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Abstract: Let A = {1, 2, 3, ..., n} and Pk(A) denotes the set of all k-element
subsets of A. The Kneser graph KGn,2 has the vertex set V (KGn,2)= P2(A) and
edge set E(KGn,2) = {XY |X, Y ∈ P2(A) and X ∩ Y = ∅}. A star with k edges is
denoted by Sk. In this paper, we show that the graph KGn,2 can be decomposed
into S5 if and only if n ≥ 7 and n ≡ 0, 1, 2, 3(mod 5).
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1. Introduction
All the graphs considered in this paper are finite. For a graph G, G(λ) is the

graph obtained from G by replacing each of its edges by λ parallel edges. If a graph
G has no edges, then it is called a null graph. Let Km,n denote a complete bipartite
graph with m and n vertices in the parts. A star with k edges is denoted by Sk

and Sk
∼= K1,k. A path with k edges is denoted by Pk and a cycle with k edges

is denoted by Ck. A Hamilton cycle of G is a cycle that contains every vertex of
G. A graph G is Hamiltonian if it contains a Hamilton cycle. The degree of a
vertex x of G, denoted by degGx is the number of edges incident with x in G. Let
k be a positive integer. A graph G is said to be k-regular, if each vertex in G is
of degree k. If H1, H2, ..., Hl are edge disjoint subgraphs of a graph G such that
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E(G) =
⋃l

i=1E(Hi), then we say that H1, H2, ..., Hl decompose G and we denote it
by G = ⊕l

i=1Hi. If Hi
∼= Sk for i = 1, 2, ..., l, then we say that G is Sk-decomposable

and we denote it by Sk|G. For positive integers l and n with 1 ≤ l ≤ n, the crown
Cn,l is the bipartite graph with bipartition (A,B), where A = {a0, a1, ..., an−1} and
B = {b0, b1, ..., bn−1}, and the edge set {aibj|1 ≤ j − i ≤ l with arithmetic modulo
n}. Note that Cn,n

∼= Kn,n and Cn,n−1 ∼= Kn,n − I, where I is a 1-factor of Kn,n.
The tensor product of G and H, denoted by G × H has vertex set V (G) × V (H)
in which two vertices (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G) and
h1h2 ∈ E(H). The line graph L(G) of a graph G is the graph with V (L(G)) = E(G)
and eiej ∈ E(L(G)) if and only if the edges ei and ej are incident with a common
end vertex in G. The complete graph on n vertices is denoted by Kn. The line
graph of the complete graph Kn is denoted by L(Kn). Let A = {1, 2, 3, ..., n} and
Pk(A) denotes the set of all k-element subsets of A. The Kneser graph KGn,2 is
defined as follows: V (KGn,2)= P2(A) and E(KGn,2) = {XY |X, Y ∈ P2(A) and

X ∩ Y = ∅}. Note that, the graph KGn,2
∼= L(Kn), where L(Kn) denotes the

complement of the graph L(Kn). Also, it is interesting to note that KG5,2 is the
Petersen graph. The Generalized Kneser Graph, GKGn,k,r is the graph whose
vertices are the k-element subsets of some set of n elements, in which two vertices
are adjacent if and only if they intersect in precisely r elements.

In 1955, M. Kneser [3] introduced the Kneser graph. In 2000, Chen [1] proved
that KGn,2 is Hamiltonian, when n ≥ 3k, k ≥ 1. In 2004, Shields and Savage
[7] proved that all connected Kneser graphs (except KG5,2) have Hamilton cyles,
when n ≤ 27 and the problem KGn,2(n 6= 5) is Hamiltonian is still open. In
2015, Rodger and Whitt [5] established the necessary and sufficient conditions for
a P3-decomposition of the Kneser graph KGn,2 and the Generalized Kneser Graph
GKGn,3,1. In 2015, Whitt and Rodger [8] proved that the Kneser graph KGn,2

is P4-decomposable if and only if n ≡ 0, 1, 2, 3(mod 16). In 2018, Ganesamurthy
and Paulraja [2] proved that if n ≡ 0, 1, 2, 3(mod 8k), k ≥ 2, then the Kneser
graph KGn,2 can be decomposed into paths of length 2k. In the same paper they
also proved that, for k = 2l, l ≥ 1, KGn,2 has a P2k-decomposition if and only
if n ≡ 0, 1, 2, 3(mod 2l+3). Recently, the authors [6] proved that, KGn,2 is claw-
decomposable, for all n ≥ 6. In this paper, we discuss S5-decomposition of the
Kneser graphs. It is obtained that KGn,2 is S5-decomposable if and only if n ≥ 7
and n ≡ 0, 1, 2, 3(mod 5).

2. Preliminaries
Let G be a graph on n vertices and {1, 2, 3, ..., k} ⊂ V (G). The notation

(1; 2, 3, ..., k) denotes a star with a center vertex 1 and k − 1 pendent edges 12, 13,
..., 1k. Let X and Y be two disjoint subsets of V (G). Then E(X, Y ) denotes the
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set of edges in G, whose one end vertex is in X and the other end vertex is in Y .
The notation 〈E(X, Y )〉 denotes the graph induced by the edges of E(X, Y ). To
prove our results we use the following:

Theorem 2.1. (Lin et al. [4]) Let λ, k, l and n be positive integers. The graph
Cn,l(λ) is Sk-decomposable if and only if k ≤ l and λnl ≡ 0(mod k).

Theorem 2.2. (Yamamoto et al. [9]) Let k,m and n ∈ Z+ with m ≤ n. There
exists an Sk-decomposition of Km,n if and only if one of the following holds:

(i) k ≤ m and mn ≡ 0(mod k);

(ii) m < k ≤ n and n ≡ 0(mod k).

Note that, the graphsKG2,2 andKG3,2 are null graphs. For n ≥ 5, |E(KGn,2)| =
n(n−1)(n−2)(n−3)

8
, which is divisible by 5 only when n ≡ 0, 1, 2, 3(mod 5). We know

that the graph KG5,2 (Petersen graph) is 3-regular, hence doesn’t admit an S5-
decomposition. In the following Lemma, we prove that the graph KG6,2 can’t be
decomposed into S5.

Lemma 2.1. There doesn’t exist an S5-decomposition in KG6,2.
proof. (Necessity). For n=6, |E(KG6,2)|=45, which is divisible by 5.
(Sufficiency). Vertex set ofKG6,2 is {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4},
{2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}} and degKG6,2v=6, for all ver-
tices v ∈ V (KG6,2). Without loss of generality, we choose an S5, centered at {1, 2}
i.e.S1 : ({1, 2}; {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}). In G1=KG6,2rS1, the degree of
the vertex {1, 2} is 1 which implies that the edge {1, 2}{5, 6} can only be included in
the star centered at {5, 6}. Therefore, we choose S2 : ({5, 6}; {1, 2}, {1, 3}, {1, 4}, {2,
3}, {2, 4}). In G2=G1 r S2, the degree of the vertex {5, 6} is 1 which implies that
the edge {5, 6}{3, 4} can only be included in the star centered at {3, 4}. We choose
S3 : ({3, 4}; {5, 6}, {1, 5}, {1, 6}, {2, 5}, {2, 6}). In G3=G2 r S3, the degrees of the
vertices are {0, 5, 5, 5, 5, 5, 5, 5, 5, 0, 5, 5, 5, 5, 0}. Among these 12 vertices of degree
5, we can choose any vertex as a center vertex for the next star. Suppose we choose
{1, 3} as a center vertex, then S4 : ({1, 3}; {2, 4}, {2, 5}, {2, 6}, {4, 5}, {4, 6}). In
G4=G3rS4, the degrees of the vertices become {0, 0, 5, 5, 5, 5, 4, 4, 4, 0, 5, 5, 4, 4, 0}.
There are 6 vertices of degree 5. These vertices are {1, 4}, {1, 5}, {1, 6}, {2, 3},
{3, 5} and {3, 6}. To choose the next star, we have the following cases.
Case (i).
Suppose we choose {1, 4} as a center vertex. Then S5:({1, 4}; {2, 3}, {2, 5}, {2, 6}, {3,
5}, {3, 6}). InG5=G4rS5, the degrees of the vertices become {0, 0, 0, 5, 5, 4, 4, 3, 3, 0,
4, 4, 4, 4, 0}. We note that there are only two vertices of degree 5. Hence it is im-
possible to choose four more stars.
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Case (ii).
Suppose we choose {1, 5} as a center vertex. Then S5:({1, 5}; {2, 3}, {2, 4}, {2, 6}, {3,
6}, {4, 6}). InG5=G4rS5, the degrees of the vertices become {0, 0, 5, 0, 5, 4, 3, 4, 3, 0,
5, 4, 4, 3, 0}. We note that there are only three vertices of degree 5. Hence it is
impossible to choose four more stars.
Case (iii).
Suppose we choose {1, 6} as a center vertex. Then S5:({1, 6}; {2, 3}, {2, 4}, {2, 5}, {3,
5}, {4, 5}). InG5=G4rS5, the degrees of the vertices become {0, 0, 5, 5, 0, 4, 3, 3, 4, 0,
4, 5, 3, 4, 0}. As there are only three vertices of degree 5, it is impossible to choose
four more stars.
Case (iv).
Suppose we choose {2, 3} as a center vertex. Then S5:({2, 3}; {1, 4}, {1, 5}, {1, 6}, {4,
5}, {4, 6}). InG5=G4rS5, the degrees of the vertices become {0, 0, 4, 4, 4, 0, 4, 4, 4, 0,
5, 5, 3, 3, 0}. We note that there are only two vertices of degree 5. Hence it is im-
possible to choose four more stars.
Case (v).
Suppose we choose {3, 5} as a center vertex. Then S5:({3, 5}; {1, 4}, {1, 6}, {2, 4}, {2,
6}, {4, 6}). InG5=G4rS5, the degrees of the vertices become {0, 0, 4, 5, 4, 5, 3, 4, 3, 0,
0, 5, 4, 3, 0}. As there are only three vertices of degree 5, it is impossible to choose
four more stars.
Case (vi).
Suppose we choose {3, 6} as a center vertex. Then S5:({3, 6}; {1, 4}, {1, 5}, {2, 4}, {2,
5}, {4, 5}). InG5=G4rS5, the degrees of the vertices become {0, 0, 4, 4, 5, 5, 3, 3, 4, 0,
5, 0, 3, 4, 0}. We note that there are only three vertices of degree 5. Hence it is
impossible to choose four more stars.
So, there doesn’t exist an S5-decomposition in KG6,2.

3. S5-decomposition of KGn,2

In this section, we prove that KGn,2 is S5-decomposable if and only if n ≥ 7
and n ≡ 0, 1, 2, 3(mod 5).
Let n ≥ 10, n1 ≥ 3 and n2 ≥ 5 be positive integers such that n = n1+n2. We define
V1 = {1, 2, 3, ..., n1}, V2 = {n1 + 1, n1 + 2, ..., n} and V (KGn,2) = A1 ∪ A2 ∪ A3,
where A1 = P2(V1), A2 = P2(V2) and A3 = {{i, j}|{i, j} ∈ V1 × V2}. For i ∈ V1,
i × V2 = {{i, j}|j ∈ V2} is called the ith layer of the vertices of A3 and we denote
it by Zi. We define the graphs Gi, 1 ≤ i ≤ 6 as follows:

V (G1) = A1 ; E(G1) = {XY |X, Y ∈ A1 and X ∩ Y = ∅}
V (G2) = A2 ; E(G2) = {XY |X, Y ∈ A2 and X ∩ Y = ∅}
V (G3) = A3 ; E(G3) = {XY |X, Y ∈ A3 and X ∩ Y = ∅}
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V (G4) = A1 ∪ A2 ; E(G4) = {XY |X ∈ A1, Y ∈ A2 and X ∩ Y = ∅}
V (G5) = A1 ∪ A3 ; E(G5) = {XY |X ∈ A1, Y ∈ A3 and X ∩ Y = ∅}
V (G6) = A2 ∪ A3 ; E(G6) = {XY |X ∈ A2, Y ∈ A3 and X ∩ Y = ∅}

We observe that, G1
∼= KGn1,2, G2

∼= KGn2,2, G3
∼= Kn1 × Kn2 , G4

∼= K|A1|,|A2|,
G5
∼= 〈E(A1, A3)〉, G6

∼= 〈E(A2, A3)〉 and KGn,2 = ⊕6
i=1Gi.

Lemma 3.1. The graph KG7,2 is S5-decomposable.
Proof. An S5-decomposition of KG7,2 is as follows:
({1, 2}; {3, 4}, {3, 5}, {3, 6}, {3, 7}, {5, 6}), ({1, 3}; {2, 4}, {2, 5}, {2, 6}, {2, 7}, {5, 7}),
({1, 4}; {2, 3}, {2, 5}, {2, 6}, {2, 7}, {3, 5}), ({1, 5}; {2, 3}, {2, 4}, {2, 6}, {2, 7}, {3, 4}),
({1, 6}; {2, 3}, {2, 4}, {2, 5}, {2, 7}, {3, 4}), ({1, 7}; {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}),
({2, 3}; {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}), ({2, 4}; {3, 5}, {3, 6}, {3, 7}, {5, 6}, {5, 7}),
({2, 5}; {3, 4}, {3, 6}, {3, 7}, {4, 6}, {4, 7}), ({2, 6}; {3, 4}, {3, 5}, {3, 7}, {4, 5}, {4, 7}),
({2, 7}; {3, 4}, {5, 6}, {3, 6}, {4, 5}, {4, 6}), ({3, 5}; {4, 6}, {4, 7}, {2, 7}, {1, 6}, {1, 7}),
({3, 6}; {5, 7}, {4, 7}, {1, 4}, {1, 5}, {1, 7}), ({3, 7}; {4, 5}, {4, 6}, {1, 4}, {1, 5}, {1, 6}),
({4, 5}; {3, 6}, {1, 6}, {1, 7}, {1, 3}, {1, 2}), ({4, 6}; {5, 7}, {1, 2}, {1, 3}, {1, 5}, {1, 7}),
({4, 7}; {5, 6}, {1, 2}, {1, 3}, {1, 5}, {1, 6}), ({5, 6}; {3, 4}, {1, 3}, {1, 4}, {1, 7}, {3, 7}),
({5, 7}; {1, 2}, {3, 4}, {1, 4}, {1, 6}, {2, 6}), ({6, 7}; {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}),
({6, 7}; {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}).
Lemma 3.2. The graph KG8,2 is S5-decomposable.
Proof. An S5-decomposition of KG8,2 is as follows:
({1, 3}; {2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 8}), ({1, 4}; {2, 3}, {2, 5}, {2, 6}, {2, 7}, {2, 8}),
({1, 5}; {2, 3}, {2, 4}, {2, 6}, {2, 7}, {2, 8}), ({1, 6}; {2, 3}, {2, 4}, {2, 5}, {2, 7}, {2, 8}),
({1, 7}; {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 8}), ({1, 8}; {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}),
({1, 6}; {3, 7}, {3, 8}, {4, 5}, {4, 7}, {4, 8}), ({1, 7}; {3, 6}, {3, 8}, {4, 5}, {4, 6}, {4, 8}),
({1, 8}; {3, 6}, {3, 7}, {4, 5}, {4, 6}, {4, 7}), ({2, 4}; {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}),
({2, 5}; {4, 6}, {4, 7}, {4, 8}, {6, 7}, {6, 8}), ({2, 6}; {3, 4}, {3, 5}, {3, 7}, {3, 8}, {4, 5}),
({2, 7}; {3, 4}, {3, 5}, {3, 6}, {3, 8}, {4, 5}), ({2, 8}; {3, 4}, {3, 5}, {3, 6}, {3, 7}, {4, 5}),
({3, 4}; {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}), ({3, 5}; {4, 6}, {4, 7}, {4, 8}, {6, 7}, {6, 8}),
({3, 6}; {4, 5}, {4, 7}, {4, 8}, {5, 7}, {5, 8}), ({3, 7}; {4, 5}, {4, 6}, {4, 8}, {5, 6}, {5, 8}),
({3, 8}; {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}), ({4, 5}; {6, 7}, {6, 8}, {7, 8}, {1, 2}, {1, 3}),
({4, 6}; {5, 7}, {5, 8}, {7, 8}, {1, 2}, {1, 3}), ({4, 7}; {5, 6}, {5, 8}, {6, 8}, {1, 2}, {1, 3}),
({4, 8}; {5, 6}, {5, 7}, {6, 7}, {1, 2}, {1, 3}), ({5, 6}; {1, 2}, {1, 3}, {1, 4}, {1, 7}, {1, 8}),
({5, 7}; {1, 2}, {1, 3}, {1, 4}, {1, 6}, {1, 8}), ({5, 8}; {1, 2}, {1, 3}, {1, 4}, {1, 6}, {1, 7}),
({6, 7}; {1, 2}, {1, 3}, {1, 4}, {1, 8}, {5, 8}), ({6, 8}; {1, 2}, {1, 3}, {1, 4}, {1, 7}, {5, 7}),
({1, 2}; {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}), ({7, 8}; {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}),
({7, 8}; {2, 4}, {2, 5}, {3, 4}, {3, 5}, {5, 6}) and ({1, 5}; {4, 6}, {4, 7}, {4, 8}, {6, 7}, {6,
8}). Now, consider the subgraphG1 obtained by deleting all these stars fromKG8,2.



176 South East Asian J. of Mathematics and Mathematical Sciences

In G1, the degree of the vertex {2, 3} is exactly 10. Let 6 ≤ j1 ≤ 8 and 4 ≤ j2 ≤ 8,
then the degree of the vertices {2, j1} and {3, j2} is exactly 5 in G1. Now, by fixing
these vertices as center vertices, we get an S5-decomposition in G1.

Lemma 3.3. The graph KG10,2 is S5-decomposable.
Proof. Let n1, n2=5. InG1∪G2∪G4, consider the following stars: S1 : ({1, 2}; {3, 4},
{3, 5}, {4, 5}, {7, 8}, {7, 9}), S2 : ({1, 3}; {2, 4}, {2, 5}, {4, 5}, {7, 8}, {7, 9}), S3 :
({1, 4}; {2, 3}, {2, 5}, {3, 5}, {6, 7}, {7, 9}), S4 : ({1, 5}; {2, 3}, {2, 4}, {3, 4}, {6, 10},
{7, 10}), S5 : ({2, 3}; {4, 5}, {6, 7}, {6, 8}, {6, 9}, {6, 10}), S6 : ({2, 4}; {3, 5}, {6, 7},
{6, 8}, {6, 9}, {6, 10}), S7 : ({2, 5}; {3, 4}, {6, 7}, {6, 8}, {6, 9}, {6, 10}), S8 : ({6, 7};
{8, 9}, {8, 10}, {9, 10}, {1, 3}, {3, 4}), S9 : ({6, 8}; {7, 9}, {7, 10}, {9, 10}, {1, 2}, {3, 4}),
S10 : ({6, 9}; {7, 8}, {7, 10}, {8, 10}, {1, 4}, {1, 5}), S11 : ({6, 10}; {7, 8}, {7, 9}, {8, 9},
{1, 2}, {1, 3}), S12 : ({7, 8}; {9, 10}, {1, 4}, {1, 5}, {3, 4}, {2, 5}), S13 : ({7, 9}; {8, 10},
{1, 5}, {2, 3}, {2, 4}, {3, 4}) and S14 : ({7, 10}; {8, 9}, {1, 2}, {1, 3}, {1, 4}, {3, 4}).

denotes F1

denotes F2

denotes F3

denotes F4

Figure 1: The subgraph F
′

of G3 ∪G5

In (G1 ∪ G2 ∪ G4) r E(
⋃14

i=1 S
i), the degree of the vertices {3, 5} and {4, 5} is

exactly 10, the degree of each vertex of A1 r {{3, 5}, {4, 5}} is (where V (G1 ∪
G2 ∪ G4)=A1 ∪ A2) exactly 5. Now, by fixing each vertex of A1 as a center ver-
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tex, we get an S5-decomposition in (G1 ∪ G2 ∪ G4) r E(
⋃14

i=1 S
i). In G3 ∪ G5, we

partition the vertex set A1 =
⋃4

i=1 Ti, where T1 = {{2, 3}, {2, 4}, {2, 5}, {3, 4}},
T2 = {{1, 3}, {3, 5}, {4, 5}}, T3 = {{1, 2}, {1, 4}} and T4 = {{1, 5}}. For 1 ≤ i ≤ 4,
i < j ≤ 5, we define Fi=〈E({i, y}, {j, y′})〉 ∪ 〈E({i, y}, {ai, bi})〉, where 6 ≤ y 6=
y

′ ≤ 10 and for all {ai, bi} ∈ Ti. Consider the subgraph F
′

=
⋃4

i=1 Fi, see Figure
1. Note that, the degree of the vertex {i, y} is exactly 5(5 − i), 1 ≤ i ≤ 4 in Fi.
In (G3 ∪ G5) r E(F

′
), the degree each vertex of A1 is exactly 10. Now, by fixing

each vertex of A3 and A1 as a center vertex, we get an S5-decomposition in F
′

and
(G3∪G5)rE(F

′
). In G6, the degree of each vertex of A2 is exactly 15 and by fixing

each vertex of A2 as a center vertex (ofcourse, 3 times), we get an S5-decomposition
in G6.

Lemma 3.4. The graph KG11,2 is S5-decomposable.
Proof. Let n1=5 and n2=6. In G3, the vertex set A3 has 5 layers and each layer
has 6 vertices. Note that, each subgraph 〈E(Zi, Zj)〉, 1 ≤ i < j ≤ 5 of G3 form a
crown graph C6,5. By Theorem 2.1, the graph G3 is S5-decomposable. In G1 ∪G4,
we choose the following stars: S1 : ({1, 2}; {3, 4}, {3, 5}, {4, 5}, {6, 7}, {6, 8}), S2 :
({1, 3}; {2, 4}, {2, 5}, {4, 5}, {6, 7}, {6, 8}), S3 : ({1, 4}; {2, 3}, {2, 5}, {3, 5}, {6, 9}, {6
, 10}), S4 : ({1, 5}; {2, 3}, {2, 4}, {3, 4}, {6, 9}, {6, 10}), S5 : ({2, 3}; {4, 5}, {6, 7}, {6,
8}, {6, 9}, {6, 10}), S6 : ({2, 4}; {3, 5}, {6, 7}, {6, 8}, {6, 9}, {6, 10}) and S7 : ({2, 5}; {
3, 4}, {6, 7}, {6, 8}, {6, 9}, {6, 10}). Let B

′
= {{6, 7}, {6, 8}, {6, 9}, {6, 10}}, B′′

=
{{6, 11}{7, 8}}. Then B

′
, B

′′ ⊂ A2 ⊂ V ((G1 ∪ G4) r E(
⋃7

i=1 S
i)). We write

[(G1∪G4)rE(
⋃7

i=1 S
i)]∪G5=F1∪F2∪F3 where F1 = 〈E(A1, A3)〉∪ 〈E(A1, B

′′
)〉,

F2 = 〈E(A1, B
′
)〉 and F3 = 〈E(A1, A2 r (B

′ ∪ B′′
))〉, see Figure 2. Note that,

the degree of each vertex of A1 is 20 in F1, B
′

is 5 in F2 and A2 r (B
′ ∪ B′′

) is
10 in F3. By fixing each vertex of A1, B

′
and A2 r (B

′ ∪ B′′
) as a center vertex,

we get an S5-decomposition in [(G1 ∪ G4) r E(
⋃7

i=1 S
i)] ∪ G5. In G2 ∪ G6, con-

sider the following stars: S1 : ({6, 7}; {8, 9}, {8, 10}, {8, 11}, {9, 10}, {9, 11}), S2 :
({6, 8}; {7, 9}, {7, 10}, {7, 11}, {9, 10}, {9, 11}), S3 : ({6, 9}; {7, 8}, {7, 10}, {7, 11}, {8
, 10}, {8, 11}), S4 : ({6, 10}; {7, 8}, {7, 9}, {7, 11}, {8, 9}, {8, 11}), S5 : ({6, 11}; {7, 8}
, {7, 9}, {7, 10}, {8, 9}, {8, 10}), S6 : ({10, 11}; {6, 7}, {6, 8}, {6, 9}, {7, 8}, {7, 9}), S7 :
({8, 9}; {7, 10}, {7, 11}, {10, 11}, {1, 6}, {1, 7}), S8 : ({8, 10}; {7, 9}, {7, 11}, {9, 11}, {
1, 6}, {1, 7}), S9 : ({8, 11}; {7, 9}, {7, 10}, {9, 10}, {1, 6}, {1, 7}), S10 : ({9, 10}; {6, 11
}, {7, 8}, {7, 11}, {1, 6}, {1, 7}) and S11 : ({9, 11}; {6, 10}, {7, 8}, {7, 10}, {1, 6}, {1, 7}).
In (G2∪G6)rE(

⋃11
i=1 S

i), The degree of the vertices {1, 6} and {1, 7} is exactly 5.
The degree of each vertex of A3r{{1, 6}, {1, 7}} is exactly 10. By fixing each vertex
of A3 as a center vertex, we get an S5-decomposition in (G2 ∪G6) r E(

⋃11
i=1 S

i).



178 South East Asian J. of Mathematics and Mathematical Sciences

denotes F1

denotes F2

denotes F3

Figure 2: The induced subgraph F1 ∪ F2 ∪ F3

Lemma 3.5. The graph KG15,2 is S5-decomposable.
Proof. Let n1=5 and n2=10. The graph G2 is S5-decomposable, by Lemma 3.3.
In G3, the vertex set A3 has 5 layers and each layer has 10 vertices. Note that, each
subgraph 〈E(Zi, Zj)〉, 1 ≤ i < j ≤ 5 of G3 form a crown graph C10,9, see Figure 3.

Figure 3: The subgraph 〈E(Zi, Zj)〉 of KG15,2

By Theorem 2.1, the graph G3 is S5-decomposable. In G1∪G4, consider the follow-
ing stars: S1 : ({1, 2}; {3, 4}, {3, 5}, {4, 5}, {6, 7}, {6, 8}), S2 : ({1, 3}; {2, 4}, {2, 5}
, {4, 5}, {6, 7}, {6, 8}), S3 : ({1, 4}; {2, 3}, {2, 5}, {3, 5}, {6, 9}, {6, 10}), S4 : ({1, 5};
{2, 3}, {2, 4}, {3, 4}, {6, 9}, {6, 10}), S5 : ({2, 3}; {4, 5}, {6, 7}, {6, 8}, {6, 9}, {6, 10}),
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S6 : ({2, 4}; {3, 5}, {6, 7}, {6, 8}, {6, 9}, {6, 10}), S7 : ({2, 5}; {3, 4}, {6, 7}, {6, 8},
{6, 9}, {6, 10}). Let B

′
={{6, 7}, {6, 8}, {6, 9}, {6, 10}} ⊂ A2. In (G1 ∪ G4) r

E(
⋃7

i=1 S
i), the degree of each vertex of A2 r B

′
and B

′
is exactly 10 and 5,

respectively. Now, by fixing each vertex of A2 as a center vertex, we get an S5-
decomposition in (G1 ∪G4)rE(

⋃7
i=1 S

i). In G5 and G6, the degree of each vertex
of A1 and A2 is exactly 30 and 40 respectively. So, by fixing each vertex of A1 and
A2 as a center vertex, we get an S5-decomposition in G5 and G6.

Lemma 3.6. The graph KG16,2 is S5-decomposable.
Proof. Let n1=6 and n2=10. The graph G2 is S5-decomposable, by Lemma 3.3.
In G3, the vertex set A3 has 6 layers and each layer has 10 vertices. Note that, each
subgraph 〈E(Zi, Zj)〉, 1 ≤ i < j ≤ 6 of G3 form a crown graph C10,9. By Theorem
2.1, the graph G3 is S5-decomposable. Let T

′
={{1, 2}, {1, 3}} ⊂ A1 ⊂ V (G4). In

〈E(A1rT
′
, A2)〉, the degree of each vertex of A1rT

′
is exactly 45. By fixing each

vertex of A1rT
′
as a center vertex, we get an S5-decomposition in 〈E(A1rT

′
, A2)〉.

In [G4r〈E(A1rT
′
, A2)〉], the degree of each vertex of A2 is exactly two. In G6, the

degree of each vertex of A2 is exactly 48. In [G4r〈E(A1rT
′
, A2)〉]∪G6, the degree

of each vertex of A2 is exactly 50. Now, by fixing each vertex of A2 as a center
vertex, we get an S5-decomposition in [G4 r 〈E(A1 r T

′
, A2)〉] ∪ G6. In G1 ∪ G5,

consider the following stars: S1 : ({1, 2}; {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}), S2 :
({1, 3}; {2, 4}, {2, 5}, {2, 6}, {4, 5}, {4, 6}), S3 : ({1, 4}; {2, 3}, {2, 5}, {2, 6}, {3, 5}, {3
, 6}), S4 : ({1, 5}; {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 6}), S5 : ({1, 6}; {2, 3}, {2, 4}, {2, 5}
, {3, 4}, {3, 5}), S6 : ({5, 6}; {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}), S7 : ({3, 4}; {1, 7}, {1
, 8}, {2, 5}, {2, 6}, {5, 6}), S8 : ({3, 5}; {1, 7}, {1, 8}, {2, 4}, {2, 6}, {4, 6}), S9 : ({3, 6};
{1, 7}, {1, 8}, {2, 4}, {2, 5}, {4, 5}), S10 : ({4, 5}; {1, 6}, {1, 7}, {1, 8}, {2, 3}, {2, 6})
and S11 : ({4, 6}; {1, 5}, {1, 7}, {1, 8}, {2, 3}, {2, 5}). In (G1∪G5)rE(

⋃11
i=1 S

i), the
degree of each vertex of A3r{{1, 7}, {1, 8}} is 10. The degree of the vertices {1, 7}
and {1, 8} is exactly 5. Now, by fixing each vertex of A3 as a center vertex, we get
an S5-decomposition in (G1 ∪G5) r E(

⋃11
i=1 S

i).

Lemma 3.7. If n ∈ {12, 17}, then KGn,2 is S5-decomposable.
Proof. Let N1={{1, y}|2 ≤ y ≤ n} and N2={{x, y}|2 ≤ x < y ≤ n}, we partition
the vertex set V (KGn,2) = N1 ∪ N2. We write, KGn,2 = 〈E(N1)〉 ∪ 〈E(N2)〉 ∪
〈E(N1, N2)〉, where 〈E(N1)〉 and 〈E(N2)〉 denote the graphs induced by the ver-
tices of N1 and N2 respectively. The graph 〈E(N1)〉 is a null graph. The graph
〈E(N2)〉 ∼= KGn−1,2 is S5-decomposable by Lemma 3.4, if n=12 and Lemma 3.6,
if n=17. In 〈E(N1, N2)〉, the degree of each vertex of N1 is exactly 45 (if n=12)
or 105 (if n=17). By fixing each vertex of N1 as a center vertex, we get an S5-
decomposition in 〈E(N1, N2)〉.
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Lemma 3.8. If n ∈ {13, 18}, then KGn,2 is S5-decomposable.
Proof. Let n2=10. Then n1=3 if n=13 and n1=8 if n=18. If n1=3, the graph
G1 is a null graph and if n1=8, the graph G1 is S5-decomposable, by Lemma 3.2.
The graph G2 is S5-decomposable, by Lemma 3.3. In G3, the vertex set A3 has
n1 layers and each layer has 10 vertices. Note that, each subgraph 〈E(Zi, Zj)〉,
1 ≤ i < j ≤ n1 of G3 form a crown graph C10,9. By Theorem 2.1, the graph
G3 is S5-decomposable. In G5, the degree of each vertex of A1 is exactly 10 (if
n=13) or 60 (if n=18). Now, by fixing each vertex of A1 as a center vertex,
we get an S5-decomposition in G5. In G4, let T

′
= {{1, 2}, {1, 3}} ⊂ A1. In

〈E(T
′
, A2)〉, the degree of each vertex of T

′
is exactly 45. Now, by fixing each

vertex of T
′

as a center vertex, we get an S5-decomposition in 〈E(T
′
, A2)〉. In

G4 r 〈E(T
′
, A2)〉, the degree of each vertex of A2 is exactly 1 (if n=13) or 26 (if

n=18). In G6, the degree of each vertex of A2 is exactly 24 (if n=13) or 64 (if
n=18). In [G4 r 〈E(T

′
, A2)〉]∪G6, the degree of each vertex of A2 is exactly 25 (if

n=13) or 90 (if n=18). By fixing each vertex of A2 as a center vertex, we get an
S5-decomposition in [G4 r 〈E(T

′
, A2)〉] ∪G6.

Theorem 3.1. If n ≡ 0, 1, 3(mod 5), then KGn,2 is S5-decomposable.
Proof. Let l ≥ 1 be positive integer and let

n =


5l if n ≡ 0(mod 5)

5l + 1 if n ≡ 1(mod 5)

5l + 3 if n ≡ 3(mod 5)

If l=1, then n ∈ {5, 6, 8}. Clearly, there doesn’t exist an S5-decomposition in
KG5,2. By Lemma 2.1, there doesn’t exist an S5-decomposition in KG6,2. By
Lemma 3.2, there exists an S5-decomposition in KG8,2. If l = 2, 3, then n ∈
{10, 11, 13, 15, 16, 18}. The graph KGn,2 is S5-decomposable, by Lemma 3.3, 3.4,
3.5, 3.6 and 3.8. Hence, the result is true for l = 1, 2, 3. We apply mathematical
induction on l. Assume that the result is true for all 4 ≤ l < k. Now, we prove
that the result is true for l = k, l ≥ 4. Let n2=10. Then n1 = n− n2. The graph
G1 is S5-decomposable, by our assumption and G2 is S5-decomposable, by Lemma
3.3. In G3, the vertex set A3 has n1 layers and each layer has 10 vertices. Note
that, each subgraph 〈E(Zi, Zj)〉, 1 ≤ i < j ≤ n1 of G3 form a crown graph C10,9.
By Theorem 2.1, the graph G3 is S5-decomposable. It is enough to prove that the
graph G4, G5 and G6 are S5-decomposable. Now, we divide the proof into the
following three cases:
Case 1. Let n ≡ 0(mod 5). By Theorem 2.2, the graph G4 is S5-decomposable.
In G5 and G6, the degree of each vertex of A1 and A2 is exactly 10(n1 − 2) and
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8n1, note that n1 ≡ 0(mod 5). So, by fixing each vertex of A1 and A2 as a center
vertex, we get an S5-decomposition in G5 and G6.
Case 2. Let n ≡ 1(mod 5). By Theorem 2.2, the graph G4 is S5-decomposable. In
G5, we define three induced subgraphs F1, F2 and F3 as follows: For n1+1 ≤ y ≤ n,

Figure 4: The induced subgraph F1 of G5

� F1 =
⋃n1−2

i=1 Ei, where Ei = 〈E({i+ 1, i+ 2}, {i, y})〉, see Fig 4.

� F2 = 〈E({1, n1}, {n1 − 1, y})〉.

� F3 = 〈E({1, 2}, {n1, y})〉.

Note that, the degree of the vertices {i + 1, i + 2}, 1 ≤ i ≤ n1 − 2, {1, n1} and
{1, 2} is exactly 10 in F1, F2 and F3, respectively. Now, by fixing {i + 1, i + 2},
1 ≤ i ≤ n1 − 2, {1, n1} and {1, 2} as center vertices, we get an S5-decomposition
in F1, F2 and F3, respectively. In G5 rE(

⋃3
i=1 Fi), the degree of each vertex of A3

is 1
2
[(n1 − 1)(n1 − 2)− 2]. In G6, the degree of each vertex of A3 is exactly 36. In

[G5rE(
⋃3

i=1 Fi)]∪G6, the degree of each vertex of A3 is 1
2
[(n1−1)(n1−2)−2]+36=

1
2
[(n1 − 1)(n1 − 2)] + 35. Now, by fixing each vertex of A3 as a center vertex, we

get an S5-decomposition in [G5 r E(
⋃3

i=1 Fi)] ∪G6.
Case 3. Let n ≡ 3(mod 5). In G4, let T

′
= {{1, 2}, {1, 3}} ⊂ A1. In 〈E(T

′
, A2)〉,

the degree of each vertex of T
′

is exactly 45, see Fig 5. Now, by fixing each
vertex of T

′
as a center vertex, we get an S5-decomposition in 〈E(T

′
, A2)〉. In

G4 r 〈E(T
′
, A2)〉, the degree of each vertex of A2 is

(
n1

2

)
− 2. In G6, the degree

of each vertex of A2 is exactly 8n1. In [G4 r 〈E(T
′
, A2)〉] ∪G6, the degree of each

vertex of A2 is
(
n1

2

)
− 2 + 8n1=

1
2
[n1(n1 + 15)− 4]. Now, by fixing each vertex of A2
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as a center vertex, we get an S5-decomposition in [G4 r 〈E(T
′
, A2)〉] ∪G6. In G5,

the degree of each vertex of A1 is exactly 10(n1 − 2). Now, by fixing each vertex
of A1 as a center vertex, we get an S5-decomposition in G5. By the principle of
mathematical induction, the graph KGn,2 is S5-decomposable.

Figure 5: The induced subgraph 〈E(T
′
, A2)〉 of G4

Lemma 3.9. If n ≡ 2(mod 5), then KGn,2 is S5-decomposable.
Proof. Let l ≥ 1 be positive integer and let n=5l + 2. If l=1,2,3, then n ∈
{7, 12, 17}. The graph KGn,2 is S5-decomposable, by Lemma 3.1 and 3.7. Now,
we prove that the result is true for all l ≥ 4. Let n2=11. Then n1 = n − n2. By
Lemma 3.4, the graph KG11,2 is S5-decomposable. By Theorem 3.1, the graph G1

is S5-decomposable. In G3, the vertex set A3 has n1 layers and each layer has 11
vertices. Note that, each subgraph 〈E(Zi, Zj)〉, 1 ≤ i < j ≤ n1 of G3 form a crown
graph C11,10. By Theorem 2.1, the graph G3 is S5-decomposable. By Theorem 2.2,
the graph G4 is S5-decomposable. In G5 and G6, the degree of each vertex of A3 is
exactly

(
n1

2

)
− (n1−1)= (n1−1)(n1−2)

2
and 45 respectively. Now, by fixing each vertex

of A3 as a center vertex, we get an S5-decomposition in G5 and G6.
By combining the Lemmas 3.1 to 3.9 and Theorem 3.1, we get the following:

Theorem 3.2. The graph KGn,2 is S5-decomposable if and only if n ≥ 7 and
n ≡ 0, 1, 2, 3(mod 5).
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