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Abstract: In this paper the operational properties of two integral transforms of
Fourier type are defined. The purpose of the study is to define the convolution of
the Fourier type transform on L;(R") and Ly(R™). Also we obtained the Inversion,
Uniqueness and Plancherel’s theorem of these two transform. Lastely we have
applied these transform to differential equation of higher order for the solution.
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1. Introduction

In literature we have studied the Fourier-sine and Fourier-cosine integral trans-
forms([8], [9]). Along with these transforms Fourier transform were also studied
and applied in many fields of Mathematics and Physics ([7], [9]). The Fourier
transform plays an important role in engineering and science. It has vide applica-
tions in signal processing and communication theory. B. T Giang, N. M. Tuan [4]
has given the operational properties of two integral transforms of Fourier type and
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their convolution. We consider here the following transforms which are known as
integral transforms of Fourier type [4] and are defined as

o0

(Hyf)(2) = % /cos(zt—i—%)f(t) dt (1.1)
(Haf)(2) = % / sin(at + ) F(#) di (1.2)

where f is real or complex valued function defined on R™. The main difference
between Fourier sine and Fourier cosine transform and H;, H, is that kernel are
changed from cos(zy), sin(zy) to cos(xy + %), sin(zy + 7).

We investigate definition and operational properties and convolution of Hy, Hy
on S(R™), L;(R™), Ly(R™).

We have given the properties of H;, H, on R" so that H;,H> becomes bounded
linear operators on L;(R"), Ly(R™).

2. Operational Properties
Let N = {0,1,2,3,---} be the set of natural numbers. Let For S denote
the set of all K valued functions on R"™ which are infinitely differentiable such that

m(f) = sup sup (1+[z")™ [(Dnf)(2)| < o0 (2.1)

In| <|m| zeRn

Here |z|2 = S 22 Here K = R” and D,f = f®™ forn € N, .%Is a vector
space since P(z)D, f is a bounded function on R™ for every polynomial P and for
every index n which is true if we replace P by (1 + |z|*)Y P(z) which implies that
P(z).D,f € Li(R"™).

Hence .“1s Frechet space by taking countable collection of seminorms for which
dm(f) defines a weakly convex topology.

2.1. Transforms of the Hermite Function
The Hermite polynomial of degree m is defined by
x2 a(m) 2

—T

Hm((L') = (—1)m€ W@

where
m=mi;+mo—+---+my
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The corresponding Hermite Function ¢, is given by

Let n; = 4m2 + ]{32

Theorem 2.1.

Here x = x1x9 - - -

Tn

Om(T) =
ko= 0,1,2,3

n =4m + k

where n

Y=y

Hl¢n = {
H2¢n = {

m

k

.I‘2

() e (e

k=01,23

ny+mno+---+ny,

2

n

_ 2

= E x;
=1

my+my 4 -+

ky+ ko + -+

“Yn then

b, if k=03

On if k=01
—én  if k=23

Proof. Obliviously all ¢,, € S we have for i = 1,2, 3, -

’
cos(z;x; +

o)
Ox ()

™

7

integrating by parts n times,

(H1¢n>(x17 Ly

since

2 cos(

4

) Tn)

nim
+7)

ez (@tiy)® _
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(e

z(:czsc—i- ) —z(zzz—‘r )

2" +e
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if k=12
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, Tn)
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similarly we can show for Hy also,

. ! . ’
T ez(wizi+§) — e_z(zil'i“!‘%)

sin(x;z; + Z) = 5
om O (orig)?
,($+1y) _ Y0 \rrry)
e je? = (%) —ay(”) e 2
/ +ivy— _ 6_32
Vi 27r
Integrating by parts n times we get
1 T T . ’ T ’
(H2¢n)(.’£1,1'2,'-' ) n —n / / / ¢n 1'1,1'2,-" » L ) Sln(zlmi_{_Z)dxi
T2
T
- ( + _>¢n(l‘1,$2, ,{L'n>
k=01
but V2 sin( 7T = if
iof k=23.

2.2. Definition of H;, H, in Space S(R"™), L;(R"™), Ly(R")

The space S(R"), L1 (R"), Ly(R") are defined in [7]. Let Cy(R™) denote the
supremum - normed Banach space of all continuous functions on R™ that vanish at
infinity.

Theorem 2.2. If f € Li(R") then (Hyf),(Haf) € Co(R™) and
1 1

1H1flo < = Ifllys [1H2flloe < —= [1f1ly
T2 T2

where || ||, is L1 norm.

Proof. Cy(R") is the supremum normed Banach space of all complex valued
continuous functions on R™ that vanish at infinity. Using Riemann Lebegue lemma
[9] we have Hy f, Hof € Co(R™). We have

Z)) <1, ‘sm(mx +Z

: )‘ <1 for i=123,

!/
cos(z;x; +

[e.e]
n

((Hy flan, s, )] = | / /Hcosm+ T) f(wh, - 2,) ] A

’

-x,)|da) - da,

IN
j:| =
—
—

S

H& ~



Fourier type Transforms and their Convolutions on R™ 103

1
ess. sup | Hy f(1, 22, 20)| < — [Iflly
1 .
110l < = Il Voo €R i=12 (2.4
Again using Riemann Lebegue lemma [9], we have

1 - . ’ m ’ ’ ’

’(HQ f(xbx% e 7xn)’ = == o H Sln(l’il‘i + _) f<x1’ e 7'1'71) ‘ dmz
T2 paley 4

INA
i
N3
—
—
-
3
B
-
]
.
o,
g
8
a
g
3

1
€SS. Sup|H2f(I1,x2,~~-,xn)| S T ||f||1 for all T; € R 7::172737"'771
T2
1
1Hz flloe < —= [If]1
T2
Let us define h,,,(z) = 2™ h(x) , here 2™ = (27 252... g™), 2z € R®
m = (my,mg, -+ ,my) €N, n=(ny,ng,- - ,n,) €N

The function D™h,, belongs to S(R™).
Theorem 2.3. Let h € .5, = S(R™) then for allm,n € N V& € R”

Hy D™ () if n+m=0(mod4)
2™ - D (H h)(z) = —Hy; D™ h,(2) if n+4+m = 1(mod4) 25)
—H, D™ hy(z) if n+m=2(mod4) '
Hs Dm) hn(SL’) if n+m= (mod4)
and
Hy D () if n+m=0(mod4)
Hy D™ h ~ - 44
2™ - D™ (Hyh)(z) =4 n(2) gf n+m = 1(mod4) 26)
—Hy D™ hy(x) if n+m=2(mod4)
—H, D™ hy(2) if n+m=3(mod4)
71 2 Top,
Proof. Here D™ stands for 889071“ 82632 e 6655271
(k) / / / .
% cos () + 7) = ()" cos(wa, + % + ) keN

(2
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104
Now,
]. L ! /L / / /
DO @) = — [ [ T] costaua + 5+ ) oty ) (@)™ -
2 Pl 4 2
1 - ’ ™ n;m ’ ’ ’
= — Hcos(xia:i—l——%— ) - hp(xy, - z,) - da;
T2 Pl 4 2
Integrating by parts m times,
mTlxglz L xnmn) . D(")(H1h)($1,$2, e my) =
1 T T / s n;m ) / ’ ’
— T+ — T (2, a) - da
7”_/ _/L[lcos(xx+4+ 2) x; (x4 z,) - dz
1 T T 8(7711) (n, 7,)7'[' ’ i ’
- . J Py, ) - da
7”/ /il;[lal(mi)cosxx—kél—i— 5 ) X hp(zy z,)-dr
zn: m; 00 0~ .
(—1 i=1 / / ’ T (n, Z)T[' ( ) I ’ ’
= —"5— | - i+ DY hy (2, s zp,) - day
. il;[lcosxx+4+ 5 ) X (x4 x,) - dz
_ L /.../ﬁcos(x.m{+7r+w) x DM, (2, 2) - da
71'% P ('} 4 9 n\+1» »<fn 7
for all m,n € N where n = (nq,n9,--- ,n,), m = (mq,mg,---,m,) which com-
pletes the proof.
k
Now for Hy we have — sin (z,2; + T) = (;)* sin(z;z; + T+ %) keN
Ty
1 n i 1/ ’ ! ! !
D(n)(HQh)(m) -z / N / H Sln(xzxi + z + i Tr) h(xlv 7xn) (xz)m ’ dxz
T2 paley 4 2
1 - . ’ T n;m / / /
= — . H sin(z;z; + — + ho(xy, - x,) - da;
P P 4 2
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Integrating by parts m times,

(:L‘Tlnlxgl2 w;ﬂn) D(n)(HQh)(xhx?a amn) =
1 ) © .
. T n;m ’ ’ ’
s / / Hsm(xixl—i— 1 + ; ) (e, @y,) - day
—00 o =1
L ’ ™ n; — Mm;)m ’ ’ /
— [ [ 1] G st + 54 BT o)) -
T —00 oo =1 F
i PGS 00
]. '”Zlm " ( ) (m) / i ’
% H sin .’EZZE + + 2 ) x D : hn(‘rlv T 7xn)dxl
—00 —00

[e.e] n
! !/ !’

1 i i
n / / H sin 93193 + + (n +m) ) D(m)hn($17"' ’xn).dxi
T2

for all m,n € N where n = (ny,n9,-++ ,n,), m = (my,ms,---,m,) which com-

pletes the proof.
Theorem 2.4. The operators Hy and Hy are continuous linear maps of the Frechet

Space Fonto itself.
Proof. f € Fthen H,f, Hyf are smooth on R", we have

1
tap? - DY(H ) (012 - 20)[loo < =2 [|D™ - hafli < 00
T2

e n

and
m mQ m n 1 m
a2 DY Hyf) (2@ @) ||oo < —%||D “hall < o0

n

[t

= H.f, Hof € .S
We prove that H; is closed operator in 9
Let f,g € SLet {fi}321 be a sequence in S which converges to f and H, f;

converges to ¢ in Fas 7 — o0. To prove that H, f = g we have convergence in S
implies convergence in L;(R")

|Hofy — Hifll=HL(f; = O <fy = flh =0 as j— o0

Hence H, f; uniformly converges on R" to H; f as well as to g. Hence H;f = g.

Similarly by closed graph theorem H; is continuous linear operator on S
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If h s function of bounded variation on an
» Ln, — O)}

Theorem 2.5. Let h € L;(R")

interval in the point x € R™ then
T, +0) + h(zy — 0,29 —0,---

1
_{h('rl + 07 To + Oa
0 —00

1 T
:—nH/ /hy1,~--,yn)><cos( yi)z; - dy;
and if h is continuous and is of bounded variation on some interval (§1,92) then

™
=10
(e e}

T ot an ot

9
n
!
o [
0 —00 —00

oo
0

1
h e ay) = —
(I‘l,l'g, y L ) n Zl;[
Theorem 2.6. [Inversion theorem| If f € For f €58, then
]_ i T T ! ! ! !
Flona o) = = [T [+ [p@ ) x costoal + 5 ael 27)
177 ,
,xn):—nH/ /(Hgf)(:cl,~-- 1) x sin(zz; + )dx (2.8)
T2 .

’
%

f(xlv T2, -
Proof. Given that f € .“%he the R.H.S. of (2.7) is clearly member of S(R") using

/

above theorem (2.5) and Fubini’s theorem we get
/ / (H f)(zy,, -, )xcos(xx/+4)dx
L) da;

Mb
I:1 »

s
||

i —00 T2

1
[hm —H/ /cos T, + ) (Hyf)(zy,
. dyz/ /cos:z:x—l— xcos(xyz+4)dl
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Similarly we can prove the Inversion formula for H,.

Theorem 2.7. If H, and Hy are contmuous Linear one to one maps of Fonto
itself then H? =1, H2 =TJie H = H1 , Hy = H_

Proof. From these two Inversion formulae we see that H; and H-> both are one-one
and onto S(R™). Hence H, = H;*and Hy = Hy' = H? =1, H? = I.

Theorem 2.8. If f, H,f € Ll(R") or f,Haof € L1(R™) also if

v
9(551,5527"' , L 7]'2 H / Hl ylﬂ'.. 7yn) COS( Zyl Z) dyl
= 1Rn
th€n g(x17x27”' 7'7;71) = f(l‘17'r27“' axn>

Proof. Given f,H,f € L;(R"). Let h € S, or S(R") then by applying Fubini’s
theorem we get

n

// f(xlaxZa L, T ) y17 T ayn HCOS Zyl dw’l dyl (29)

R" R7 =1

/ f(xlwl'?a"' 73:71) (th(beJz;“' 73/71)(33173727"' 7xn))dx1dx2dxn

(2.10)
= / h(yi Y2, -+, yn) (Hif (21,20, -+, 20)) (Y1, Y2, -+ Yn) dtpdys - - - dyn

R
Since Hyf € Li(R") and g € .%we have by inversion theorem (2.6) to right side
(2.10) and again applying Fubini’s theorem, we get

/f X1,T2, " 73:71) (th(yl7y27"' ayn>($17$2a"' 7$n))dxldx2dxn

n

/Hl Y1, Y2, - 7,% HCOS zyz dxz ((Hlf(xlvx%"' 7$n))

=1

(yl,y2,~-- s Yn) dyrdys - - - dyy)
1
:/(th)(xl7x27"' axn) (g /(Hlf(xlyx%'” 7'1771))

Rn R

(y1:y27"'7yn HCOS zyz dyz
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:/g(ZL’l,CL’Q,"' ,$n)(H1h)(x1,x27--~ ,l‘n) dxidxy---dx,

R"

Let D(R™) denote the vector space of all infinitely differentiable functions on R™
with compact support and D(R?) ¢ .“or D(R™) € S(R™) we have

/[9(1’1;$27 e 7xn) - f(xhx% e 7xn)]¢(x171‘27 T 7xn)dx1dx2 o dxn =0

Rn
for every v € D(R™) = g(x1, 22, -+ ,x,)— f(x1, 22, -+ ,x,) = 0 almost everywhere
v(xth? Tt 7'rn) S R

g(@i) = f(z;)  Va
We prove the theorem for H, also.

Theorem 2.9. [Uniqueness theorem for Hy and Hs] If f € Li(R") and Hif =0
in Li(R"™) then f =0 a.e. in Li(R™) Similarly f € Li(R") and Hof =0 in L;(R")
then f =0 a.e. in L;(R").

Proof. Given, H;f =0

1 7 7 / / ’ !
= — /---/f(a:l,xg,---,xn) Cos(:plxl—i—%)---Cos(mnxn—k%)dxl---dxn:O
T2

but | cos(zx; + 2)] <1

[T ,
:>—n/'--/f(xl,x2,~~~,xn)dx1~~~dxn:0
T2
Hencef(z1,z9, -+ ,x,) =0 a.e on R"

Similarly
Hyf =0 then f(xy,29,-+-,2,) =0 a.eonR"

Theorem 2.10. [Plancherel’s Theorem| For every f € S(R™) there exist linear
1sometric operator Ef = H,f and Ef = Hyf. Also E2 =1, Ff =1, I¢€
Lo(R™) is identity operator.
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Proof. By the inversion theorem, if h,q € S(R") then

/h(l‘l,ﬂ;’Q’-.- ’xn)q($1’x27--- 7xn>dx1...dxn

Rr
= / G(x1,x9,++ ,xy)day - - - dxy, ng / (Hih(xy, 29, ,xp))
Rn Rn
(titg -~ -t,) x cos(wity + Z) -cos(Tpt, + 4) dty ---dt,
/ Hih(zy, 29, , %) (t1t2"‘tn)dt1"'dtn7rig (q(x1, 2, -+, 2p))
Rr Rn
X cos(zit; + Z) -cos(xpty, + 4) dzy - - - dzy,

By Parseval theorem

/ My, 9, x,) (1,2, -+ ,xy)day - - - dy

R”

—/(th(xl,x2,~~ o)) (s t) Thg (tata - 1)ty -ty f.g € S(R™)
R
if h=gqthen |hl2=|Hh|-: h € S(R")
(2.11)
Here S(R") is dense in Ly(R™). Actually S(R") is dense in Ly(R"™) by theorem
(2.6) the map f — H;f is an isometry of dense subspace S(R") of Ly(R™) onto

S(R™) which implies f — H,f has a unique continuous extension H, : Ly(R") —
Ly(R™).Hy is linear isometry onto Lo(R™) see ([2], [6], [9]).

Corollary 2.11. H, and Hy are unitary operators on the Hilbert space Lo(R™).

Theorem 2.12. [Plancherel’s theorem for Hy| Let h € (R™ or C™) be a function
in Ly(R™) and let

1 n
Hl(mlaan"'7xn7k17k27“'akn)Zﬂ_Q / / H

cos(z;y; +
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then as ki — oo, Hi(x;, k;) converges over R™ to a function in Ly(R") and we call
it as Hih and

n

1
h(xlux%'”7xn7k17k27"'7 ﬂ / /

—k1 —kn

A
+ Z> (Hih)(y1, - Yn) dys - - - dy,,

converges to h moreover the functions (Hh) and h are connected by the formulae.

— 1
(th)<$17"' 7'T'rl) = _H‘D(n) / h(yh 7yn>x

’:]:

=1

cos(;y;

T2
Rn

ﬁ 2sin (zy; + %) — V2

dyy - - - dy,,
| 2 (i Y
=1
L ow [ &
h<x1a e 7$n) = W_%D (th)(yh o ayn)x
R'I‘L
. T
2sin (xiyi + Z) —V2

Il

=1

dy; - - - dy,
20 Y1 Y

for every x € R"

Proof. Let h € Ly(R"™) then we know that there exists sequence of functions
{h,} € S(R"™) such that
|hn, — R — 0.

But we have already proved that
1h]l2 = [[Hihl2

SO

|Hihp — Hihyll2 = || Hi (B — B2 = | — Ball2 - for m,n € N

This shows that {H1h,} is a cauchy sequence which converges to a function €
Ly(R™). We denote it by (Hih)(z1,- -+ ,2,).As {h,} € S(R™) we get,

1 Tn
/.../thn(xh.. 2,)da -

s
0 0

T

- L o [

=1 0
) dy;

| -

N3

cos ii—i——
(igi + 7
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1 i QSin ’l”i/yi—FE —\/§
= = hn(yly"' ayn) H ( 9 4) dyldyn (212)
T2 il Yi
Rn
i T
2sin (n-yi + —> —V2
But 5 4 € L,y(R") and h, € S(R")
Yi

We apply Lebegue dominated convergence theorem to the integral in (2.12) and as
n — oo

T1 Tn
S 1
/"'/(th)(l'l,"' ,$n)d$1“'d$n — 7]-_% h(yb"' ’yn)
0 0 Rn
n QSin ’f’iyi—l—ﬂ —\/§
. 2y;
=1
Hence for every x € R we get
A LN
(th)<:[;17"' 7xn) = 7T7§L D h(yh 7yn)
Rn
(2.13)
o 2sin (riyi+ %) — V2
i1 2y;

Now we change h,, to Hih, in (2.12) and by applying theorem (2.6) we get,

Tiyi‘i‘%)_\/ﬁ

2y;

1 " 2sin
h(l’l,"' 71:71) = W_%D(n) /(th)(yb 7yn) H (
B i=1

dyy - - - dyy

for every x € R™. Now we assume that

hi(z) = h(z) for |z;| < k;
=0 for |z;| > k;
Then
hi, € Li(R™) N Ly(R™)

and
|\h — hll2 =0 as k— oo
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by (2.13) and (2.14) we have

T 1 n & 2sin (riy; + %) — V2
(Hihy) (21, 20) = — D™ H / h(yr,- - s Yn) ( 5 .4) dy, - - - dyy
T =1 Yi
n ks
1 s
= = h(yh--- ,yn) COS(:L‘Z-yi + —)dy1---dyn
T2 o 4

i=1

—k;
- Hl(x17$27"' 7xn7k17k27"' akn)

By Plancherel’s theorem and its corollary we have,
”Ehm - EhnHQ = Hhm - hn||2 —0 as m,n— o0

so Hy(x;, k;) converges to (Hih)(xy,--- ,,) as k — oo in Ly € (R?)
Similarly we can prove the Plancherel’s theorem for Hj.

3. Convolution of H;

Convolutions: Convolutions played a major role in the development of Mathe-
matics and Physics as well as in many applications in pure and applied Mathematics
[11]. Convolution is the way for combining two signals to generate third signal. The
generalized convolutions for various integral transform were studied in ([1], [3], [5],

[10]).
Definition 3.1. [Convolution] A map *x: W x W — W is called a convolution for

G if G(x(f,q)) = G(f) - G(g) for any f,g € W. This bilinear form is denoted by
x(f, g) with respect to G.

Theorem 3.2. If fi, fo € L1(R™) then

Hi(fu S onn, ) = o [ U= )+ fula + )+

~ 20(2m) J (3.1)
fl(—xi + yz) - fl(—ﬂfi - Z/z)] f2(yl, T 7yn) dy; - dyn

This defines a convolution for H.
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Proof. To prove the theorem first we have to prove that, Hy(x(f1, f2)) € Li1(R")

/Hl(*(fbe))(xl»‘“ y )| day - day, < 171/ |fo(y1, -+ s yn)| dyr - - - dyn
! 2n(27) 2 B”

R
x L/ s — )| das + / s + ) |das + / o=+ yi)ldai + / i w)dxi]
n Rn R" Rn

< /!f2(y17"' Yn)| Ayt - - - dyn X/’fl(xla"' ;)| day -+ dzy, < 00
Rn Rn

27’L
(2m)2
Now,

N N / [T costet+ )
it — i) + filti +wi) + fi(—ti +yi) — fi(—ti — vi)] g(yi)dys - - - dyndty - - - dt,

= % / l_T cos(ait + ) (fux fo) (1) by -+ - dty
Rr =

= Hi(x(f1, f2))

Similarly we can prove the convolution theorem for Hj.
4. Applications

0 ot
Example 1. Find the solution of the differential equation v _ %
ot OxyO0xs

where v(x1,22,0) = h(xy,22) —00 <z <00, —00 < Ty < 00, t > 0.
Solution. We have

oo oo 2
/ ! 1 !’
V(xy, @, t) = Hiv(xy, 19, t) = - / / v(xy, o, t) H cos(x;x; + g)dl’lde
i=1

—00 —0O0

v and its derivatives becomes zero at oo and —oo on integration by parts we get

8V ]_ 77 av 2 ’ T
= == / / % il_[lcos(xia:i + Z)dﬂh dz,

—00 —O0



114 South FEast Asian J. of Mathematics and Mathematical Sciences

2

1 T 64/0 ’ ™
:;//Wgcos(xixi+z)dxldx2

—00 —O0
12 12
8‘/ 12 /2
o
’ ’ ’ ’ 12 12
V(.Tl,ilﬁz,t) = A(xD:EZ) e_xl T2t (*)

On putting t = 0 we get,

V(),25,0) = A(zy,2,)

’ / 1
V(xl,xQ,O):—/ v(xq, 29,0 Hcosxa:+ —) dz;

T
RQ
] 2
= - h s dz
ﬂ_/(.ﬁﬂlwg Hcosa:x+ —)dx
R2 t

= (Hih) (), 2y)
But  A(xy,1,) = V(1,7,,0) = Hih(xy, 1,)
putting in (%) we get
/ ’ ’ ! 2 2
V(xy,29,t) = (Hih)(z25) ™™ 72

Taking inverse we get

12 /2
v(z1, T2, 1) // (Hyh) (2, xy) e %1 22t Hcos:cx+

—0o0 —0O0

5. Conclusion

d/
Tz,

Here we have defined Fourier type transform and their convolution on R™ and
obtained its inversion for n dimensional space. We have proved some properties
like Convolution, Plancherel’s Theorem for n dimensional Fourier type transform.
We obtained all these properties for two dimensional space and then extended to
n dimensional. Lastly an application for two dimensional Fourier type transform

for initial value problem is given.
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