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Abstract: The stress of a vertex in a graph is the number of geodesics passing
through it. The status of a vertex v in a graph is the sum of the distances from v
to all other vertices. We define the richness of a vertex v in a graph as the status
of v minus the stress of v. The total richness of a graph is the sum of richness of
all the vertices in that graph. We made some observations, compute richness of
vertices in some standard graphs and obtain some interesting results.
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1. Introduction
For basic terminologies we follow the text-book of Harary [3].
Let G = (V,E) be a graph (finite, undirected, simple). The number of edges in

a path P is its length l(P ). A shortest path between two vertices u and w in G is
called a u − w geodesic. The length of the u − w geodesic is the distance d(u,w)
between u and w in G. We say that a geodesic P is passing through a vertex v in
G if v is an internal vertex of P . Given two vertices u and v in G, ρG,v(u) denotes
the number of geodesics having v as an end vertex and passing through u.

The length of a longest geodesic in G is called the diameter of G, denoted by
d(G). Eccentricity e(v) of a vertex v denotes the distance between v and a vertex
farthest from v. For any vertex v, its open neighborhood is NG(v) (or simply N(v))
is the set of all vertices which are adjacent to v and the closed neighborhood of v is
N [v] = N(v)∪{v}. We say that a graph G is vertex transitive if the automorphism
group of G acts transitively on V (G).

The concept of stress of a vertex in a graph was defined by Alfonso Shimbel [15]
in 1953. The concept has many applications in the study of biological networks,
social networks etc. Some related works can be found in [5], [6], [7], [14] and [16].
Further, the concepts of stress number of a graph and stress regular graphs have
been studied by K. Bhargava, N. N. Dattatreya, and R. Rajendra in [1].

In [8, 9, 10], the authors have studied the VL Temperature index, VL Status
index, VL Reciprocal Status Index and Co-index for certain graphs. They have also
presented the correlations between VL Reciprocal status index and some properties
of Butane derivatives.

2. Definitions

Definition 2.1. The Wiener index W (G) of a connected graph G is defined to be
the sum of distances between all vertex pairs in G (See [17])

W (G) =
∑

{u,v}⊂V (G)

d(u, v). (1)

Definition 2.2. (Alfonso Shimbel [15]) Let G be a graph and v be a vertex in G.
The stress of v, denoted by strG(v) or simply str(v), is defined as the number of
geodesics in G passing through v.

Rajendra et al. [13] have introduced two topological indices of for graphs called
first stress index and second stress index, using stresses of vertices. The first stress



Richness of a Vertex in a Graph 151

index S1(G) and the second stress index S2(G) of a simple graph G are defined as

S1(G) =
∑

v∈V (G)

str(v)2 (2)

S2(G) =
∑

uv∈E(G)

str(u)str(v). (3)

Using the stress on vertices, Rajendra et al. [11, 12] have defined the stress-sum
index and square root stress sum index.

We denote the maximum stress among all the vertices of G by ΘG and minimum
stress among all the vertices of G by θG.
Definition 2.3. [4] The status of a vertex u in a graph G, denoted by σG(u) or
simply σ(u) is the sum of the distances from v to all other vertices. That is

σ(u) =
∑

v∈V (G)

d(u, v) (4)

We denote the maximum status among all the vertices of G by SG and minimum
status among all the vertices of G by sG.
Definition 2.4. Let G be a graph and v be a vertex in G. The richness of u,
denoted by hG(u) or simply h(v), is defined as

h(u) = str(u)− σ(u) (5)

The richness of a vertex v is the number of geodesics passing through v minus the
sum of distances from v to all other vertices in G.

Definition 2.5. A graph is said to be

(i) k-stress regular if all of its vertices have stress k;

(ii) k-status regular if all of its vertices have status k; and

(iii) k-richness regular if all of its vertices have richness k.

Definition 2.6. Let G = (V,E) be a graph. The total stress of G, denoted by
Nstr(G), is defined as,

Nstr(G) =
∑
u∈V

str(u) (6)

Definition 2.7. Let G = (V,E) be a graph. The total richness of G, denoted by
H(G), is defined as,

H(G) =
∑
u∈V

h(u) (7)
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3. Some Observations

(i) For any vertex u in a graph G, we have

θG − SG ≤ h(u) ≤ ΘG − sG.

(ii) For any vertex u in a graph G, we have str(u) ≥ 0 and σ(u) ≤ W (G), where
W (G) is the Wiener index of G. Therefore, by the Definition 2.4, we have

h(u) ≥ −σ(u) ≥ −W (G) (8)

(iii) If N is the number of geodesics of length at least 2 in a graph G, then by the
Definitions 2.2 and 2.4, for any vertex v in G, we have

−σ(v) ≤ h(v) ≤ N − σ(v)

and
−SG ≤ h(v) ≤ N − sG.

(iv) If there is no geodesic of length ≥ 2 passing through a vertex v in a graph
G, then str(v) = 0 and r(v) = −σ(v). Hence for any vertex v in a complete
graph Kn, we have h(v) = 1− n.

(v) By the Definition 2.4, it follows that, a stress regular graph is richness regular
if and only if it is status regular.

(vi) A regular graph may not be richness regular. For instance, it is easy to verify
that the graph in Figure 1 is a 3-regular graph, but it is not richness regular.
Also, this graph is neither stress regular nor status regular.
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Figure 1: A regular graph which is not richness regular

(vii) A graph G is 0-richness regular if and only if str(v) = σ(v), ∀v ∈ V (G).
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(viii) If η is an automorphism of a graph G and v is any vertex in G, then h(v) =
h(η(v)). Hence, it follows that, any vertex transitive graph is richness regular.

4. Some Results

Proposition 4.1. Let G be a graph, v be a pendant vertex and u be any vertex in
G. Then

hG(u) = hG−v(u) + ρG,v(u)− d(u, v). (9)

Proof. We have,

hG−v(u) = strG−v(u)− σG−v(u)

= strG(u)− ρG,v(u)− [σG(u)− d(u, v)]

= hG(u)− ρG,v(u) + d(u, v),

which gives (9).

Theorem 4.2. Let G be any graph and let u be any vertex in G. Then

(i) h(u) = −σ(u) if and only if the neighbors of u induce a complete subgraph.

(ii) h(u) = str(u) if and only if G is a trivial graph.

Proof.

(i) We have

h(u) = −σ(u) ⇐⇒ str(u) = 0 (By Definition 2.4)

⇐⇒ the neighbors of u induce a complete subgraph.

(ii) We have

h(u) = str(u) ⇐⇒ σ(u) = 0 (By Definition 2.4)

⇐⇒ d(u, v) = 0, ∀v ∈ V (G)

⇐⇒ V (G) = {u}
⇐⇒ G is a trivial graph.

The following corollaries are immediate from the Theorem 4.2.

Corollary 4.3. For a pendant vertex v in a graph G, h(v) = −σ(v).
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Corollary 4.4. The complete graph Kn on n vertices is (1− n)-richness regular.

Proposition 4.5. For any graph G, the total richness of G, is given by

H(G) = Nstr(G)− 2W (G), (10)

where W(G) is the Wiener index of G.
Proof. By the Definition 2.7, we have

H(G) =
∑
u∈V

h(u) =
∑
u∈V

str(u)− σ(u)

=
∑
u∈V

str(u)−
∑
u∈V

σ(u)

= Nstr(G)−
∑
u∈V

∑
v∈V

d(u, v)

= Nstr(G)− 2W (G).

Theorem 4.6. Let G be a graph with at least 2 vertices and u ∈ V (G). Then
h(u) = −W (G) if and only if G is the complete graph on 2 vertices.
Proof. If G is a complete graph on 2 vertices, then h(u) = −1 = −W (G).
Conversely suppose that h(u) = −W (G). Then by (8),

−σ(u) = −W (G) =⇒ σ(u) = W (G)

=⇒
∑

v∈V (G)

d(u, v) =
∑

{w,v}⊂V (G)

d(w, v)

=⇒
∑

{w,v}⊂V (G)
w,v 6=u

d(w, v) = 0

=⇒ d(w, v) = 0 for any w, v 6= u in V (G).

=⇒ w = v for any w, v 6= u in V (G).

=⇒ there is only one vertex other than u in G.

=⇒ G is the complete graph on 2 vertices.

Proposition 4.7. In a complete bipartite Km,n, if A and B are the partite sets of
Km,n with |A| = m and |B| = n, then

h(v) =


n(n− 1)

2
− (2m+ n− 2), if v ∈ A;

m(m− 1)

2
− (2n+m− 2), if v ∈ B

(11)
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Proof. In a complete bipartite Km,n, if A and B are the partite sets of Km,n with
|A| = m and |B| = n, then

str(v) =


n(n− 1)

2
, if v ∈ A;

m(m− 1)

2
, if v ∈ B.

(12)

Let A = {u1, . . . , um} and B = {v1, . . . , vn} be the partite sets of Km,n. Then

σ(ui) =
∑

v∈V (Km,n)

d(u, v)

=
∑

uj ,uj 6=ui

2 +
∑
vj

1

= (m− 1) · 2 + n · 1
= 2m+ n− 2. (13)

Similarly, we compute

σ(vj) = 2n+m− 2 (14)

Using (12), (13) and (14) in (5), we get (11).

Proposition 4.8. In a cycle Cn on n vertices, for any vertex v,

h(v) =


(n− 1)(n− 3)

8
− n2 − 1

4
, if n is odd;

n(n− 2)

8
− n2

4
, if n is even.

(15)

Proof. For any vertex v in a cycle Cn, we have

str(v) =


(n− 1)(n− 3)

8
, if n is odd;

n(n− 2)

8
, if n is even.

(16)

and

σ(v) =


n2 − 1

4
, if n is odd;

n2

4
, if n is even.

(17)
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Using (16) and (17) in (5), we get (15).

Proposition 4.9. Let Wd(n,m) denote the windmill graph [2] constructed for
n ≥ 2 and m ≥ 2 by joining m copies of the complete graph Kn at a shared
universal vertex v. Then

h(v) =
m(m− 1)(n− 1)2

2
−m(n− 1) (18)

and

h(w) = −(n− 1)(2m− 1), (19)

where w is any vertex 6= v in Wd(n,m).
Proof. In the windmill Wd(n,m), for the shared universal vertex v,

str(v) = m(m− 1)(n− 1)2/2, σ(v) = m(n− 1) (20)

and for any vertex w 6= v,

str(w) = 0, σ(w) = (n− 1)(2m− 1) (21)

Using (20) and (21) in (5), we get (18) and (19), respectively.

Proposition 4.10. In the path Pn on n vertices v1, . . . , vn (shown in Figure 2),

h(vi) = (i− 1)(n− i)− (i− 1)i

2
+

(n− i)(n− i+ 1)

2
. (22)

Proof. We have

u u u u u u. . . . .
v1 v2 v3 v4 vn−1 vn

Figure 2: The path Pn on n vertices.

str(vi) = (i− 1)(n− i) and σ(vi) =
(i− 1)i

2
+

(n− i)(n− i+ 1)

2
.

Using these in (5), we get (22).

Proposition 4.11. Let v be an internal vertex of a tree T ; A1, . . . , Am be the
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components of T − v and let li(v) be the number of vertices at level i (i.e., at
distance i) from v. Then

h(v) =
∑
i<j

|Ai||Aj| −
∑

1≤i≤e(v)

i li(v), (23)

where e(v) is the eccentricity of v in T .
Proof. It is easy to verify that

str(v) =
∑
i<j

|Ai||Aj| (24)

and

σ(v) =
∑

1≤i≤e(v)

i li(v) (25)

Using (24) and (25) in (5), we get (23).

Theorem 4.12. Let G = (V,E) be a connected graph with at least 3 vertices. In
G, h(v) = −σ(v) for all vertices v except for one if and only if G is a graph with
a unique cut-vertex such that all its blocks are complete subgraphs of G.
Proof. In [1], it is proved that the graph G has all vertices of zero stress except
for one if and only if G is a graph with a unique cut-vertex such that all its blocks
are complete subgraphs of G. Hence the proof follows by Definition 2.4.

By Theorem 4.12, the following Corollary is immediate:

Corollary 4.13. Let G be a connected graph on n + 1 vertices. Then G = K1,n

if and only if G has exactly one vertex of richness n(n− 3)/2 with the richness of
remaining vertices equal to 1− 2n.

Theorem 4.14. For any vertex v in a graph G of diameter 2, h(v) equals the
number of unordered pairs of non-adjacent vertices in N(v) minus σ(v).
Proof. For any vertex v in a graph G of diameter 2, str(v) equals the number of
unordered pairs of non-adjacent vertices in N(v) (See [1]). Hence by Definition 2.4
the result follows.
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[7] Koschützki D., Lehmann K. A., Peeters L., Richter S., Tenfelde-Podehl D.
and Zlotowski O., Centrality Indices, In: U. Brandes, T. Erlebach (eds),
Network Analysis, Lecture Notes in Computer Science, Springer, Berlin, Hei-
delberg, Vol. 3418 (2005), 16-61.

[8] Lokesha V., Suvarna S., Manjunath M. and Zeba Yasmeen K., VL Tempera-
ture Index of Certain Archimedean Lattice, South East Asian J. Math. Math.
Sci., 17(1) (2021), 213-222.

[9] Lokesha V., Suvarna S. and Sinan Cevik A., VL status index and co-index
of connected graphs, Proceedings of the Jangjeon Math. Soc., 24 (3) (2021),
285-295.

[10] Lokesha V., Suvarna S., Sinan Cevik A. and Cangul I. N., VL Reciprocal
Status Index and Co-Index of Graphs, Journal of Mathematics, Volume 2021,
Article ID 5529080, 10 Pages.

[11] Mahesh K. B., Rajendra R. and Reddy P. S. K., Square Root Stress Sum
Index for Graphs, Proyecciones, 40 (4) (2021), 927-937.



Richness of a Vertex in a Graph 159

[12] Rajendra R., Reddy P. S. K. and Harshavardhana C. N., Stress-Sum Index
for Graphs, Sci. Magna, 15 (1) (2020), 94-103.

[13] Rajendra R., Reddy P. S. K. and Cangul I. N., Stress Indices of Graphs,
Advn. Stud. Contemp. Math., 31 (2) (2021), 163-173.

[14] Scardoni G., Petterlini M. and Laudanna C., Analyzing Biological Network
Parameters with CentiScaPe., Bioinformatics, 25 (2009), 2857-2859.

[15] Shimbel A., Structural Parameters of Communication Networks, Bulletin of
Mathematical Biophysics, 15 (1953), 501-507.

[16] Shinozaki K., Kazuko Y. S. and Motoaki S., Regulatory Network of Gene
Expression in the Drought and Cold Stress responses, Curr. Opin. Plant
Biol., 6 (5) (2003), 410-417.

[17] Wiener H., Structural determination of paraffin boiling points, J. Amer.
Chem. Soc., 69 (1) (1947), 17-20.



160 South East Asian J. of Mathematics and Mathematical Sciences


