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Abstract: In organic chemistry, finding out theoretically the total π−electron
energy of conjugated carbon compound is one of the interesting concept. Later
during the year 1970, I. Gutman was successful in achieving this by defining a
term called energy of a graph, E(G) for any graph G with m edges and n vertices.
It is not that easy to find energy of any general graph. This problem was solved by
obtaining bounds for E(G). Initially bounds for energy of any graph G are obtained
by using McClelland bounds. Koolen and Moulton improved the McClelland’s
upper bounds. In this article we established new energy bounds with the help of
Holder’s inequality.
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1. Introduction
Let us consider a simple undirected graph G = (V,E) having m edges and n

vertices. For any vertex viεV , the degree of vi is defined as the total number of
edges that are incident to vi and we write the degree of vi by di or d(vi). When
di = r, ∀vi, we say that a graph G is regular graph of degree r. A graph G is said
to be a bipartite graph with degree r1 and r2, if the vertex set can be written as,
V = U ∪ V where U ∩ V = φ and every edge of G has its vertex in U and a vertex
in V . If each vertex of a bipartite graph G has same degree, then we call G a
complete bipartite graph. If the graph G is bipartite and every vertex in the same
partition has same degree, then we say G is semi-regular bipartite graph. A graph
G is said to be a connected graph if for any two vertices u and v of the graph G
has u− v path. Throughout this paper we assume that the graph is connected.

It is useful to represent a graph G by means of a matrix, called Adjacency
matrix. Consider a vertex set V = {v1, v2, ..., vn} the graph G, then the Adjacency

matrix of G is defined by A(G) = [aij], A(G) =

{
1 if vivj is an edge
0 otherwise

Let G be a graph with m edges and n vertices. Then energy of G is defined by

E(G) =
n∑
i=1

|λi|, where λ1 ≥ λ2 ≥ · · · ≥ λn are eigenvalues of A(G). The details

on graph energy can be obtained from papers [6, 7, 8]. For applications on graph
energy can be seen from papers [1, 2, 5].

Bounds for energy of graph in terms of m and n was initially given by McClel-
land [13], √

2m+ n(n− 1)|Det(A)| 2n ≤ E(G) ≤
√

2mn. (1.1)

Later Koolen and Moulton improvised the above upper bounds [11].

E(G) ≤
(2m

n

)
+

√
(n− 1)

(
2m−

(2m

n

)2)
for 2m ≥ n (1.2)

As a special case they also established an upper bound for bipartite graph in the
form [12]

E(G) ≤ 2
(2m

n

)
+

√
(n− 2)

(
2m− 2

(2m

n

)2)
for 2m ≥ n. (1.3)

Also they arrived at the result, an upper bound for energy of a graph G in terms
n vertices. E(G) ≤ n

2
(1 +

√
n).

Improvisation of these bounds can be seen in the papers [4, 14].



Energy of Graphs and its new Bounds 163

Throughout this paper we use the following elementary results on eigenvalues λ1 ≥
λ2 ≥ · · · ,≥ λn, of adjacency matrix of a graph G.

1.
n∑
i=1

λi = 0 and
n∑
i=1

λ2i = 2m =
n∑
i=1

|λi|2.

Further
n∏
i=1

λi = Det(A(G)).

2. The largest eigenvalue of a connected graphs G satisfies λ1 ≥ 2m
n
≥ 1.

2. The Main Results

Lemma 2.1. Let G represents a graph with m edges and n vertices then the
adjacency matrix A(G) satisfies

|Det(A(G))| ≤ (2m)
n
2 . (2.1)

Proof. The proof easily follows with |Det(A(G))| = |λ1λ2...λn| = |λ1||λ2|...|λn|.
But |Det(A(G))| ≤ |λ1||λ1|...|λ1| = |λ1|n ≤ (

√
2m)n.

This gives |Det(A(G))| ≤ (2m)
n
2 .

Lemma 2.2. Consider a connected graph G with m edges and n vertices. The
largest eigenvalue, λ1 of G satisfies

|λ1| ≥ |Det(A(G))|
1
n . (2.2)

Proof. The relation λ1 + λ2 + · · ·+ λn = 0 gives λ2 + · · ·+ λn = −λ1. Since λ1 is
always positive, the sum λ2 + · · ·+ λn should be a negative quantity.

∴ λ2 + · · ·+ λn ≤ |λ2λ3 · · ·λn|
1

n−1 .

i.e.,−λ1 ≤
|λ1λ2 · · ·λn|

1
n−1

λ
1

n−1

1

, which implies −λ
n

n−1

1 ≤ |Det(A(G))|
1

n−1 .

⇒ |λ1|
2n
n−1 ≤ |Det(A(G))|

2
n−1 if |λ1| ≤ 1 and |λ1|

2n
n−1 ≥ |Det(A(G))|

2
n−1 if |λ1| ≥ 1.

Since G is connected |λ1| ≥ 1. Hence |λ1| ≥ |Det(A(G))|
1
n .

Lemma 2.3. Let G represents a connected graph with m edges and n vertices. The
largest eigenvalue, λ1 of the graph G satisfies

|λ1| ≥
|Det(A(G))| 1n√

n
. (2.3)

Proof. The expressions,
|λ1|+ |λ2|+ · · ·+ |λn|

n
and |λ1λ2 · · ·λn|

1
n are respectively

arithmetic and geometric mean of the values |λ1|, |λ2|, · · · , |λn|.
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But arithmetic mean exceeds geometric mean it follows that

|λ1|+|λ2|+···+|λn|
n

≥ |λ1λ2 · · ·λn|
1
n .

|λ1|+|λ2|+···+|λn|√
n

≥ |λ1|+|λ2|+···+|λn|
n

≥ |λ1λ2 · · ·λn|
1
n

∴ |λ1|+|λ2|+···+|λn|√
n

≥ |λ1λ2 · · ·λn|
1
n implies

n|λ1|√
n
≥ |Det(A(G))|

1
n

|λ1| ≥
|Det(A(G))| 1n√

n
.

3. New Energy Bounds of a Graph

Lemma 3.1. Let G represents a graph with m edges, n vertices and A(G) be a
non-singular adjacency matrix, then

n|Det(A(G))|
1
n ≤ E(G) ≤ 2mn

|Det(A(G))| 1n
. (3.1)

Proof. Making use of inequality between arithmetic and geometric mean of
|λ1|, |λ2|, · · · , |λn| we have |λ1|+|λ2|+···+|λn|

n
≥ |λ1λ2 · · ·λn|

1
n .

⇒ E(G) ≥ n|Det(A(G))|
1
n , which is a new lower bound.

From |λ1|+|λ2|+···+|λn|
n

≥ |Det(A(G))| 1n gives |λ1| ≥ |Det(A(G))| 1n .

⇒ |λ1|
n∑
i=1

|λi| ≥ |Det(A(G))|
1
n

n∑
i=1

|λi|.

Since|λi| ≤ |λ1| ∀i therefore n|λ1|2 ≥ |Det(A(G))|
1
nE(G).

But |λ1|2 ≤ 2m, hence we get E(G) ≤ 2mn

|Det(A(G))| 1n
, which is a new upper-

bound

Thus n|Det(A(G))|
1
n ≤ E(G) ≤ 2mn

|Det(A(G))| 1n
.

With the help of Holder’s inequality we can obtain new bounds for energy of
graphs.

Holder’s inequality. For positive real numbers xij(i = 1, 2, ..., n and j = 1, 2, 3, ..., n)
then
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n∏
i=1

( n∑
j=1

xij

) 1
n ≥

n∑
j=1

( n∏
i=1

x
1
n
ij

)
Theorem 3.1. If G represents a graph with m edges(2m ≥ n), n vertices and A
is a adjacency non singular matrix then

n
n−1
n |Det(A(G))|

1
n ≤ E(G) <

(4m)n
2

|Det(A(G))|(n−1)
. (3.2)

Proof. Apply Holder’s inequality using
x11 x12 · · · x1n
x21 x22 · · · x2n
...

... · · · ...
xn1 xn2 · · · xnn

 =


1 1

|λ1| · · ·
1
|λ1|

1
|λ2| 1 · · · 1

|λ2|
...

... · · · ...
1
|λn|

1
|λn| · · · 1


and we simplify right side and left side of the inequality separately.

LHS=
(

1 +
n− 1

|λ1|

) 1
n
(

1 +
n− 1

|λ2|

) 1
n
...
(

1 +
n− 1

|λn|

) 1
n

≤
(

1 +
n− 1

|λ1|

)(
1 +

n− 1

|λ2|

)
...
(

1 +
n− 1

|λn|

)
.

But 2m ≥ n > (n− 1) therefore we have

LHS <
(

1 +
2m

|λ1|

)(
1 +

2m

|λ2|

)
...
(

1 +
2m

|λn|

)
.

But |λi| ≤
√

2m ≤ 2m⇒ 1 ≤ 2m

|λi|
∀i so

LHS <
( 2m

|λ1|
+

2m

|λ1|

)( 2m

|λ2|
+

2m

|λ2|

)
...
( 2m

|λn|
+

2m

|λn|

)
.

=
( 4m

|λ1|

)( 4m

|λ2|

)
...
( 4m

|λn|

)
.

=
(4m)n

|λ1λ2...λn|
=

(4m)n

|Det(A(G))|
.

RHS=
1

|λ2|
1
n |λ3|

1
n ...|λn|

1
n

+
1

|λ1|
1
n |λ3|

1
n ...|λn|

1
n

+ ...+
1

|λ1|
1
n |λ2|

1
n ...|λn−1|

1
n

.

=
|λ1|

1
n

|λ1λ2...λn|
1
n

+
|λ2|

1
n

|λ1λ2...λn|
1
n

+ ...+
|λn|

1
n

|λ1λ2...λn|
1
n

.

=
1

|Det(A(G))| 1n

n∑
i=1

|λi|
1
n .
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∴
1

|Det(A(G))| 1n

n∑
i=1

|λi|
1
n <

(4m)n

|Det(A(G))|
.

n∑
i=1

|λi|
1
n <

(4m)n

|Det(A(G))|(1− 1
n
)
.

But
( n∑
i=1

|λi|
) 1

n ≤
n∑
i=1

|λi|
1
n . Hence

( n∑
i=1

|λi|
) 1

n
<

(4m)n

|Det(A(G))|(n−1
n

)
.

E(G) <
(4m)n

2

|Det(A(G))|(n−1)
.

For lower bound we use the following substitution in Holder’s inequality
x11 x12 · · · x1n
x21 x22 · · · x2n
...

... · · · ...
xn1 xn2 · · · xnn

 =


|λ1| |λ1| · · · |λ1|
|λ2| |λ2| · · · |λ2|

...
... · · · ...

|λn| |λn| · · · |λn|


(n|λ1|)

1
n + (n|λ2|)

1
n + · · ·+ (n|λn|)

1
n ≥ n(|λ1||λ2| · · · |λn|)

1
n .

|λ1|
1
n + |λ2|

1
n + · · ·+ |λn|

1
n ≥ n

n−1
n (|Det(A(G))|)

1
n .

But (|λ1|+ |λ2|+ · · ·+ |λn|) ≥ |λ1|
1
n + |λ2|

1
n + · · ·+ |λn|

1
n .

∴ E(G) ≥ n
n−1
n |Det(A(G))|

1
n .

Thus the bounds for E(G) is, n
n−1
n |Det(A(G))|

1
n ≤ E(G) <

(4m)n
2

|Det(A(G))|(n−1)
.

4. New Energy Lower Bounds and new Energy Upper Bounds

Theorem 4.1. The energy of a graph G has a lower bound

E(G) ≥ 2m

n
+
( |Det(A(G))|

2m
n

) 1
n−1

. (4.1)

where G is graph with m edges and n vertices with 2m ≥ n.
Proof. We make use of inequality between arithmetic mean and geometric mean

for (n−1) real numbers |λ2|, |λ3|, · · · , |λn| ,
|λ2|+ |λ3|+ · · ·+ |λn|

n− 1
≥ |λ2λ3 · · ·λn|

1
n−1 .

(
|λ2|+ |λ3|+ · · ·+ |λn|

)
≥ |λ2|+ |λ3|+ · · ·+ |λn|

n− 1
≥ |λ2λ3 · · ·λn|

1
n−1 .

⇒ E(G)− |λ1| ≥ |λ1λ2···λn|
1

n−1

|λ1| 1
n−1

.
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⇒ E(G) ≥ |λ1|+ |Det(A(G))|
1

n−1

|λ1| 1
n−1

.

Put f(x) = x+
|Det(A(G))|

1
n−1

x
1

n−1

with |λ1| = x . In order to minimize the

function we find f ′(x) and f ′′(x). But at minima or maxima point f ′(x) = 0. Thus

the function f(x) has minima or maxima at x =
|Det(A(G))| 1n

(n− 1)
n−1
n

.

At this point the value of f ′′(x) is given by,

f ′′(x) =
n

(n− 1)2
|Det(A(G))|

1
n−1x

1−2n
n−1 ≥ 0.

This implies at this particular point the function has the minimum value. Its

value is given by f
( |Det(A(G))| 1n

(n− 1)
n−1
n

)
= n|Det(A(G))|

1
n

(n−1)
(n−1)

n

.

Since the function becomes an increasing function in
|Det(A(G))|

1
n

(n−1)
n−1
n
≤ |detA| 1n ≤ 2m

n
≤ |λ1| ≤

√
2m.

E(G) ≥ f
(2m

n

)
.

E(G) ≥ 2m

n
+
( |Det(A(G))|

2m
n

) 1
n−1

.

Theorem 4.2. Consider a graph G having m edges and n(≥ 3) vertices with
2m ≥ n. Then

E(G) ≥ 2m

n
+

(n− 2)
1
n |Det(A(G))|

n−1
n(n−2)

(2m
n

)
1

n−2

. (4.2)

Proof. We make use of inequality between arithmetic mean and geometric mean
for (n− 2) real numbers

|λ2|, |λ3|, · · · , |λn−1)|,
|λ2|+ |λ3|+ · · ·+ |λn−1|

n− 2
≥ |λ2λ3 · · ·λn−1|

1
n−2

(
|λ2|+ |λ3|+ · · ·+ |λn−1|

)
≥ |λ2|+ |λ3|+ · · ·+ |λn−1|

n− 2
≥ |λ2λ3 · · ·λn−1|

1
n−2 .

⇒ E(G)− |λ1| − |λn| ≥ |λ1λ2···λn|
1

n−2

|λ1λn| 1
n−2

.

⇒ E(G) ≥ |λ1|+ |λn|+ |Det(A(G))|
1

n−2

|λ1λn| 1
n−2

.

Let |λ1| = x, |λn| = y with g(x, y) = x+ y +
|Det(A(G))|

1
n−2

(xy)
1

n−2

.
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To minimize the above function of two variables, we make use of partial differ-
entiation method by finding gx(x, y), gy(x, y), gxx(x, y), gyy(x, y), gxy(x, y) and
∆ = gxxgyy − g2xy.

gx = 1− |Det(A(G))|
1

n−2

n− 2
(xy)

1−n
n−2y, gy = 1− |Det(A(G))|

1
n−2

n− 2
(xy)

1−n
n−2x

gxx = −y
2(1− n)|Det(A(G))|

1
n−2

(n− 2)2
(xy)

3−2n
n−2 , gyy = −x

2(1− n)|Det(A(G))|
1

n−2

(n− 2)2
(xy)

3−2n
n−2

gxy = −|Det(A(G))|
1

n−2

n− 2

(
(xy)

1−n
n−2 + y

n− 1

n− 2
(xy)

3−2n
n−2

)
,

∆ = (xy)2(1−n)2|Det(A(G))|
2

n−2

(n−2)4 (xy)
6−4n
n−2 − |Det(A(G))|

2
n−2

(n−2)2

(
(xy)

1−n
n−2 + y n−1

n−2(xy)
3−2n
n−2

)2
.

At minima or maxima gx = 0 , gy = 0. This gives us two equations

(xy)
1−n
n−2y =

n− 2

|Det(A(G))|
1

n−2

and (xy)
1−n
n−2x =

n− 2

|Det(A(G))|
1

n−2

. On solving, we have

x = y = |Det(A(G))|
1
n

(n−2)
n−2
n

.

This implies the function g(x, y) has minima or maxima for x = y =
|Det(A(G))| 1n

(n− 2)
n−2
n

.

For this point, gxx ≥ 0, gyy ≥ 0 and ∆ ≤ 0. Hence the function has the minimum

value at this point, which is given by, g
( |Det(A(G))| 1n

(n− 2)
n−2
n

,
|Det(A(G))| 1n

(n− 2)
n−2
n

)
.

Since 2m ≥ n, so g(x, y) is an increasing function in

| det(A(G))| 1n ≤ 2m
n
≤ x ≤

√
2m and 0 ≤ y ≤ | det(A(G))| 1n ≤ 2m

n
≤
√

2m.

At y =
|Det(A(G))| 1n

(n− 2)
n−2
n

, g(x, y) = x+
(n− 2)

1
n |Det(A(G))|

n−1
n(n−2)

x
1

n−2

.

∴ E(G) ≥ g
(
x,
|Det(A(G))| 1n

(n− 2)
n−2
n

)
≥ g
(2m

n
,
|Det(A(G))| 1n

(n− 2)
n−2
n

)
.

Hence, E(G) ≥ 2m

n
+

(n− 2)
1
n |Det(A(G))|

n−1
n(n−2)

(2m
n

)
1

n−2

.

Theorem 4.3. If G represents a graph with m edges, n ≥ 2 vertices and A(G) is
the adjacency non-singular matrix then

E(G) ≤
√

2m+
(n− 1)(2m)

|Det(A(G))| 1n
. (4.3)

Proof. We know that |λ1| ≥ |Det(A(G))| 1n , which implies
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|λ1|
n∑
i=2

|λi| ≥ |Det(A(G))|
1
n

n∑
i=2

|λi|.

Since|λi| ≤ |λ1| ∀i, therefore (n− 1)|λ1|2 ≥ |Det(A(G))|
1
n

(
E(G)− |λ1|

)
.

Thus E(G) ≤ |λ1|+
(n− 1)|λ1|2

|Det(A(G))| 1n
.

Let |λ1| = x and h(x) = x+
(n− 1)x2

|Det(A(G))| 1n
. The condition for minima or

maxima is h′(x) = 0 which implies 1 +
(n− 1)2x

|Det(A(G))| 1n
= 0. So the function has

minimum or maximum value at x = −|Det(A(G))| 1n
2(n− 1)

.

But h′′(x) =
2(n− 1)

|Det(A(G))| 1n
> 0, so at this point the given function has minimum

value.
The minimum value is

h
(
− |Det(A(G))| 1n

2(n− 1)

)
= −|Det(A(G))| 1n

2(n− 1)
+
|Det(A(G))| 1n

4(n− 1)
= −|Det(A(G))| 1n

4(n− 1)
.

But h(x) becomes an increasing function in the interval − |Det(A(G))|
1
n

2(n−1) ≤ x ≤
√

2m.

Hence h(x) ≤ f(
√

2m).

This gives us a new upper bound E(G) ≤
√

2m+
(n− 1)(2m)

|Det(A(G))| 1n
.

5. Brief Summary and Conclusion
Energy of graph is an interesting subject in mathematical chemistry. In this

paper we obtain new bounds for energy of graph using Holder’s inequality. Are
these lower and upper bounds superior to McClelland and Koolen-Moulton bound?
It is yet to be investigated and is an area of further research.
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