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Abstract: Let A = {1,2,3,...,n} and Pi(A) denotes the set of all k-element
subsets of A. The Kneser graph K G, » has the vertex set V(KG,,2)= P2(A) and
edge set E(KGp2) = {XY|X,Y € Po(A) and X NY = 0}. A star with &k edges is
denoted by Si. In this paper, we show that the graph KG,, 2 can be decomposed
into Sy if and only if n > 7 and n =0, 1, 2, 3(mod 5).

Keywords and Phrases: Decomposition, Tensor Product, Complete Bipartite
Graph, Kneser Graph, Crown Graph, Star.

2020 Mathematics Subject Classification: 05C70, 05C76.

1. Introduction

All the graphs considered in this paper are finite. For a graph G, G()) is the
graph obtained from G by replacing each of its edges by A parallel edges. If a graph
G has no edges, then it is called a null graph. Let K,,,, denote a complete bipartite
graph with m and n vertices in the parts. A star with k edges is denoted by Sk
and Sp = Kii. A path with k edges is denoted by P, and a cycle with k edges
is denoted by Ci. A Hamilton cycle of G is a cycle that contains every vertex of
G. A graph G is Hamiltonian if it contains a Hamilton cycle. The degree of a
vertex x of GG, denoted by deggx is the number of edges incident with x in G. Let
k be a positive integer. A graph G is said to be k-regular, if each vertex in G is
of degree k. If Hy, Hy, ..., H; are edge disjoint subgraphs of a graph G such that
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E(G) = U | E(H;), then we say that Hy, Hs, ..., H; decompose G and we denote it
by G = &l_, H If H; = S, fori=1,2,...,1, then we say that G is Si-decomposable
and we denote it by Si|G. For positive integers | and n with 1 <[ < n, the crown
Cn,l is the bipartite graph with bipartition (A, B), where A = {ag, a1, ..., a,—1} and

= {bo, b1, ...,b,_1}, and the edge set {azb-\l < j —i <l with arithmetic modulo
n} Note that Com = Ky and Cy o1 = Ky, — I, where [ is a 1-factor of K, ,,.
The tensor product of G and H, denoted by G x H has vertex set V(G) x V(H)
in which two vertices (g1, h1) and (g2, he) are adjacent whenever g9, € E(G) and
hihy € E(H). The line graph L(G) of a graph G is the graph with V(L(G)) = E(G)
and e;e; € E(L(G)) if and only if the edges e; and e; are incident with a common
end vertex in G. The complete graph on n vertices is denoted by K,. The line
graph of the complete graph K, is denoted by L(K,,). Let A = {1,2,3,....n} and
Pr(A) denotes the set of all k-element subsets of A. The Kneser graph KG,, 5 is
defined as follows: V(KG,2)= Pa(A) and E(KG,2) = {XY|X,Y € Py(A) and
X NY = 0}. Note that, the graph KG,» = L(K,), where L(K,) denotes the
complement of the graph L(K,,). Also, it is interesting to note that KGj is the
Petersen graph. The Generalized Kneser Graph, GKG,, ;. is the graph whose
vertices are the k-element subsets of some set of n elements, in which two vertices
are adjacent if and only if they intersect in precisely r elements.

In 1955, M. Kneser [3] introduced the Kneser graph. In 2000, Chen [1] proved
that KG,, 2 is Hamiltonian, when n > 3k, £k > 1. In 2004, Shields and Savage
[7] proved that all connected Kneser graphs (except K G52) have Hamilton cyles,
when n < 27 and the problem KG,2(n # 5) is Hamiltonian is still open. In
2015, Rodger and Whitt [5] established the necessary and sufficient conditions for
a Ps-decomposition of the Kneser graph KG), » and the Generalized Kneser Graph
GKG,31. In 2015, Whitt and Rodger [8] proved that the Kneser graph KG,, -
is P;-decomposable if and only if n = 0,1,2,3(mod 16). In 2018, Ganesamurthy
and Paulraja [2] proved that if n = 0,1,2,3(mod 8k),k > 2, then the Kneser
graph KG, 2 can be decomposed into paths of length 2k. In the same paper they
also proved that, for k = 2!, I > 1, KG, has a Py-decomposition if and only
if n =0,1,2,3(mod 2"*3). Recently, the authors [6] proved that, KG,» is claw-
decomposable, for all n > 6. In this paper, we discuss Ss-decomposition of the
Kneser graphs. It is obtained that K G, 2 is Ss-decomposable if and only if n > 7
and n =0,1,2,3(mod 5).

2. Preliminaries
Let G be a graph on n vertices and {1,2,3,....k} C V(G). The notation
(1;2,3, ..., k) denotes a star with a center vertex 1 and k — 1 pendent edges 12,13,
., 1k. Let X and Y be two disjoint subsets of V(G). Then E(X,Y) denotes the
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set of edges in G, whose one end vertex is in X and the other end vertex is in Y.
The notation (E(X,Y)) denotes the graph induced by the edges of F(X,Y"). To
prove our results we use the following:

Theorem 2.1. (Lin et al. [4]) Let A\, k,l and n be positive integers. The graph
Chni(N) is Si-decomposable if and only if k <1 and Anl = 0(mod k).

Theorem 2.2. (Yamamoto et al. [9]) Let k,m and n € Z, with m < n. There
exists an Si-decomposition of K, ,, if and only if one of the following holds:

(1) k <m and mn = 0(mod k);

(i1) m < k <mn and n = 0(mod k).
Note that, the graphs K Go 5 and K G35 are null graphs. Forn > 5, |E(KG,,2)| =

nln— 1)(" 2)(-3 , which is divisible by 5 only when n = 0, 1,2, 3(mod 5). We know
that the graph KGj5o (Petersen graph) is 3-regular, hence doesn’t admit an Ss-
decomposition. In the following Lemma, we prove that the graph KGgs can’t be
decomposed into Ss.

Lemma 2.1. There doesn’t exist an Ss-decomposition in KGg .

proof. (Necessity). For n=6, | E(K G 2)|=45, which is divisible by 5.
(Sufficiency). Vertex set of KGgois {{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},
{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6} } and degk,,v=0, for all ver-
tices v € V(K Gg2). Without loss of generality, we choose an Ss, centered at {1,2}
i.e.SY:({1,2};{3,4},{3,5},{3,6},{4,5},{4,6}). In G'=K G\ S', the degree of
the vertex {1, 2} is 1 which implies that the edge {1, 2}{5,6} can only be included in
the star centered at {5, 6}. Therefore, we choose S? : ({5,6};{1,2},{1,3},{1,4},{2,
3},{2,4}). In G?=G"' \ 52, the degree of the vertex {5,6} is 1 which implies that
the edge {5,6}{3,4} can only be included in the star centered at {3,4}. We choose
S3:({3,4};{5,6},{1,5},{1,6},{2,5},{2,6}). In G®*=G? \. S, the degrees of the
vertices are {0,5,5,5,5,5,5,5,5,0,5,5,5,5,0}. Among these 12 vertices of degree
5, we can choose any vertex as a center vertex for the next star. Suppose we choose
{1,3} as a center vertex, then S* : ({1,3};{2,4},{2,5},{2,6},{4,5},{4,6}). In
G'=G3\. 5%, the degrees of the vertices become {0,0,5,5,5,5,4,4,4,0,5,5,4,4,0}.
There are 6 vertices of degree 5. These vertices are {1,4}, {1,5}, {1,6}, {2,3},
{3,5} and {3,6}. To choose the next star, we have the following cases.

Case (i).

Suppose we choose {1, 4} as a center vertex. Then S5:({1,4};{2,3},{2,5},{2,6}, {3,
5},{3,6}). In G5=G*\.S®, the degrees of the vertices become {0, 0,0, 5, 5, 4,4, 3,3,0,
4,4,4,4,0}. We note that there are only two vertices of degree 5. Hence it is im-
possible to choose four more stars.



174 South FEast Asian J. of Mathematics and Mathematical Sciences

Case (ii).

Suppose we choose {1, 5} as a center vertex. Then S°:({1,5};{2,3},{2,4},{2,6}, {3,
6},{4,6}). In G°=G*\.S°, the degrees of the vertices become {0, 0, 5,0, 5, 4, 3,4, 3,0,
5,4,4,3,0}. We note that there are only three vertices of degree 5. Hence it is
impossible to choose four more stars.

Case (iii).

Suppose we choose {1, 6} as a center vertex. Then S°:({1,6};{2,3},{2,4},{2,5}, {3,
5},{4,5}). In G®=G*\.S°, the degrees of the vertices become {0,0,5,5,0,4, 3, 3,4,0,
4,5,3,4,0}. As there are only three vertices of degree 5, it is impossible to choose
four more stars.

Case (iv).

Suppose we choose {2, 3} as a center vertex. Then S°:({2,3};{1,4},{1,5},{1,6},{4,
5},{4,6}). In G®=G*\.S?, the degrees of the vertices become {0,0,4,4,4,0,4,4,4,0,
5,5,3,3,0}. We note that there are only two vertices of degree 5. Hence it is im-
possible to choose four more stars.

Case (v).

Suppose we choose {3, 5} as a center vertex. Then S°:({3,5};{1,4},{1,6},{2,4},{2,
6},{4,6}). In G3=G*\.S%, the degrees of the vertices become {0, 0, 4,5, 4,5, 3,4, 3,0,
0,5,4,3,0}. As there are only three vertices of degree 5, it is impossible to choose
four more stars.

Case (vi).

Suppose we choose {3, 6} as a center vertex. Then S°:({3,6};{1,4},{1,5},{2,4},{2,
5},{4,5}). In GP=G*\.S®, the degrees of the vertices become {0,0,4,4,5,5,3,3,4,0,
5,0,3,4,0}. We note that there are only three vertices of degree 5. Hence it is
impossible to choose four more stars.

So, there doesn’t exist an Ss-decomposition in K G ».

3. Ss-decomposition of KG,, »

In this section, we prove that KG,, 2 is Ss-decomposable if and only if n > 7
and n =0,1,2,3(mod 5).
Let n > 10, ny > 3 and ny > 5 be positive integers such that n = ny+ny. We define
Vi ={1,2,3,....m}, Vo = {n1 + 1,n1 +2,...,n} and V(KGp2) = A1 U Ay U A3,
where Ay = Pa(V1), Ay = Po(V2) and Az = {{i,j}|{i,j} € Vi x V3}. Fori € 1,
i x Vo = {{i,j}|j € Va} is called the i'" layer of the vertices of A3 and we denote
it by Z;. We define the graphs G;,1 <1 < 6 as follows:

V(Gy) =4 ; E(G)) ={XY|X,)Y € Ayand X NY =0}
V(G) =4y, ;  E(Gy) ={XY|X,Y € A and X NY = {}
V(Gs) = Az E(G3) ={XY|X,Y € A3 and X NY = (0}
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V(G4):A1UA2 ; E(G4):{XY|X€A1,Y€A2 andXﬂYz@}
V(G5):A1UA3 3 E(G5>:{XY|X€A1,Y€A3 CLTLdXﬂY:@}
V(G6>:A2UA3 3 E(Gﬁ)Z{XY’XeAQ,YEAg andXﬂY:(Z)}

We observe that, G1 = KGy, 0, Go = KGp, 2, Gz = K, X K, G4 = K|a,),| 40|
G5 = <E(A1,A3)>, Gﬁ = <E(A2,A3)> and KGn’g = EB?:lGl

Lemma 3.1. The graph KG7 2 is Ss-decomposable.

Proof. An Ss-decomposition of KG75 is as follows:
({1,2};{3,4},{3,5},{3,6},{3, 7}, {5, 6}), ({1,3}; {2, 4}, {2,5},{2,6},{2, 7}, {5, 7}),
({1,4}:{2,3},{2,5},{2,6},{2,7},{3,5}), ({1.5}; {2, 3}, {2,4},{2,6},{2, 7}, {3,4}),
({1,6}:{2,3},{2,4}.{2,5},{2,7},{3.4}), ({1, 7}: {2, 3}, {2,4},{2,5}, {2, 6}, {3,4}),
({27 3}; {47 5}7 {47 6}7 {47 7}7 {57 6}7 {57 7})7 ({27 4}3 {37 5}7 {37 6}? {37 7}7 {57 6}7 {57 7})7
({2,5}:{3,4},{3,6},{3,7},{4,6},{4.7}), ({2,6}; {3, 4}, {3,5}, {3, 7}, {4, 5}, {4, 7}),
({2,7}:{3,4},{5,6},{3,6},{4,5},{4,6}), ({3,5}; {4, 6}, {4, 7}, {2, 7}, {1, 6}, {1, 7}),
({3,6}; {5, 7}, {4, 7}, {1,4},{1,5}, {1, 7}), ({3, 7}; {4, 5}, {4,6}, {1, 4}, {1,5},{1,6}),
({4.5}:{3,6},{1,6},{1,7},{1,3},{1.2}), ({4,6}; {5, 7}, {1, 2}, {1, 3}, {1, 5}, {1, 7}),
({4> 7}; {5’ 6}7 {17 2}7 {17 3}> {17 5}a {17 6})7 ({5a 6}3 {37 4}7 {17 3}> {17 4}a {17 7}? {37 7})7
({5, 7} {1,2}, {3, 4}, {1,4},{1,6},{2,6}), ({6, 7}; {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}),
({6,7};{2,4},{2,5},{3,4},{3,5}, {4,5}).

Lemma 3.2. The graph KGsgs is Ss-decomposable.

Proof. An Ss-decomposition of K Gy is as follows:
({1,3}:{2,4},{2,5},{2,6},{2,7},{2,8}), ({1,4}: {2, 3}, {2,5},{2,6}, {2, 7}, {2, 8}),
({1, 5}; {27 3}’ {2’ 4}7 {27 6}7 {27 7}7 {2’ 8})’ ({17 6}§ {Qa 3}7 {27 4}7 {27 5}7 {2’ 7}’ {27 8})7
({1.7}:{2,3},{2,4}.{2,5},{2,6},{2,8}), ({1,8}; {2, 3}, {2,4},{2,5}, {2, 6}, {2, 7}),
({1,6};{3,7},{3,8},{4,5},{4,7},{4.8}), ({1,7}; {3, 6}, {3, 8}, {4,5}, {4, 6}, {4,8}),
({1,8}:{3,6},{3, 7}, {4,5},{4,6},{4,7}), ({2,4}; {5, 6}, {5, 7}, {5,8},{6, 7}, {6,8}),
({2,5};{4,6},{4,7},{4,8},{6,7},{6,8}), ({2,6}; {3, 4}, {3,5}, {3, 7}, {3,8}, {4, 5}),
({2,7}:{3,4},{3,5},{3,6},{3,8},{4,5}), ({2,8}; {3, 4}, {3,5}, {3,6},{3, 7}, {4,5}),
({3.4}:{5,6},{5,7}.{5,8},{6,7},{6,8}), ({3,5}; {4, 6}, {4, 7}, {4,8},{6,7},{6,8}),
({3,6}; {4,5}, {4, 7}, {4,8},{5,7},{5.8}), ({3, 7}; {4, 5}, {4, 6}, {4, 8}, {5, 6}, {5,8}),
({3,8};{4,5},{4,6},{4,7},{5,6},{5.7}), ({4,5}; {6, 7},{6,8}, {7, 8}, {1, 2}, {1, 3}),
({4,6}; {5, 7}, {5, 8}, {7,8},{1,2},{1,3}), ({4, 7}; {5, 6}, {5,8},{6, 8}, {1,2},{1,3}),
({4,8};{5,6},{5,7},{6, 7}, {1,2},{1,3}), ({5,6}; {1, 2}, {1, 3}, {1,4}, {1, 7}, {1,8}),
({5, 7} {1, 2}, {1, 3}, {1,4},{1,6},{1.8}), ({5,8}; {1, 2}, {1, 3}, {1, 4}, {1, 6}, {1, 7}),
({67 7}; {17 2}7 {17 3}7 {17 4}7 {17 8}7 {57 8})7 ({67 8}3 {17 2}7 {17 3}7 {17 4}7 {17 7}7 {57 7})7
({1,2};:{3,4},{3,5},{3,6}, {3, 7}, {3.8}), ({7, 8}; {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1,6}),
é{7,8};{2,4},{2,5},{3,4},{3,5},{5,6})and({1,5};{4,6},{4,7},{4,8},{6,7},{6,

}). Now, consider the subgraph G, obtained by deleting all these stars from K Gf ».
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In G4, the degree of the vertex {2, 3} is exactly 10. Let 6 < j; < 8 and 4 < j, <8,
then the degree of the vertices {2, j; } and {3, j»} is exactly 5 in G;. Now, by fixing
these vertices as center vertices, we get an Ss-decomposition in Gj.

Lemma 3.3. The graph KGigz is Ss-decomposable.

Proof. Let ny,ny=>5. In G{UG,UGY, consider the following stars: St : ({1,2}; {3, 4},
{3,5},{4,5},{7,8},{7,9}), S? : ({1,3};{2,4},{2,5},{4,5},{7,8},{7,9}), S* :
({1,4}:{2,3},{2,5},{3,5}. {6, 7}, {7,9}), S* : ({1,5};{2,3},{2,4}, {3.4}, {6, 10},
{7.10}), S°: ({2,3};{4,5},{6,7},{6,8},{6,9},{6,10}), S° : ({2,4};{3,5},{6, 7},
{6,8},{6,9},{6,10}), S : ({2,5};{3,4},{6,7},{6,8},{6,9},{6,10}), S®: ({6,7};
(8,9}, 8,10}, {9, 10}, {1,3}, {3, 41), 8% : ({6,8}; {7, 9}, {7, 10}, {9, 10}, {1, 2}, {3,4}),
S0 ({6,9}; {7,8},{7,10},{8,10},{1,4},{1,5}), S* : ({6,10};{7,8},{7,9}, {8, 9},
{1.2},{1,3}), 8% : ({7,8}: {9, 10}, {1,4}, {1, 5}, {3, 4}, {2,5}), S’ : ({7, 9}; {8, 10},
{1,5},{2,3},{2,4},{3,4}) and S™ : ({7,10}; {8,9}, {1, 2}, {1, 3}, {1,4},{3,4}).

" layer

denotes F}

---------- denotes Fy
.................... denotes Fj3

denotes Fy
Figure 1: The subgraph F' of G5 U G5
In (G; UGy UGy) ~ E(UL, 5%, the degree of the vertices {3,5} and {4,5} is

exactly 10, the degree of each vertex of A; \ {{3,5},{4,5}} is (where V(G; U
Go U Gy)=A; U Ay) exactly 5. Now, by fixing each vertex of A; as a center ver-
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tex, we get an Ss-decomposition in (G7 U Gy U Gy) E(Uzli1 SY). In G3 U G5, we
partition the vertex set A; = (J_, Ti, where T} = {{2,3},{2,4},{2,5},{3,4}},
Ty = {{1,3},{3,5},{4,5}}, T3 = {{1,2},{1,4}} and Ty = {{1,5}}. For 1 <i <4,
i < j <5, we define F=(E({i,y},{j,¥'})) U (E{i, vy}, {as,b;})), where 6 < y #
y < 10 and for all {a;,b;} € T;. Consider the subgraph F' = U?Zl F;, see Figure
1. Note that, the degree of the vertex {i,y} is exactly 5(5 —i),1 < i < 4 in F,.
In (G5 UG5) ~ E(F), the degree each vertex of A, is exactly 10. Now, by fixing
each vertex of Az and A; as a center vertex, we get an Ss-decomposition in F " and
(G3UGs) N E(F"). In Gg, the degree of each vertex of A, is exactly 15 and by fixing
each vertex of Aj as a center vertex (ofcourse, 3 times), we get an Ss-decomposition

in GG‘

Lemma 3.4. The graph KGi12 is Ss-decomposable.

Proof. Let n;=>5 and ny=6. In G3, the vertex set Az has 5 layers and each layer
has 6 vertices. Note that, each subgraph (E(Z;, Z;)), 1 <i < j <5 of G5 form a
crown graph Cg 5. By Theorem 2.1, the graph G is Ss-decomposable. In G U Gy,
we choose the following stars: S': ({1,2};{3,4},{3,5},{4,5},{6,7},{6,8}), S%:
({1,3};{2,4},{2,5},{4,5},{6,7},{6,8}), 5°: ({1,4};{2,3},{2,5}, {3,5},{6,9}, {6
J10}), 5% ({1,51:{2,3},{2,4},{3,4},{6,9}, {6, 10}), 5° : ({2,3}; {4,5},{6, 7}, {6,
8},{6,9},{6,10}), S¢: ({2,4};{3,5},{6,7},{6,8},{6,9},{6,10}) and S7 : ({2,5};{
3,4},{6,7},{6,8},{6,9},{6,10}). Let B' = {{6,7},{6,8},{6,9},{6,10}}, B" =
{{6,11}{7,8}}. Then B',B" C A, C V((Gi UGy ~ E(U_,S%)). We write
[(GLUGH) N E(UL, SH|UGs=F,UF,UFy where F; = (E(A;, A3))U(E(A,, B")),
Fy, = (E(A;,B")) and F3 = (E(A;, Ay ~ (B"U B"))), see Figure 2. Note that,
the degree of each vertex of A; is 20 in Fy, B" is 5 in Fy and Ay ~ (B'U B") is
10 in F3. By fixing each vertex of A;, B and Ay ~ (B' U B") as a center vertex,
we get an Ss-decomposition in [(G; U Gyg) N E(Uzzl SH]U Gs. In Gy U Gg, con-
sider the following stars: St : ({6,7};{8,9},{8,10},{8,11},{9, 10}, {9,11}), S? :
({6,8};{7,9},{7,10},{7,11},{9,10},{9,11}), S : ({6,9};{7,8},{7,10},{7,11},{8
, 10}, {8,11}), S*: ({6,10};{7,8},{7,9},{7,11},{8,9},{8,11}), S : ({6,11};{7,8}
47,9}, {7,10}, {8,9}, {8,10}), S¢ : ({10,11};{6,7},{6,8},{6,9},{7,8},{7,9}), S :
(48,9} {7, 10}, {7, 11}, {10, 11}, {1,6}, {1,7}), S* : ({8,10}; {7, 9}, {7, 11}, {9, 11}, {
1,6},{1,7}), 5 : ({8,11};{7,9},{7,10},{9,10},{1,6},{1,7}), S1°: ({9, 10}; {6, 11
A7, 8}, {7,11},{1,6},{1,7}) and S** : ({9,11};{6,10},{7,8},{7,10},{1,6},{1,7}).
In (GoUGs)~ E(ULL, S%), The degree of the vertices {1,6} and {1, 7} is exactly 5.
The degree of each vertex of Az3~{{1,6},{1,7}} is exactly 10. By fixing each vertex
of Ay as a center vertex, we get an Ss-decomposition in (G U Gg) ~ E(U;L, S%).
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denotes F}
.......... denotes Fy

.................... denotes F3

Figure 2: The induced subgraph F; U Fy U Fj

Lemma 3.5. The graph KG152 s S5-decomposable.

Proof. Let n;=5 and ny=10. The graph G, is S;-decomposable, by Lemma 3.3.
In G, the vertex set A has 5 layers and each layer has 10 vertices. Note that, each
subgraph (E(Z;, Z;)), 1 <i < j <5 of G5 form a crown graph Cyg 9, see Figure 3.

.6 {67 8t (L9} {i10y {11} {i12) (5,13} (6,14} {i.15)

6\‘,

7%
11/51"2

7
o,

.6y L7 {G8y ey oy Gy {12 {13y {514} {515}

Figure 3: The subgraph (E(Z;, Z;)) of KG152

By Theorem 2.1, the graph G35 is Ss-decomposable. In Gy UGy, consider the follow-
ing stars: S* : ({1,2};{3,4},{3,5},{4,5},{6,7},{6,8}), S* : ({1,3};{2,4},{2,5}
,{4,5},{6,7},{6,8}), 8%+ ({1,4};{2,3},{2,5},{3,5},{6,9},{6,10}), S* : ({1,5};
{27 3}’ {2’ 4}7 {37 4}7 {67 9}7 {6’ 10})7 S5 : ({Za 3}; {47 5}7 {67 7}7 {6’ 8}’ {67 9}7 {67 10})a
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8¢ ({2,4}:{3,5},{6,7},{6,8},{6,9},{6,10}), ST : ({2,5};{3,4},{6,7},{6,8},
{6,9},{6,10}). Let B'={{6,7},{6,8},{6,9},{6,10}} C Ay. In (G; U G4) ~
E(UZ:1 S%), the degree of each vertex of A, ~ B' and B’ is exactly 10 and 5,
respectively. Now, by fixing each vertex of Ay as a center vertex, we get an Ss-
decomposition in (G UG,) ~ E(UL_, S%). In G5 and G, the degree of each vertex
of A; and Aj is exactly 30 and 40 respectively. So, by fixing each vertex of A; and
As as a center vertex, we get an Ss-decomposition in G5 and Gg.

Lemma 3.6. The graph KGi62 is Ss-decomposable.

Proof. Let n;=6 and ny=10. The graph G, is S5-decomposable, by Lemma 3.3.
In (G5, the vertex set As has 6 layers and each layer has 10 vertices. Note that, each
subgraph (E(Z;, Z;)), 1 <i < j <6 of G3 form a crown graph Cip9. By Theorem
2.1, the graph Gs is Ss-decomposable. Let T'={{1,2},{1,3}} c A, C V(G,4). In
(E(A;\T', Ay)), the degree of each vertex of A; \T" is exactly 45. By fixing each
vertex of A;\T" as a center vertex, we get an Ss-decomposition in (E(A;\T", Ay)).
In [G4~ (E(ANT', A3))], the degree of each vertex of A, is exactly two. In G, the
degree of each vertex of Ay is exactly 48. In [G4~ (E(A;NT', A3))]UGs, the degree
of each vertex of A, is exactly 50. Now, by fixing each vertex of A, as a center
vertex, we get an Ss-decomposition in [Gy ~ (E(A; N T, A2))] U Gg. In Gy UGS,
consider the following stars: S' : ({1,2};{3,4},{3,5},{3,6},{4,5},{4,6}), S*:
({1,3};{2,4},{2,5},{2,6},{4,5},{4,6}), 5° : ({1,4};{2,3},{2,5},{2,6},{3,5},{3
,63), 8% ({1,5}:{2,3},{2,4},{2,6},{3,4},{3,6}), 5° : ({1,6};{2,3},{2,4},{2,5}
3,41 {3,5}), S ({5,6}; {1,2},{1,3},{1,4},{2,3},{2,4}), ST (3,4} {1, 7} {1
,8},{2,5},{2,6},{5,6}), 5%« ({3,5}:{1,7},{1,8},{2,4},{2,6},{4,6}), 5” : ({3,6};
{1,7},{1,8},{2,4},{2,5},{4,5}), 5" : ({4,5};{1,6},{1,7},{1,8},{2,3},{2,6})
and SM : ({4,6}; {1,5},{1,7},{1,8},{2,3},{2,5}). In (G, UGs)~ E(U.L, S7), the
degree of each vertex of A3~ {{1,7},{1,8}} is 10. The degree of the vertices {1, 7}
and {1,8} is exactly 5. Now, by fixing each vertex of A as a center vertex, we get
an Ss-decomposition in (G U G5) ~ E(U;L, S%).

Lemma 3.7. Ifn € {12,17}, then KG, 5 is S5-decomposable.

Proof. Let Ni={{1,y}|2 <y < n} and No={{z,y}|2 < 2z < y < n}, we partition
the vertex set V(KG,2) = Ny U Ny. We write, KGp,2 = (E(Ny)) U (E(N2)) U
(E(Ny, Ny)), where (E(Ny)) and (E(N3)) denote the graphs induced by the ver-
tices of Ny and N, respectively. The graph (F(NV;)) is a null graph. The graph
(E(Ns)) =2 KGp_12 is Ss-decomposable by Lemma 3.4, if n=12 and Lemma 3.6,
if n=17. In (E(Ny, N2)), the degree of each vertex of Nj is exactly 45 (if n=12)
or 105 (if n=17). By fixing each vertex of N; as a center vertex, we get an Ss-
decomposition in (E(Ny, Ns)).
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Lemma 3.8. Ifn € {13,18}, then KG, 5 is Ss-decomposable.

Proof. Let ny=10. Then n,=3 if n=13 and n;=8 if n=18. If n;=3, the graph
(G1 is a null graph and if n;=8, the graph G is Ss-decomposable, by Lemma 3.2.
The graph Gy is Ss-decomposable, by Lemma 3.3. In Gj3, the vertex set Az has
ny layers and each layer has 10 vertices. Note that, each subgraph (E(Z;, Z;)),
1 <i<j <n of Gy form a crown graph Cp9. By Theorem 2.1, the graph
G3 is Ss-decomposable. In G5, the degree of each vertex of A; is exactly 10 (if
n=13) or 60 (if n=18). Now, by fixing each vertex of A; as a center vertex,
we get an Ss-decomposition in Gs. In Gy, let T" = {{1,2},{1,3}} € A;. In
(E(T', Ay)), the degree of each vertex of T is exactly 45. Now, by fixing each
vertex of T' as a center vertex, we get an Ss-decomposition in (E(T', A,)). In
Gy~ (E(T', Ay)), the degree of each vertex of Aj is exactly 1 (if n=13) or 26 (if
n=18). In G, the degree of each vertex of A, is exactly 24 (if n=13) or 64 (if
n=18). In [G4 ~ (E(T', A3))] U G, the degree of each vertex of A, is exactly 25 (if
n=13) or 90 (if n=18). By fixing each vertex of Ay as a center vertex, we get an
Ss-decomposition in [Gy ~ (E(T", Ay))] U G.

Theorem 3.1. If n =0,1,3(mod 5), then KG,, 2 is Ss-decomposable.
Proof. Let [ > 1 be positive integer and let

5l if n = 0(mod 5)
n=1<5l+1 if n=1(mod 5)
54+ 3 if n = 3(mod 5)

If (=1, then n € {5,6,8}. Clearly, there doesn’t exist an Ss-decomposition in
K(G55. By Lemma 2.1, there doesn’t exist an Ss-decomposition in KGgo. By
Lemma 3.2, there exists an Ss-decomposition in KGso. If | = 2,3, then n €
{10,11,13,15,16,18}. The graph KG,,» is Ss-decomposable, by Lemma 3.3, 3.4,
3.5, 3.6 and 3.8. Hence, the result is true for [ = 1,2,3. We apply mathematical
induction on [. Assume that the result is true for all 4 < [ < k. Now, we prove
that the result is true for [ = k, [ > 4. Let ny=10. Then ny = n — ny. The graph
(g1 is Ss-decomposable, by our assumption and G5 is Ss-decomposable, by Lemma
3.3. In (3, the vertex set A3 has n; layers and each layer has 10 vertices. Note
that, each subgraph (E(Z;, Z;)), 1 <i < j < n; of G5 form a crown graph Cjgg.
By Theorem 2.1, the graph G5 is Ss-decomposable. It is enough to prove that the
graph G4, G5 and G¢ are Ss-decomposable. Now, we divide the proof into the
following three cases:

Case 1. Let n = 0(mod 5). By Theorem 2.2, the graph G, is Ss-decomposable.
In G5 and G, the degree of each vertex of A; and A, is exactly 10(n; — 2) and
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8n1, note that n; = 0(mod 5). So, by fixing each vertex of A; and A, as a center
vertex, we get an Ss-decomposition in G5 and Gg.

Case 2. Let n = 1(mod 5). By Theorem 2.2, the graph G4 is Ss-decomposable. In
G5, we define three induced subgraphs F}, F5 and Fj3 as follows: For ni+1 <y <mn,

{23} {i+1,i+2)

{n; —1,n}

— e

e LA
(\{\;i,,l+1){iA:zl+2} (:.u}/“ (fn1 = 2,m1 + 1}{n, — 2,y +2}

\{m {n, 72;/2}/

Figure 4: The induced subgraph Fj of Gj

o Fy =M% E;, where B; = (E({i + 1,i + 2}, {i,y})), see Fig 4.
o Iy =(E({1l,ni},{n1 — 1L y})).
o Iy = (E({1,2} {n1,y})).

Note that, the degree of the vertices {i + 1,i 4+ 2},1 < i < n; —2, {1,n;} and
{1,2} is exactly 10 in Fy, F» and Fj, respectively. Now, by fixing {i + 1,7 + 2},
1 <i<mn;—2 {1,n1} and {1,2} as center vertices, we get an Ss-decomposition
in Fy, Fy and F3, respectively. In G5~ E(Uf:1 F;), the degree of each vertex of Az
is 3[(n1 — 1)(ny — 2) — 2]. In Gg, the degree of each vertex of Aj is exactly 36. In
(G5~ E(U>_, F,)]UGS, the degree of each vertex of A is +[(n1—1)(n1—2)—2]+36=

+[(n1 — 1)(n — 2)] 4 35. Now, by fixing each vertex of A3 as a center vertex, we

get an Ss-decomposition in [G5 ~ E(JL, F})] U Gs.

Case 3. Let n = 3(mod 5). In Gy, let T' = {{1,2},{1,3}} C A;. In (E(T", A,)),
the degree of each vertex of T' is exactly 45, see Fig 5. Now, by fixing each
vertex of T' as a center vertex, we get an Ss-decomposition in (E(T', A,)). In
Gy~ (E(T', A)), the degree of each vertex of A, is (%) — 2. In Gs, the degree
of each vertex of A, is exactly 8n;. In [Gy ~ (E(T", A3))] U Gg, the degree of each

vertex of Ay is ("21) —2+8ny= %[nl(nl +15) —4]. Now, by fixing each vertex of A,
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as a center vertex, we get an Ss-decomposition in [Gy ~\ (E(T', 43))] U Gs. In G5,
the degree of each vertex of A; is exactly 10(n; — 2). Now, by fixing each vertex
of A; as a center vertex, we get an Ss-decomposition in G5. By the principle of
mathematical induction, the graph KG,, 2 is Ss-decomposable.

§ {ni+1,n, +2

{1,4) P~ {n,+1,n +4}

{ni— 1L} e \ {n—1,n}

Figure 5: The induced subgraph (E(T", Ay)) of Gy

Lemma 3.9. If n = 2(mod 5), then KG,, 2 is Ss-decomposable.

Proof. Let [ > 1 be positive integer and let n=>5] + 2. If [=1,2,3, then n €
{7,12,17}. The graph KG, 5 is Ss-decomposable, by Lemma 3.1 and 3.7. Now,
we prove that the result is true for all [ > 4. Let ny=11. Then ny = n — ny. By
Lemma 3.4, the graph K G2 is Ss-decomposable. By Theorem 3.1, the graph G
is Ss-decomposable. In (3, the vertex set Az has n; layers and each layer has 11
vertices. Note that, each subgraph (E(Z;, Z;)), 1 <1i < j < ny of G5 form a crown
graph C4; 19. By Theorem 2.1, the graph G5 is S5-decomposable. By Theorem 2.2,
the graph G4 is Ss-decomposable. In G5 and Gg, the degree of each vertex of Aj is
exactly ("21) —(ny— l)zw and 45 respectively. Now, by fixing each vertex
of Az as a center vertex, we get an Ss-decomposition in G5 and G.

By combining the Lemmas 3.1 to 3.9 and Theorem 3.1, we get the following:

Theorem 3.2. The graph KG, 2 is Ss-decomposable if and only if n > 7 and
n=0,1,2,3(mod 5).

Acknowledgment
The authors thank the anonymous referee for the valuable comments and sug-
gestions, which improved the quality of the paper.



Ss-decomposition of Kneser Graphs 183

References

[1] Chen, Y., Kneser graphs are Hamiltonian for n > 3k, J. Combin. Theory
Ser. B, 80 (2000), 69-79.

[2] Ganesamurthy, S., Paulraja, P., Existence of a Py y1-decomposition in the
Kneser graph KG,, 2, Discrete Math., 341 (2018), 2113-2116.

[3] Kneser, M., Aufgabe, Jahresbericht der Deutschen Mathematiker-Vereinigung,
2, Abteilung 58 (1955), 27.

[4] Lin, C., Lin, J.-J., and Shyu, T.-W., Isomorphic star decomposition of mul-
ticrowns and the power of cycles, Ars Combin., 53 (1999), 249-256.

[5] Rodger, C. A., Whitt III, T. R., Path decompositions of Kneser and Gener-
alized Kneser Graphs, Canad. Math. Bull., 58 (3) (2015), 610-619.

[6] Sankari, C., Sangeetha, R., and Arthi, K., Claw-decomposition of Kneser
Graphs, Trans. Comb., 11 (1) (2022), 53-61.

[7] Shields, I., Savage, C. D., A note on Hamilton cycles in Kneser graphs, Bull.
Inst. Combin. Appl., 40 (2004), 13-22.

[8] Whitt, T. R., Rodger, C. A., Decomposition of the Kneser graph into paths
of length four, Discrete Math., 338 (2015), 1284-1288.

9] Yamamoto, S., Ikeda, H., Shige-eda, S., Ushio, K., and Hamada, N., On claw
decomposition of complete graphs and complete bipartite graphs, Hiroshima
Math. J., 5(1) (1975), 33-42.



184 South FEast Asian J. of Mathematics and Mathematical Sciences



