left(n_{1}-2\right)}{2}$ and 45 respectively. Now, by fixing each vertex of A_{3} as a center vertex, we get an S_{5}-decomposition in G_{5} and G_{6}.

By combining the Lemmas 3.1 to 3.9 and Theorem 3.1, we get the following:
Theorem 3.2. The graph $K G_{n, 2}$ is S_{5}-decomposable if and only if $n \geq 7$ and $n \equiv 0,1,2,3(\bmod 5)$.

Acknowledgment

The authors thank the anonymous referee for the valuable comments and suggestions, which improved the quality of the paper.

References

[1] Chen, Y., Kneser graphs are Hamiltonian for $n \geq 3 k$, J. Combin. Theory Ser. B, 80 (2000), 69-79.
[2] Ganesamurthy, S., Paulraja, P., Existence of a $P_{2 k+1}$-decomposition in the Kneser graph $K G_{n, 2}$, Discrete Math., 341 (2018), 2113-2116.
[3] Kneser, M., Aufgabe, Jahresbericht der Deutschen Mathematiker-Vereinigung, 2, Abteilung 58 (1955), 27.
[4] Lin, C., Lin, J.-J., and Shyu, T.-W., Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin., 53 (1999), 249-256.
[5] Rodger, C. A., Whitt III, T. R., Path decompositions of Kneser and Generalized Kneser Graphs, Canad. Math. Bull., 58 (3) (2015), 610-619.
[6] Sankari, C., Sangeetha, R., and Arthi, K., Claw-decomposition of Kneser Graphs, Trans. Comb., 11 (1) (2022), 53-61.
[7] Shields, I., Savage, C. D., A note on Hamilton cycles in Kneser graphs, Bull. Inst. Combin. Appl., 40 (2004), 13-22.
[8] Whitt, T. R., Rodger, C. A., Decomposition of the Kneser graph into paths of length four, Discrete Math., 338 (2015), 1284-1288.
[9] Yamamoto, S., Ikeda, H., Shige-eda, S., Ushio, K., and Hamada, N., On claw decomposition of complete graphs and complete bipartite graphs, Hiroshima Math. J., 5(1) (1975), 33-42.

