South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 2 (2022), pp. 125-134 DOI: 10.56827/SEAJMMS.2022.1802.12 ISSN (Onlin

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

G- FRAMES AND THEIR STABILITY IN HILBERT SPACE

K. N. Rajeswari and Neelam George

School of Mathematics, D. A. V. V., Indore - 452001, Madhya Pradesh, INDIA

E-mail : knr_k@yahoo.co.in, neelamdonneygeorge@gmail.com

(Received: Dec. 18, 2020 Accepted: Jul. 28, 2022 Published: Aug. 30, 2022)

Abstract: W. Sun in his paper [W. Sun, G-frames and g-Riesz bases. J. Math. Anal. Appl 322 (2006),437-452] has introduced g-frames which are generalized frames and cover many recent generalizations of frames such as bounded quasiprojections, fusion frames and pseudo-frames. We give a necessary and sufficient condition for a g-frame to be a dual to a given g-frame and obtain some sufficient conditions under which sequences are stable under small perturbations.

Keywords and Phrases: G-frames, dual *g*-frames, orthogonal *g*-frames, *g*-R-dual sequence.

2020 Mathematics Subject Classification: 42C15.

1. Introduction

Frames in Hilbert spaces have been introduced in 1952 by J. Duffin and A. C. Schaeffer [5] while studying non harmonic Fourier series. The work of Daubechies, Grossmann and Meyer [4] in 1986 reintroduced the frames.

In [11], W. Sun introduced the concept of generalized frames (or g-frames) in Hilbert spaces, which are generalizations of frames and cover many other recent generalizations of frames such as bounded quasi-projections, fusion frames, and pseudo frames. Study of stability of frames and g-frames under small perturbation is also important in applications. Finding the conditions under which a g-frame close to a given g-frame is also a g-frame is called stability problem. Stability of g-frames and dual g-frames has been given by W. Sun. [12] and subsequently developed by many other authors [1, 7, 8, 10]. In this paper we give a necessary and sufficient condition under which a g-frame can be a dual to a given g-frame and obtain some sufficient conditions under which g-frames are stable under small perturbations and also generalize the characterization of an alternate dual g-frame of a given g-frame.

2. Preliminaries

Throughout this paper, \mathscr{H} and \mathscr{K} are separable Hilbert spaces and $\{\mathscr{H}_i\}_{i\in I}$ is a sequence of closed subspaces of \mathscr{K} , where I is a subset of Z and $L(\mathscr{H}, \mathscr{H}_i)$ is the collection of all bounded linear operators from \mathscr{H} into \mathscr{H}_i . And we denote by $I_{\mathscr{H}}$ the identity operator on \mathscr{H} .

Definition 2.1. [2] A sequence $\{f_i : i \in I\}$ of elements in \mathcal{H} is called a frame for \mathcal{H} if there exist constants $0 < A \leq B < \infty$ such that

$$A\|\mathbf{f}\|^{2} \leq \sum_{i \in I} |\langle f, f_{i} \rangle|^{2} \leq B\|\mathbf{f}\|^{2}, \quad \forall f \in \mathscr{H}.$$
 (1)

The constants A and B are called lower and upper frame bounds.

Definition 2.2. [12] $(\sum_{i \in I} \oplus \mathscr{H}_i)_{l^2}$ is a Hilbert space and is defined by

$$\left(\sum_{i\in\mathcal{I}}\oplus\mathscr{H}_i\right)_{l^2} = \left\{\left\{f_i\right\}_{i\in\mathcal{I}}: f_i\in\mathscr{H}_i, i\in\mathcal{I}, \left\|\left\{f_i\right\}_{i\in\mathcal{I}}\right\|^2 = \sum_{i\in\mathcal{I}}\left\|f_i\right\|^2 < \infty\right\}.$$

with the inner product defined by: $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$.

Definition 2.3. [11] A sequence $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in I\}$ of bounded operators is said to be a generalized frame or simply a g-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in I}$ if there exist constants $0 < A \leq B < \infty$ such that

$$A\|\mathbf{f}\|^{2} \leq \sum_{i \in \mathbf{I}} \|\mathbf{\Lambda}_{\mathbf{i}}\mathbf{f}\|^{2} \leq B\|\mathbf{f}\|^{2}, \quad \forall f \in \mathscr{H}.$$
 (2)

we call A and B the lower and upper g-frame bounds, respectively.

We call $\{\Lambda_i\}_{i \in I}$ a tight g-frame if A = B and a Parseval g-frame or a normalized tight g-frame if A = B = 1.

We call $\{\Lambda_i : i \in I\}$ an exact g-frame if it ceases to be a g-frame whenever any one of its element is removed.

We call $\{\Lambda_i : i \in I\}$ a g-frame for \mathscr{H} whenever $\mathscr{H}_i = \mathscr{H}, \forall i \in I$.

The synthesis(g-pre frame) operator of $\{\Lambda_i\}_{i\in I}$; $T_{\Lambda}: (\sum_{i\in I} \oplus \mathscr{H}_i)_{l^2} \to \mathscr{H}$ is defined by

$$T_{\Lambda}\left(\{f_i\}_{i\in I}\right) = \sum_{i\in I} \Lambda_i^* f_i.$$

We call the adjoint T^*_{Λ} , where $T^*_{\Lambda} : \mathscr{H} \to \left(\sum_{i \in \mathbf{I}} \oplus \mathscr{H}_i\right)_{l^2}$, of the synthesis operator, the analysis operator which is given by

$$T^*_{\Lambda}f = \{\Lambda_i f\}_{i \in I,} \quad \forall f \in \mathscr{H}.$$

By composing T_{Λ} and T_{Λ}^* , we obtain the *g*-frame operator $S_{\Lambda} : \mathscr{H} \to \mathscr{H}$ given by

$$S_{\Lambda}f = T_{\Lambda}T_{\Lambda}^*f = \sum_{i \in I} \Lambda_i^*\Lambda_i f \tag{3}$$

which is a bounded, positive, self adjoint, invertible operator and satisfies $AI_{\mathscr{H}} \leq S_{\Lambda} \leq BI_{\mathscr{H}}$. Then the following reconstruction formula takes place for all $f \in \mathscr{H}$

$$f = S_{\Lambda}^{-1} S_{\Lambda} f = S_{\Lambda} S_{\Lambda}^{-1} f.$$

 $\{\Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ is also a *g*-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i \in I}$ with bounds B^{-1} and A^{-1} and it is said to be the canonical dual *g*-frame of $\{\Lambda_i\}_{i \in I}$.

Definition 2.4. [7] A g-frame $\{\Theta_i\}_{i \in I}$ of \mathcal{H} is called an alternate dual g-frame of $\{\Lambda_i\}_{i \in I}$ if it satisfies

$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f, \qquad \forall f \in \mathscr{H}$$
(4)

It is easy to show that if $\{\Theta_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$, then $\{\Lambda_i\}_{i\in I}$ will be an alternate dual g-frame of $\{\Theta_i\}_{i\in I}$.

Definition 2.5. [11] Let $\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i), i \in I$. (1) If the right hand inequality of (2) holds, then we say that $\{\Lambda_i : i \in I\}$ is a g-Bessel sequence for \mathscr{H} with respect to $\{\mathscr{H}_i : i \in I\}$.

(2) If $\{f : \Lambda_i f = 0, i \in I\} = \{0\}$, then we say that $\{\Lambda_i : i \in I\}$ is g-complete.

(3) If $\{\Lambda_i : i \in I\}$ is g-complete and there are positive constants A and B such that for any finite subset $I_1 \subset I$ and $g_i \in \mathscr{H}_i, i \in I_1$,

$$A\sum_{i\in I_1} \|g_i\|^2 \le \left\|\sum_{i\in I_1} \Lambda_i^* g_i\right\|^2 \le B\sum_{i\in I_1} \|g_i\|^2$$
(5)

then we say that $\{\Lambda_i : i \in I\}$ is a g-Riesz basis for \mathscr{H} with respect to $\{\mathscr{H}_i : i \in I\}$. (4) We say $\{\Lambda_i : i \in I\}$ is a g-orthonormal basis for \mathscr{H} with respect to $\{\mathscr{H}_i : i \in I\}$ if it satisfies the following:

$$\begin{array}{l} \left\langle \Lambda_{i_1}^* g_{i_1}, \Lambda_{i_2}^* g_{i_2} \right\rangle = \delta_{i_1, i_2} \left\langle g_{i_1}, g_{i_2} \right\rangle, \quad \forall i_1, i_2 \in I, g_{i_1} \in \mathscr{H}_{i_1}, g_{i_2} \in \mathscr{H}_{i_2}, \\ \sum_{i \in I} \|\Lambda_i f^2\| = \|f\|^2, \quad \forall f \in \mathscr{H}. \end{array}$$

Definition 2.6. [9] We call two g-Bessel sequences $\{\Lambda_i\}_{i \in I}$ and $\{\Theta_i\}_{i \in I}$ to be orthogonal if

$$\sum_{i \in I} \Lambda_i^* \Theta_i f = 0 \quad or \quad \sum_{i \in I} \Theta_i^* \Lambda_i f = 0, \qquad \forall f \in \mathscr{H}.$$
(6)

In terms of synthesis operators

$$T_{\Lambda}T_{\Theta}^* = 0 \quad or \quad T_{\Theta}T_{\Lambda}^* = 0.$$
⁽⁷⁾

where T_{Λ} and T_{Θ} are the synthesis operators for $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ respectively.

Definition 2.7. [6] Let $\{\Xi_i\}_{i\in I}$ and $\{\Psi_i\}_{i\in I}$ be g-orthonormal basis for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$ and $\{\mathscr{H}_i\}_{i\in I}$, respectively. Let $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in I\}$ be such that the series $\sum_{i\in I} \Lambda_i^* g'_i$ is convergent for all $\{g'_i\}_{i\in I} \in (\sum_{i\in I} \oplus \mathscr{H}_i)_{l^2}$.

The g-R-dual sequence for the sequence $\{\Lambda_i\}_{i\in I}$ is $\Gamma_j^{\Lambda}: \mathscr{H} \to W_j$ which is defined as

 $\Gamma_j^{\Lambda} = \sum_{i \in I} \Xi_j \Lambda_i^* \Psi_i, \quad \forall j \in I.$

The following results which are referred to in this paper are listed in the form of lemmas.

Lemma 2.8. [10] Let $\{\Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ and $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$. Then there is a bounded and onto operator $V : \mathcal{H} \to \mathcal{H}$ such that $\Lambda_i = \Theta_i V^*$, for all $i \in I$.

Lemma 2.9. [2] Let $T : K \to H$ be a bounded surjective operator. Then there exists a bounded operator (called the pseudoinverse of T) $T^{\dagger} : H \to K$ for which $TT^{\dagger}f = f, \quad \forall f \in \mathscr{H}.$

Lemma 2.10. [6] Let $\{\Lambda_i\}_{i\in I}$ and $\{\Omega_i\}_{i\in I}$ be g-frames for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in I}$. Then $\{\Omega_i\}_{i\in I}$ is a dual g-frame of $\{\Lambda_i\}_{i\in I}$ if and only if g-R-dual sequences $\{\Gamma_j^{\Lambda}\}_{j\in I}$ and $\{\Gamma_j^{\Omega}\}_{j\in I}$ are g-biorthogonal; that is, $\Gamma_i^{\Lambda}(\Gamma_j^{\Omega})^*g_j = \Gamma_i^{\Omega}(\Gamma_j^{\Lambda})^*g_j = \delta_{ij}g_j, \quad \forall i, j \in I, g_j \in W_j$

Lemma 2.11. [3] Let $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with g-frame operator S and bounds A and B. Let L be a bounded linear operator on \mathcal{H} . Then $\{\Lambda_i L\}_{i \in I} \subseteq (\mathcal{H}, \mathcal{H}_i)$ is a g-frame for \mathcal{H} if and only if L is invertible on \mathcal{H} . Moreover, in this case, the g-frame operator for $\{\Lambda_i L\}_{i \in I}$ is L^*SL and new bounds are $A \| L^{-1} \|^2$ and $B \| L \|^2$.

Lemma 2.12. [9] Let $\{\Lambda_i\}_{i\in I}$ be a g-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in I}$ and S_{Λ}

be the g-frame operator of $\{\Lambda_i\}_{i\in I}$. Then $\{\Omega_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$ if and only if $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Omega_i\}_{i\in I}$ are orthogonal.

3. Main Result

Let $\{\Lambda_i : i \in I\}$ be a g-frame for \mathscr{H} and $\{\Gamma_i : i \in I\}$ be a g-Bessel sequence. Here we discuss the condition under which this g-Bessel sequence is a dual of $\{\Lambda_i : i \in I\}$ when we already know one of the dual g-frame.

Theorem 3.1. Let $\{\Lambda_i : i \in I\}$ be a g-frame for \mathscr{H} with bounds A, B and frame operator S_{Λ} and $\{\Omega_i : i \in I\}$ be a dual g-frame of $\{\Lambda_i : i \in I\}$. Let $\{\Gamma_i : i \in I\}$ be a g-Bessel sequence. Then $\{\Gamma_i : i \in I\}$ is also a dual g-frame of $\{\Lambda_i : i \in I\}$ if and only if $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1} : i \in I\}$ is orthogonal to $\{\Gamma_i - \Omega_i : i \in I\}$.

Proof. Let $\{\Gamma_i : i \in I\}$ be a dual *g*-frame of $\{\Lambda_i : i \in I\}$. Then $\{\Gamma_i - \Omega_i : i \in I\}$ is a *g*-Bessel sequence. Now

$$\sum_{i \in I} (\Lambda_i - \Lambda_i S_{\Lambda}^{-1})^* (\Gamma_i - \Omega_i) f = \sum_{i \in I} (\Lambda_i^* - S_{\Lambda}^{-1} \Lambda_i^*) (\Gamma_i - \Omega_i) f$$

= $(\sum_{i \in I} \Lambda_i^* \Gamma_i - \sum_{i \in I} \Lambda_i^* \Omega_i - S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Gamma_i + S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Omega_i) f$
= $(I_{\mathscr{H}} - I_{\mathscr{H}} - S_{\Lambda}^{-1} + S_{\Lambda}^{-1}) f$
= 0

which implies that $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1} : i \in I\}$ is orthogonal to $\{\Gamma_i - \Omega_i : i \in I\}$. Conversely, let $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1} : i \in I\}$ be orthogonal to $\{\Gamma_i - \Omega_i : i \in I\}$. Then,

$$\begin{split} \sum_{i \in I} \left(\Lambda_i - \Lambda_i S_{\Lambda}^{-1} \right)^* (\Gamma_i - \Omega_i) f &= 0 \\ \Rightarrow \sum_{i \in I} \left(\Lambda_i^* - S_{\Lambda}^{-1} \Lambda_i^* \right) (\Gamma_i - \Omega_i) f &= 0 \\ \Rightarrow \sum_{i \in I} \Lambda_i^* \Gamma_i - \sum_{i \in I} \Lambda_i^* \Omega_i - S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Gamma_i + S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Omega_i f &= 0 \\ \Rightarrow \sum_{i \in I} \Lambda_i^* \Gamma_i - I_{\mathscr{H}} - S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Gamma_i + S_{\Lambda}^{-1}) f &= 0 \\ \Rightarrow \left(I_{\mathscr{H}} - S_{\Lambda}^{-1} \right) \sum_{i \in I} \Lambda_i^* \Gamma_i f - \left(I_{\mathscr{H}} - S_{\Lambda}^{-1} \right) f &= 0 \\ \Rightarrow \left(I_{\mathscr{H}} - S_{\Lambda}^{-1} \right) \left(\sum_{i \in I} \Lambda_i^* \Gamma_i - I_{\mathscr{H}} \right) f &= 0 \end{split}$$

By [9, Corollary 3.2] $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1} : i \in I\} = \{\Lambda_i (I_{\mathscr{H}} - S_{\Lambda}^{-1})\}_{i \in I}$ is a *g*-frame. Therefore by Lemma (2.11), $(I_{\mathscr{H}} - S_{\Lambda}^{-1})$ is invertible and we have $\sum_{i \in I} \Lambda_i^* \Gamma_i = I_{\mathscr{H}}$. Which implies that $\{\Gamma_i : i \in I\}$ is a dual *g*-frame of $\{\Lambda_i : i \in I\}$

Now we give a condition under which the difference of the g-frame $\{\Lambda_i : i \in I\}$ and g-Bessel sequence $\{\Gamma_i : i \in I\}$ is a g-frame for \mathscr{H} . **Theorem 3.2.** Let $\{\Lambda_i : i \in I\}$ be a g-frame for Hilbert space \mathscr{H} with bounds A, B. Let $\{\Gamma_i : i \in I\}$ be a g-Bessel sequence with synthesis operator T_{Γ} . If $2 ||T_{\Gamma}||^2 < A$, then $\{\Lambda_i - \Gamma_i : i \in I\}$ is a g-frame for \mathscr{H} . **Proof.** For any $f \in \mathscr{H}$, we have

$$\begin{split} \sum_{i \in I} \|(\Lambda_{i} - \Gamma_{i})f\|^{2} &\leq 2 \left(\sum_{i \in I} \|\Lambda_{i}f\|^{2} + \sum_{i \in I} \|\Gamma_{i}f\|^{2} \right) \\ &\leq 2 \left(B \|f\|^{2} + \|T_{\Gamma}^{*}f\|^{2} \right) \\ &\leq 2 \left(B + \|T_{\Gamma}\|^{2} \right) \|f\|^{2}. \end{split}$$

Since $\sum_{i \in I} \|\Lambda_{i}f\|^{2} = \sum_{i \in I} \|(\Lambda_{i} - \Gamma_{i} + \Gamma_{i})f\|^{2} \leq 2 (\sum_{i \in I} \|(\Lambda_{i} - \Gamma_{i})f\|^{2} + \sum_{i \in I} \|\Gamma_{i}f\|^{2}),$ we have
 $\sum_{i \in I} \|(\Lambda_{i} - \Gamma_{i})f\|^{2} \geq \frac{1}{2} \sum_{i \in I} \|\Lambda_{i}f\|^{2} - \sum_{i \in I} \|\Gamma_{i}f\|^{2} \\ \geq \left(\frac{A}{2} \|f\|^{2} - \|T_{\Gamma}^{*}f\|^{2}\right) \\ \geq \left(\frac{A}{2} - \|T_{\Gamma}\|^{2}\right) \|f\|^{2} \end{split}$

If $\left(\frac{A}{2} - \|T_{\Gamma}\|^2\right) > 0$ or $A > 2\|T_{\Gamma}\|^2$, then $\{\Lambda_i - \Gamma_i : i \in I\}$ is a *g*-frame for \mathscr{H} . Here we give an alternate proof of Theorem 15 [7].

Theorem 3.3. Let $\{\Lambda_i : i \in I\}$ be a g-frame for \mathscr{H} and $\{\Theta_i : i \in I\}$ be a gorthonormal basis for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in I}$. Let g-preframe operator associated with $\{\Lambda_i : i \in I\}$ be T; that is, $\Lambda_i = \Theta_i T^*$ for any $i \in I$. Then $\{\Omega_i : i \in I\}$ is a dual g-frame of $\{\Lambda_i : i \in I\}$ if and only if $\Omega_i = \Theta_i V^*$ for any $i \in I$, where V is a bounded left inverse of T^* .

Proof. Let $\{\Xi_i : i \in I\}$ and $\{\Psi_i : i \in I\}$ be *g*-orthonormal bases for \mathscr{H} with respect to $\{\mathscr{W}_j : j \in I\}$ and $\{\mathscr{V}_j : j \in I\}$. Let *g*-R-dual sequences of $\{\Lambda_i : i \in I\}$ and $\{\Omega_i : i \in I\}$ be denoted by Γ_j^{Λ} and Γ_j^{Ω} which are given by

$$\Gamma_{j}^{\Lambda} = \sum_{i \in I} \Xi_{j} \Lambda_{i}^{*} \Psi_{i} \quad \forall j \in I$$
$$= \sum_{i \in I} \Xi_{j} (\Theta_{i} T^{*})^{*} \Psi_{i}$$
$$= \sum_{i \in I} \Xi_{j} T \Theta_{i}^{*} \Psi_{i}$$

and

$$\begin{split} \Gamma_{j}^{\Omega} &= \sum_{i \in I} \Xi_{j} \Omega_{i}^{*} \Psi_{i} \quad \forall j \in I \\ &= \sum_{i \in I} \Xi_{j} \left(\Theta_{i} V^{*} \right)^{*} \Psi_{i} = \sum_{i \in I} \Xi_{j} V \Theta_{i}^{*} \Psi_{i} \end{split}$$

First, let $TV^* = VT^* = I_{\mathscr{H}}$. For every $i, j \in I$ and $g_j \in \mathscr{W}_j$ we have,

$$\begin{split} \Gamma_{i}^{\Lambda} \left(\Gamma_{j}^{\Omega}\right)^{*} g_{j} &= \sum_{k \in I} \Xi_{i} T \Theta_{k}^{*} \Psi_{k} \left(\sum_{m \in I} \Xi_{j} V \Theta_{m}^{*} \Psi_{m}\right)^{*} g_{j} \\ &= \sum_{k \in I} \sum_{m \in I} \Xi_{i} T \Theta_{k}^{*} \Psi_{k} \Psi_{m}^{*} \Theta_{m} V^{*} \Xi_{j}^{*} g_{j} \\ &= \sum_{k \in I} \Xi_{i} T \Theta_{k}^{*} \Theta_{k} V^{*} \Xi_{j}^{*} g_{j} \\ &= \Xi_{i} \Xi_{j}^{*} g_{j} \\ &= \delta_{i,j} g_{j} \end{split}$$

therefore, by Lemma (2.10) { $\Omega_i : i \in I$ } is a dual *g*-frame of { $\Lambda_i : i \in I$ }. Next, let { $\Omega_i : i \in I$ } be a dual *g*-frame of { $\Lambda_i : i \in I$ }. Therefore, by Lemma (2.12) { $\Lambda_i - \Lambda_i S_{\Lambda}^{-1}$ } is orthogonal to { $\{\Lambda_i S_{\Lambda}^{-1} - \Omega_i\}_{i \in I}$. We have

$$\begin{split} \sum_{i \in I} (\Lambda_i - \Lambda_i S_{\Lambda}^{-1})^* (\Lambda_i S_{\Lambda}^{-1} - \Omega_i))f &= 0\\ \sum_{i \in I} \left(\Theta_i T^* - \Theta_i T^* S_{\Lambda}^{-1}\right)^* \left(\Theta_i T^* S_{\Lambda}^{-1} - \Theta_i V^*\right)f &= 0\\ \sum_{i \in I} \left(T\Theta_i^* - S_{\Lambda}^{-1}T\Theta_i^*\right) \left(\Theta_i T^* S_{\Lambda}^{-1} - \Theta_i V^*\right)f &= 0\\ \sum_{i \in I} \left(T\Theta_i^*\Theta_i T^* S_{\Lambda}^{-1} - T\Theta_i^*\Theta_i V^* - S_{\Lambda}^{-1}T\Theta_i^*\Theta_i T^* S_{\Lambda}^{-1} + S_{\Lambda}^{-1}T\Theta_i^*\Theta_i V^*\right)f &= 0. \end{split}$$

Since $\{\Theta_i : i \in I\}$ is a *g*-orthonormal basis

$$\begin{array}{rcl} (TT^*S_{\Lambda}^{-1} - TV^* - S_{\Lambda}^{-1}TT^*S_{\Lambda}^{-1} + S_{\Lambda}^{-1}TV^*)f &=& 0\\ & \left(I_{\mathscr{H}} - TV^* - S_{\Lambda}^{-1} + S_{\Lambda}^{-1}TV^*\right)f &=& 0\\ & I_{\mathscr{H}} - TV^* - S_{\Lambda}^{-1}\left(I_{\mathscr{H}} - TV^*\right)f &=& 0\\ & \left(I_{\mathscr{H}} - S_{\Lambda}^{-1}\right)\left(I_{\mathscr{H}} - TV^*\right)f &=& 0 \end{array}$$

Since $(I_{\mathscr{H}} - S_{\Lambda}^{-1})$ is invertible, we have

$$(I_{\mathscr{H}} - TV^*)f = 0 \Rightarrow TV^*f = f$$

Thus, $\{\Omega_i : i \in I\}$ is a dual *g*-frame of $\{\Lambda_i : i \in I\}$.

4. The Stability of g-frames

Let $\{\Lambda_i : i \in I\}$ be a g-frame for Hilbert space \mathscr{H} and $\{\Gamma_i : i \in I\}$ be a sequence such that $\{\Lambda_i - \Gamma_i : i \in I\}$ is a g-Bessel sequence. We give a condition under which $\{\Gamma_i : i \in I\}$ is a g- frame.

Theorem 4.1. Let $\{\Lambda_i : i \in I\}$ be a g-frame for Hilbert space \mathscr{H} with bounds A, B

and frame operator S_{Λ} . Let $\{\Gamma_i : i \in I\}$ be a sequence for \mathscr{H} . If $D = \sum_{i \in I} ||\Lambda_i - \Gamma_i||^2 \leq \left(\frac{A^2}{2} ||S_{\Lambda}||^{-1}\right)$, then $\{\Gamma_i : i \in I\}$ is a g-frame for \mathscr{H} . **Proof.** For any $f \in \mathscr{H}$, we have

$$\begin{split} \sum_{i \in I} \|\Gamma_i f\|^2 &= \sum_{i \in I} \|(\Gamma_i - \Lambda_i)f + \Lambda_i f\|^2 \\ &\leq 2(\sum_{i \in I} \|(\Gamma_i - \Lambda_i)f\|^2 + \sum_{i \in I} \|\Lambda_i f\|^2) \\ &\leq 2(\sum_{i \in I} \|(\Lambda_i - \Gamma_i)f\|^2 + \sum_{i \in I} \|\Lambda_i f\|^2) \\ &\leq 2(D + B) \|f\|^2 \end{split}$$

As $B^{-1}I_{\mathscr{H}} \leq S_{\Lambda}^{-1} \leq A^{-1}I_{\mathscr{H}}$

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \sum_{i \in I} \|(\Lambda_i - \Gamma_i)f + \Gamma_i f\|^2$$

$$\leq 2 (\sum_{i \in I} \|(\Lambda_i - \Gamma_i)f\|^2 + \sum_{i \in I} \|\Gamma_i f\|^2)$$

which implies that

$$\sum_{i \in I} \|\Gamma_i f\|^2 \geq \frac{1}{2} \sum_{i \in I} \|\Lambda_i f\|^2 - \sum_{i \in I} \|(\Lambda_i - \Gamma_i) f\|^2$$

$$\geq \frac{A}{2} \|f\|^2 - D \|f\|^2$$

$$\geq \left(\frac{A^2}{2} \|S_{\Lambda}^{-1}\| - D\right) \|f\|^2$$

 $\left(\frac{A^2}{2}\|S_{\Lambda}^{-1}\| - D\right) > 0 \Rightarrow D < \left(\frac{A^2}{2}\|S_{\Lambda}\|^{-1}\right)$ Thus $\{\Gamma_i : i \in I\}$ is a *g*-frame for \mathscr{H} if $D < \left(\frac{A^2}{2}\|S_{\Lambda}\|^{-1}\right)$.

Theorem 4.2. Let $\{\Lambda_i : i \in I\}$ be a g-frame for Hilbert space \mathscr{H} with bounds A and B. Let $\{\Gamma_i : i \in I\}$ be a sequence for \mathscr{H} . Then $\{\Gamma_i : i \in I\}$ is a g-Bessel sequence for \mathscr{H} if and only if there exists a λ such that $\sum_{i \in I} ||(\Lambda_i + \Gamma_i)f||^2 \leq \lambda \sum_{i \in I} ||\Lambda_i f||^2, \quad \forall f \in \mathscr{H}.$ Moreover, if T_{Λ} is the synthesis operator of $\{\Lambda_i : i \in I\}$ and $\lambda < \frac{A||T_{\Lambda}^{\dagger}||^{-2}}{2B}$, then $\{\Gamma_i : i \in I\}$ is a g-frame for $\mathscr{H}.$ **Proof.** Let $\sum_{i \in I} ||(\Lambda_i + \Gamma_i)f||^2 \leq \lambda \sum_{i \in I} ||\Lambda_i f||^2 \quad \forall f \in \mathscr{H}.$ For any $f \in \mathscr{H}$, we have

$$\begin{split} \sum_{i \in I} \|\Gamma_i f\|^2 &= \sum_{i \in I} \|(\Lambda_i + \Gamma_i) f - \Lambda_i f\|^2 \\ &\leq 2 \left(\sum_{i \in I} \|(\Lambda_i + \Gamma_i) f\|^2 + \sum_{i \in I} \|\Lambda_i f\|^2 \right) \\ &\leq 2 \left(\lambda \sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Lambda_i f\|^2 \right) \\ &\leq 2(\lambda + 1) \sum_{i \in I} \|\Lambda_i f\|^2 \\ &\leq 2B(\lambda + 1) \|f\|^2 \end{split}$$

This implies that $\{\Gamma_i : i \in I\}$ is a g-Bessel sequence for \mathscr{H} . Conversely, let D be the bound of the g-Bessel sequence $\{\Gamma_i : i \in I\}$. $\sum ||\Lambda_i f||^2$

Since
$$A \|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \Rightarrow \|f\|^2 \leq \frac{\sum_{i \in I} \|\Lambda_i f\|}{A}, \quad \forall f \in \mathscr{H}.$$

Then for any $f \in \mathscr{H}$, we have

$$\sum_{i \in I} \|\Gamma_i f\|^2 \leq D \|f\|^2 \leq \frac{D}{A} \sum_{i \in I} \|\Lambda_i f\|^2, \quad \forall f \in \mathscr{H}. \text{ Therefore,}$$

$$\sum_{i \in I} \|(\Lambda_i + \Gamma_i)f\|^2 \leq 2 \left(\sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Gamma_i f\|^2\right)$$

$$\leq 2 \left(1 + \frac{D}{A}\right) \sum_{i \in I} \|\Lambda_i f\|^2$$

$$\leq \lambda \sum_{i \in I} \|\Lambda_i f\|^2 \quad \text{where} \quad \lambda = 2 \left(1 + \frac{D}{A}\right).$$

Moreover, let T_{Λ} be the synthesis operator of $\{\Lambda_i : i \in I\}$. Since T_{Λ} is onto, by Lemma (2.9), there exists an operator T_{Λ}^{\dagger} such that $T_{\Lambda}T_{\Lambda}^{\dagger} = I_{\mathscr{H}}$ with $B^{-1} \leq ||T_{\Lambda}^{\dagger}|| \leq A^{-1}$. Then for all $f \in \mathscr{H}$,

$$\begin{split} \|f\|^{2} &= \|T_{\Lambda}T_{\Lambda}^{\dagger}f\|^{2} \leq \|T_{\Lambda}^{\dagger}\|^{2}\|T_{\Lambda}\|^{2}\|f\|^{2} \\ &= \|T_{\Lambda}^{\dagger}\|^{2}\sum_{i\in I}\|\Lambda_{i}f\|^{2}, \\ \\ \text{thus } \sum_{i\in I}\|\Lambda_{i}f\|^{2} &\geq \|T_{\Lambda}^{\dagger}\|^{-2}\|f\|^{2} &\geq \frac{\|T_{\Lambda}^{\dagger}\|^{-2}}{B}\sum_{i\in I}\|\Lambda_{i}f\|^{2}. \text{ Since} \\ &\sum_{i\in I}\|\Lambda_{i}f\|^{2} &= \sum_{i\in I}\|\Lambda_{i}f+\Gamma_{i}f-\Gamma_{i}f\|^{2} \\ &\leq 2(\sum_{i\in I}\|(\Lambda_{i}+\Gamma_{i})f\|^{2}+\sum_{i\in I}\|\Gamma_{i}f\|^{2}) \end{split}$$

by hypothesis, we also have

$$\sum_{i \in I} \|\Gamma_i f\|^2 \geq \frac{1}{2} \left(\sum_{i \in I} \|\Lambda_i f\|^2 - 2 \sum_{i \in I} \|(\Lambda_i + \Gamma_i) f\|^2 \right)$$

$$\geq \frac{1}{2} \left(\frac{\|T_{\Lambda}^{\dagger}\|^{-2}}{B} - 2\lambda \right) \sum_{i \in I} \|\Lambda_i f\|^2 > 0.$$

Hence $\{\Gamma_i : i \in I\}$ is a g- frame for \mathscr{H} .

References

- Arefijamaal A. A., Ghasemi S., On characterization and stability of alternate duals of g-frames, Turkish J Math., 37 (1) (2013), 71-79.
- [2] Christensen O. and Jensen T. K., An Introduction to the Theory of Bases, Frames, and Wavelets, Technical University of Denmark, 1999.
- [3] Chugh Renu and Goel Shashank, On sums of G-frames in Hilbert spaces, Jordan Journal of Mathematics and Statistics (JJMS), 5 (2) (2012), 115-124.
- [4] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math Phys., (27) (1986), 1271-1283.
- [5] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans Amer Math Soc., (72) (1952), 341-366.
- [6] Enayati F. and Asgari M. S., Duality properties for Generalized frames, Banach J. Math. Anal., 11(4) (2017), 880-898.
- [7] Guo X., Decompositions of g-Frames and Duals and Pseudoduals of g-Frames in Hilbert spaces, Journal of Function Spaces, Vol. 2015, Article ID 305961, 7 pages.
- [8] Guo X., Perturbations of invertible operators and stability of g-frames in Hilbert spaces, Res Math., 64 (3-4) (2013), 405-421.
- [9] Najati A., Faroughi M. H., Rahimi A., G-frames and stability of g-frames in Hilbert spaces, Methods of Functional Analysis and Topology, 14 (3) (2008), 271-286.
- [10] Rajeswari K. N., George Neelam, On Alternate Duals of Generalized Frames, JJMS, 12 (4) (2019), 473-483.
- [11] Sun W., G-frames and g-riesz bases, J. Math Anal Appl., 322 (1) (2006), 437-452.
- [12] Sun W., Stability of g-frames, J. Math. Anal. Appl., 326 (2) (2007), 858-868.