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Abstract: Zika virus is a member of Flaviviridae that also causes Japanese En-
cephalitis, dengue, yellow fever, and West Nile fever. General symptoms of the zika
virus are low-grade fever (less than 38.5°), macula-papular rash, myalgia, asthe-
nia, headache, and transient arthritis. Zika virus can cause congenital anomalies
(such as microcephaly), Guillain-Barre syndrome, and other neurological and au-
toimmune disorders. In the present mathematical model, we observed the effect of
sexual transmission on gender and symptoms based division of the infected human
population. We proposed a theorem to check the local stability of disease free equi-
librium state. To verify the theorem, we performed some numerical simulations.
We also analyzed the global stability of disease free equilibrium state. Further-
more, we checked the effect of different sexual transmission rates on the population
dynamics by calculating normalized sensitivity indices of Ry. Results of the present
study suggest that sexual transmission noticeably affects Zika dissemination and
by controlling sexual transmission rates, we can restrict the Zika virus spread.
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1. Introduction

Zika virus was first detected in a rhesus monkey in the Zika Forest of Uganda
in 1947, and the first human case was also reported in Uganda in 1952 [13]. It



88 South FEast Asian J. of Mathematics and Mathematical Sciences

is a vector born disease, and the bite of an infected female Aedes mosquito is the
primary cause of its spread [5], [12]. Besides this, there are many other proven,
feasible, and effective sources of secondary transmission of the Zika virus. Perinatal
transmission, blood diffusion and sexual transmission are also major cause for the
spread the Zika virus [11]. Among them, sexual transmission of the Zika virus from
men to men, men to women, and women to men also play a significant role [10].
Banuelos S. et al. presented a mathematical model to determine the effect of sexual
transmission of the Zika virus by using Wolbachia for vector control [2]. Pizza D.
et al. analyzed a simulation model representing the Zika virus dynamics in the
pregnant woman population to check the incidence of microcephaly [14]. Agusto
F. B. et al. analyzed a ZIKV model that includes human vertical transmission,
birth of babies with microcephaly and asymptotic infected individuals [1]. Kibona
I. E. and Yang C. formulated an SIR model of the Zika virus to observe its spread
in newborns [9]. Their study suggests that by controlling vector transmission, the
Zika spread can be controlled. The present paper aims to analyze the effect of
sexual transmission in the Zika virus dissemination. In analyzing the behaviour
of infectious disease, the basic reproduction number is an important factor. It is
defined as the average number of secondary infections produced when one infected
individual is introduced into a host population where everyone is susceptible [7].
It shows whether the disease will stay or die out. The basic reproduction num-
ber depends on the various physical parameters such as different transmission or
infections rates, recovery rate, birth rate, death rate, fractions of populations and
many more. Normalized sensitivity index measures the relative importance of these
parameters to the basic reproduction number. The normalized sensitivity index of
a variable to a parameter is the ratio of the relative change in the variable to the
relative change in the parameter [4]. The remaining paper organizes as follows:
Section 2 represents the modified mathematical model. We obtain the disease free
equilibrium point and the basic reproduction number in Section 3. In section 4,
we analyze the local and global stability of disease free equilibrium. In section 5,
we perform sensitivity analysis to check the robustness and validity of the results.
Section 6 contains the conclusion of the study.

2. Mathematical Model

The present model is the modification of the model discussed by S. Banuelos
et al. [2]. S. Banuelos et al. divided the infected population into symptomatic
and asymptomatic. We extend their model by dividing the infected population
into male and female categories. Thus in the present paper, the total human pop-
ulation (Ng) consists of seven mutually exclusive compartments, which are as fol-
lows; Susceptible human (Sy), ex-posed human (Fp), infected symptomatic male
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(Inrs), infected asymptomatic male (Ip4), infected symptomatic female (Ipg), in-
fected asymptomatic female (Ir,4), recovered human (R). The vector population
is divided into three classes; susceptible vectors (Sy ), exposed vectors (Ey ), and
infected vectors (Iy). Since the present model is the modification of a previously
studied model, we proceed with the work by following its assumptions. Since
vectors do not recover and remain infectious for the rest of their life, we do not
consider the class of recovered vectors [2]. Symptomatic and asymptomatic hu-
mans recover with the same rate and do not become susceptible again [1]. We
do not include disease induced human death because death due to the Zika is
negligible [12]. The study does not consider birth and death rates because the
model simulates only a single possible outbreak [6]. The total human popula-
tion is constant. Therefore, Ny = Sy + Eyg + Iys + Iya + Ips + Ipa + R.
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Figure 1: Transmission diagram
Mathematical model for the transmission dynamics of Zika is as follows
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Table 1. represents the description of model parameters and their associated values.

Tablel: Parametric Values and Their Range

Parameter Description Range Baseline Values
b Mosquito biting rate 0.3-1 0.5

v Birth rate of vectors per day 0.02-0.27 0.0690
pt Latency peried of Zika virus in vectors in days 8-12 10

ov Transmission probability from an infectious human to a susceptible mosquito per bite | 0.3-0.75 0.4872
pt Life span of a vectorin days 5-20 14.5
UH Transmission probability from an infectious mosquito to a susceptible human per bite | 0.1-0.75 0.4240
Per! Latency period of Zika virus in humans 3-14 8.5
WS Rate of sexual transmission by symptomatic male 0.001-0.1 0.0098
Wara Rate of sexual transmission by asvmptomatic male 0.001-0.1 0.0532
WFaA Rate of sexual transmission by asvmptomatic female 0.001-0.1 0.0223
WES Rate of sexual ransmission by svmptomatic female 0.001-0.1 0.0049
q Proportion of symptomatic male in humans 0.0924
42 Proportion of asymptomatic male in humans 0.5024
43 Proportion of symptomatic female in humans 0.1031
q4 Proportion of asymptomatic female in humans 0.3021
Tl Recoveryrate of male 0.2-0.3333 | 0.2741
£ Recoveryrate of female 0.2-0.3333 | 0.3025




A Mathematical Model for the sexual Transmission of Zika Virus ... 91

3. Disease Free Equilibrium Point (DFE) And Basic Reproduction Num-
ber

3.1. Disease Free Equilibrium Point (DFE)
In the DFE(E®), Ings =0, Inyja =0, Ips =0, Ipa =0, Ey =0, Iy =0, By =0,
R=0.

Therefore, DFE(E°) = (NH, 0,0,0,0,0,0, 22 o, o)

3.2. Basic Reproduction Number
Next generation matrix determined using [8] is

[ a1vums 4 2Yma | as¥rs | aa¥ra PMS YA Yrs YFaA apbBy apb 7
7 %1 2 Y2 Y1 71 Y2 2 Bv +nrv) ny
0 0 0 0 0 0 0
0 0 0 0 0 0 0
val — 0 0 0 0 0 0 0
0 0 0 0 0 0 0
ay by (q1v1 + 9271 + 9372 + qav2) ay by ay by ay by ay by 0 o
v V1RV TRV Y2pv Yo ny
0 0 0 0 0 0 0

Spectral radius of the next generation matrix is the basic reproduction number
(Ro) and is determined by the following equation

N2 (qli/JMs L ©Y¥ua | gs¥rs (J4¢FA> N apavb’BvAv(an + ¢y + a2 +are) 0
M gl V2 V2 v (Bv + pv)
Therefore,
Ry — Ros +\/R3g + 4R3,,
2
where,

+ + -

Ry = (QWMS Qma | 3YFs quA)
g gt V2 "2 ’

R — agayb?By Av (i1 + g + @32 + qae)
oV =

v (By + py)
4. Stability Analysis of DFE

4.1. Local Stability of DFE
We propose following theorem to check the local stability of DEF condition

Theorem 4.1. Disease free equilibrium point E° is locally asymptotically stable
when
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i (s + @Yaa + @3es + qubpa — (71 + 72)]Ba — 1172 <0

. Bg <7+ 7

it (QPms + @Yaa)Bar <71+

. (@3¥rs + @ra) P < 11 + 2 Provided Rys < 1.

Proof. Jacobian matrix of the system of equations (1) at disease free equilibrium
is

[0 0 —Yms —na —VFs ~Yra 0 0 0 0
0 —Bu  Yums Y Yrs Yra 0 0 0 0
0 @18 -7 0 0 0 0 0 0 0
0 q2Bu 0 -7 0 0 0 0 0 0
0 ¢38u 0 0 —Y2 0 0 0 0 0
Jo= 10 @pu 0 0 0 —2 0 0 0 0
0 0 Y1 Y1 Y2 —Ys 0 0 0 0
0 0 —ayb\y  —ayby  —aybly —aybly 0 —uv 0 0
122% 1% 1% 1%
0 0 ay by ay by ay by ay by 0 0 By — v 0
nv nv nv nv
i 0 0 0 0 0 0 0 0 Bv o
Seven roots of Jacobian matrix are A\ = —uy, —py, —py — Py, 0,0, =y, —y2 and

the rest of the three roots are given by

N+ (v + 92 + Ba)A — {[a1umrs + Gama + @rs + qabra — (71 +72)]88 — 71721
— (1¥msy2 + UMaY2 + G3VEsYL + Qu¥ra — Y172) B =0

Necessary conditions to apply Routh-Hurwitz criteria are as follows

L [@¥ms + @¥yma + @rs + @abra — (1 +92)180 — 1172 <0

ii. Rog < 1.

According to Routh-Hurwitz criteria, sufficient conditions for the system (1) to be
stable are

L [@¥ms + @¥uva + @rs + qabpa — (1 +72)]85 — 1172 <0

. fg <7+

il (1¥ms + @¥ma)Be <71+ 72

iv. (g39rs + qura)Bu <7+ 72

Hence, the theorem is proved.

4.2. Numerical Simulation. To verify the theorem, we found the numerical
solution of the system of equations (1) and represented the solution graphically.
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For this, we selected the parameter values from the range given in Table 1 such that
they satisfy the necessary conditions of the theorem. Table 1 takes the parameter
ranges taken from [2]. FIGURE 2 represents the numerical solution of the system
of equations (1) in the DEF state of the populations and verifies the proposed
theorem. It shows that all infected, exposed, and recovered populations remain
zero for a long duration, if the required conditions of the proposed theorem are

satisfied.
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Figure 2: Time series for all populations
4.3. Global Stability OF DFE
Theorem 4.2. The fized point Uy(x*,0) is a globally asymptotic stable equilibrium
of system provided Ry < 1 (local asymptotically stable) and those assumptions Hy
and Hy are satisfied [3].

The given system is expressed in the form:

dX

dt
dz

2 = G(X,Z), G(X,0) =0
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Where X € R™ denotes (its components), the number of uninfected individuals
and Z € R" denotes (its components) the number of infected individuals including
latent, infectious etc. Uy = (z*,0) denotes the disease free equilibrium of this
system.
The condition (H1) and (H2) below must be met to guarantee local asymptotic
stability.

dX
H1: for = F(X,0), X" is globally asymptotically stable (g.a.s.),

H2: G(X,Z)=AZ —G(X,2),G(X,Z) > 0or (X,Z) € Q,

where A = D;G(X*,0) is an M matrix (the off diagonal elements of A are non
-negative) and (2 is the region where the model makes biological sense.

To apply the above theorem to present model, the model (1) can be expressed in
the following form

dx
— =KX, Z
dt ( Y )
—apgbly S — s S — haralya st — pglpg S — hpalpa
Ny Ny Ny Ny Ng
= Y1(Ins + Ina) +v2(Ips + Ipa)
M Ny — av(Iys + Iya+ Irs + IFA)% — pv Sy
dz
— =G(X, 7
dt ( Y )

OéHbIfo_z + wMSIMSJi_I; + ¢MAIMA]€[_I; + ¢FS[FSJ€7_I:I + wFAIFAf[_FI_II — BuFEn |
@ BaEr — nlus

©BaEr — 11lma

= | @3BaEg — Ylrs

WuBaEr — Yolra

avb(Iys + Inya + Ips + [FA>]€]_“/, — By Ey — py Sy

L 5VEV - /LV[V |
where X = (Sy, R, Sv) and Z = (Ey, s, Ina, Irs, Ira, Ev, Iv)
Ay N
Up(x*,0) = E” = (X*,0) where X* = <NH70; ﬂ) is DFE of %X.
0%

0
Therefore, G(X,0) = (000000 0)" and F(X*,0)= | 0
0
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—BH YusSH  YMASH  YESSH  prasy 0 apbSy
Ny Ny Ng Nug Ny
180 0 0 0 0 0 0
928 0 0 0 0 0 0
q4Bu 0 0 0 0 0 0
aybSy aybSy  aybSy  aybSy
0 Bv — pv 0
0 0 0 0 0 By —puy
(Insms + Inpayama + Irsrs + Irara) ( _ ]5\%1{)
0
0
G(X,Z) = 0
0
A S
ay (Ipys +Iva+1ps + 1Ipa) (V — V)
pv Ny
0
G v Ny

G(X, Z) is greater than or equal to zero because Ny > Sy and > Sy. It

0%
is clear by observation that A is an M matrix. Also X* is globally asymptotically

dX
stable equilibrium of T F(X,0). Hence, by the above theorem DFE E° is
globally asymptotically stable.

5. Sensitivity Analysis

The normalized forward sensitivity index of a variable u that depends dif-
ferentiable on a parameter p is defined as 7% = 2% x £ [4]. Baseline values for
parameters b, Ay, By, ay, fv, @y, py are stated in Table 1, [2]. On the other hand,
we chose the baseline values for i, %9, ¥nrs, Yara, Yrs, Vra 1, qo, g3, @4 based on
the following assumption. Symptomatic individuals and asymptomatic individuals
are equally infectious. But since symptomatic individuals know about their ill-
ness, they are less sexually active than asymptomatic individuals. If symptomatic
individuals are sexually active, they use protection [2]. The possibility of virus

transmission from men to women is more than from women to men [5]. The Zika
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virus remains present in the male body for a longer time than in the female body
[5]. Among all infected individuals, about 80% remain asymptomatic [11]. In view
of the above points, we made the following assumptions.

Ly <.

I Yrs < Yus < Yra < Para

III. ¢; +¢3 < 0.20

IVogr <qoy 1 <qa, ¢3<q2, 3 <qa

Calculated normalized sensitivity indices of RO for some parameters are as follows
vio = 0.8329,7, = 0.2889,7,° = 0.0485,7,° = 0.0.0152,7 = —0.4243,
Y = —0.109.

Obtained sensitivity indices show that among all considered modes of sexual trans-
mission, Ry is most sensitive to transmission rate of asymptomatic male and least
to transmission rate of symptomatic female. Negative indices of v; and ~,, show
that as the recovery rates of the male and the female increase basic reproduction
number decreases and system becomes free from disease. FIGURE 3 represents
the basic reproduction number with respect to some parameters and supports the
observations done by sensitivity indices.
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Figure 3: Basic reproduction number verses model parameters
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6. Conclusion

In the present paper, we analyzed a deterministic model for the Zika virus
transmission. The current model included transmission through vectors and sexual
transmission through humans. We studied transmission through the symptomatic
male, symptomatic female, asymptomatic male, and asymptomatic female. To
analyze the disease spread, we obtained the conditions for local stability and global
stability of disease free equilibrium. Further, we proposed a theorem to examine the
local stability of DFE and verified it using numerical simulation. The present study
proved that the local stability of disease free equilibrium state mainly depends
on different sexual transmission rates, recovery rates, and proportion of several
infected classes. Values of sensitivity indices show that sexual transmission can be
a significant cause of the Zika virus spread. Zika virus spread can be restricted by
improving recovery rates.
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