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1. Introduction, Notations and Definitions
Hypergeometric series form a particularly powerful class of series, as they ap-

pear in a great variety of different scientific contexts while at the same time allowing
a rather simple definition. Popularized by the work of Gauss, hypergeometric series
have been intensively studied since the 19th century and they are still subject of
ongoing research [1, 9]. Nowadays, they are also well understood from an algo-
rithmic point of view, and in this paper, we will see some of the most important
algorithms for dealing with them. The hypergeometric function takes a prominent
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position amongst the world of standard mathematical functions used in both pure
and applied mathematics. Many transformations and summations formulas and
results recorded [2, 3, 4, 5, 10, 11] in ordinary as well as basic hypergeometric
series with the help of Bailey transformation and certain Rogers-Ramanujan type
identities. One can refer [6, 7, 8] and to get more transformation, identities and
summation formulas with the help of Bailey transform.
Generalized ordinary hypergeometric function is defined as,

rFs

[
a1, a2, ..., ar; z

b1, b2, ..., bs

]
=
∞∑
n=0

(a1, a2, ..., ar)n
(b1, b2, ..., bs)n

zn

n!
, (1.1)

where

(a)n = a(a+ 1)...(a+ n− 1) =
Γ(a+ n)

Γ(a)
,

(a)0 = 1.

Also, (a1, a2, ..., ar)n = (a1)n(a2)n...(ar)n.
For r ≤ s, series (1.1) converges for all values of z i.e. in the region |z| < ∞ and
for r = s + 1, it converges in the unit disc |z| < 1. For r > s + 1, (1.1) does
not converge except at z = 0. On the other hand the truncated hypergeometric
function is defined as,

rFs

[
a1, a2, ..., ar; z

b1, b2, ..., bs

]
n

=
n∑

k=0

(a1, a2, ..., ar)k
(b1, b2, ..., bs)k

zk

k!
.

The Bailey’s transform was first stated explicity by W. N. Bailey [1] in 1994. It
states as,
If

βn =
n∑

r=0

αrun−rvn+r (1.2)

and

γn =
∞∑
r=n

δrur−nvr+n =
∞∑
r=0

δr+nurvr+2n, (1.3)

where αr, δr, ur and vr are any functions of r only, such that the series γn exists,
then

∞∑
n=0

αnγn =
∞∑
n=0

βnδn. (1.4)



On Transformation Formulas of Ordinary Hypergeometric Series 79

We shall make use of following summation formulas in our analysis.

3F2

[
a, b,−n; 1

1 + a− b, 1 + a+ n

]
=

(1 + a)n
(
1 + a

2
− b
)
n(

1 + a
2

)
n

(1 + a− b)n
. (1.5)

[6; App. III(III.9), p. 243]

3F2

[
a, 1 + a

2
,−n; 1

a
2
, b

]
=

(b− a− 1− n)n (b− a)n−1
(b)n

. (1.6)

[6; App. III(III.15), p. 244]

3F2

[
a, b,−n; 1

1 + a− b, 1 + 2b− n

]
=

(a− 2b)n
(
1 + a

2
− b
)
n

(−b)n
(1 + a− b)n

(
a
2
− b
)
n

(−2b)n
. (1.7)

[6; App. III(III.16), p. 244]

4F3

[
a, 1 + a

2
, b,−n; 1

a
2
, 1 + a− b, 1 + 2b− n

]
=

(a− 2b)n (−b)n
(1 + a− b)n (−2b)n

. (1.8)

[6; App. III(III.17), p. 244]

4F3

[
a, 1 + a

2
, b,−n; 1

a
2
, 1 + a− b, 2 + 2b− n

]
=

(a− 2b− 1)n
(
1
2

+ a
2
− b
)
n

(−b− 1)n

(1 + a− b)n
(
a
2
− 1

2
− b
)
n

(−2b− 1)n
. (1.9)

[6; App. III(III.18), p. 244]

7F6

[
a, 1 + a

2
, d
2
, 1
2

+ d
2
, a− d, 1 + 2a− d+ n,−n; 1

a
2
, 1 + a− d

2
, 1
2

+ a− d
2
, 1 + d, d− a− n, 1 + a+ n

]

=
(1 + a)n (1 + 2a− 2d)n

(1 + a− d)n (1 + 2a− d)n
. (1.10)

[6; App. III(III.19), p. 244]

4F3

[
a
2
, 1
2

+ a
2
, b+ n,−n; 1

b
2
, 1
2

+ b
2
, 1 + a

]
=

(b− a)n
(b)n

. (1.11)

[6; App. III(III.20), p. 245]
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2. Main Results
In this section we establish following transformation formulas

(i)

Γ(1 + a)Γ(1 + a− α− β)

Γ(1 + a− α)Γ(1 + a− β)
4F3

[
a, b, α, β;−1

1 + a− b, 1 + a− α, 1 + a− β

]

= 3F2

[
α, β, 1 + a

2
− β; 1

1 + a
2
, 1 + a− b

]
, (2.1)

provided Re(1 + a− α− β) > 0.
(ii)

ez 2F2

[
a, 1 + a

2
;−z

a
2
, b

]
= 2F2

[
b− a− 1, 2 + a− b; z
b, 1 + a− b

]
. (2.2)

(iii)

(1− z)2b 2F1

[
a, b; z

1 + a− b

]
= 3F2

[
a− 2b, 1 + a

2
− b; z

1 + a− b, a
2
− b

]
, (2.3)

provided |z| < 1.
(iv)

(1− z)2b 3F2

[
a, 1 + a

2
, b; z

a
2
, 1 + a− b

]
= 2F1

[
a− 2b,−b; z
1 + a− b

]
, (2.4)

where |z| < 1.
(v)

(1− z)1+2b
3F2

[
a, 1 + a

2
, b; z

a
2
, 1 + a− b

]
= 3F2

[
a− 2b− 1, 1

2
+ a

2
− b,−b− 1; z

1 + a− b, a
2
− b− 1

2

]
, (2.5)

provided |z| < 1.
(vi)

3F2

[
a, 1 + a

2
, a− d; 1

a
2
, 1 + d

]
= 0 (2.6)

(vii)

2F1

[
a
2
, 1
2

+ a
2
; −4z
(1−z)2

1 + a

]
= (1− z)a, (2.7)

provided |z| < 1.
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Proof of (2.1).

(a) In order to prove (2.1) let us take ur =
1

(1)r
, vr =

1

(1 + a)r
and αr =

(a)r(b)r(−1)r

(1 + a− b)rr!
in (1.2) we get,

βn =
1

n!(1 + a)n
3F2

[
a, b,−n; 1

1 + a− b, 1 + a+ n

]
,

which by a appeal of (1.5) yields

βn =

(
1 + a

2
− b
)
n

n!
(
1 + a

2

)
n

(1 + a− b)n
. (2.8)

Again, taking δr = (α)r(β)r in (1.3) we get,

γn =
∞∑
r=0

(α)r+n(β)n
r!(1 + a)r+2n

=
(α)n(β)n
(1 + a)2n

2F1

[
α + n, β + n; 1

1 + a+ 2n

]
. (2.9)

Now, making use of the summation formula [6; App.III (III.3), p. 243] in (2.9) we
have

γn =
Γ(1 + a)Γ(1 + a− α− β)

Γ(1 + a− α)Γ(1 + a− β)

(α)n(β)n
(1 + a− α)n(1 + a− β)n

, (2.10)

provided Re(1 + a− α− β) > 0.
Putting theses values in (1.4) we get (2.1) after some simplifications.

(b) In order to prove (2.2) let us choose ur =
1

(1)r
, vr = 1 and

αr =
(a)r

(
1 + a

2

)
r

(−1)r(
a
2

)
r

(b)rr!
in (1.2) we find,

βn =
1

n!
3F2

[
a, 1 + a

2
,−n; 1

a
2
, b

]
. (2.11)

Summing the 3F2 series in (2.11) by using (1.6) we get,

βn =
(2 + a− b)n (b− a− 1)n
n! (b)n (1 + a− b)n

. (2.12)
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Now, taking δr = zr in (1.3) we get,

γn = zn
∞∑
r=0

zr

r!
= znez. (2.13)

Putting these values in (1.4) we get (2.2) after some simplifications.

(c) In order to prove (2.3) let us take ur =
(−2b)r

(1)r
, vr = 1 and αr =

(a)r (b)r
(1 + a− b)r r!

in (1.2) we get,

βn =
(−2b)n
n!

3F2

[
a, b,−n; 1

1 + a− b, 1 + 2b− n

]
. (2.14)

Now, summing the 3F2 series by using (1.7) we get,

βn =
(a− 2b)n

(
1 + a

2
− b
)
n

(−b)n
(1 + a− b)n

(
a
2
− b
)
n
n!

. (2.15)

Again, choosing δr = zr in (1.3) we get,

γn =
∞∑
r=0

(−2b)rz
r+n

r!
= zn(1− z)2b. (2.16)

Putting these values in (1.4) we get (2.3).

(d) In order to prove (2.4) let us proceed by taking ur =
(−2b)r

(1)r
, vr = 1 and

αr =
(a)r

(
1 + a

2

)
r

(b)r(
a
2

)
r

(1 + a− b)rr!
in (1.2) we get,

βn =
(−2b)n
n!

4F3

[
a, 1 + a

2
, b,−n; 1

a
2
, 1 + a− b, 1 + 2b− n

]
,

which by an appeal of the summing formula (1.8) we get,

βn =
(a− 2b)n (−b)n
(1 + a− b)nn!

. (2.17)

Again, choosing δr = zr in (1.3) we get,

γn = zn
∞∑
r=0

(−2b)rz
r

r!
= zn(1− z)2b, |z| < 1. (2.18)
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Putting these values in (1.4) we get (2.4).

(e) In order to prove (2.5) let us take ur =
(−1− 2b)r

(1)r
, vr = 1 and αr =

(a)r
(
1 + a

2

)
r

(b)r(
a
2

)
r

(1 + a− b)rr!
in (1.2) we get,

βn =
(−1− 2b)n

n!
4F3

[
a, 1 + a

2
, b,−n; 1

a
2
, 1 + a− b, 2 + 2b− n

]
. (2.19)

Now, using the summing formula (1.9) in (2.19) we obtain,

βn =
(a− 2b− 1)n

(
1
2

+ a
2
− b
)
n

(−1− b)n
(1 + a− b)n

(
a
2
− 1

2
− b
)
n
n!

. (2.20)

Again, taking δr = zr in (1.3) we get,

γn =
∞∑
r=0

(−1− 2b)rz
n+r

r!
= zn(1− z)1+2b, |z| < 1. (2.21)

Putting these values in (1.4) we get (2.5).

(f) In order to prove (2.6) let us choose ur =
(1− d+ a)r

(1)r
, vr =

(1 + 2a− d)r
(1 + a)r

and

αr =
(a)r

(
1 + a

2

)
r

(
d
2

)
r

(
1
2

+ d
2

)
r

(a− d)r(
a
2

)
r

(
1 + a− d

2

)
r

(
1
2

+ a− d
2

)
r

(1 + d)rr!
in (1.2) we get,

βn =
(1 + a− d)n(1 + 2a− d)n

n!(1 + a)n
×

7F6

[
a, 1 + a

2
, d
2
, 1
2

+ d
2
, a− d, 1 + 2a− d+ n,−n; 1

a
2
, 1 + a− d

2
, 1
2

+ a− d
2
, 1 + d, 1− a− n, 1 + a+ n

]
. (2.22)

Making use of the summation formula (1.10) we get,

βn =
(1 + 2a− 2d)n

n!
. (2.23)
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Now, taking δr = 1 in (1.3) we have

γn =
∞∑
r=0

(1 + a− d)r(1 + 2a− d)2n(1 + 2a− d+ 2n)r
r!(1 + a)2n(1 + a+ 2n)r

=
(1 + 2a− d)2n

(1 + a)2n
2F1

[
1 + a− d, 1 + 2a− d+ 2n; 1

1 + a+ 2n

]

=
(1 + 2a− d)2n

(1 + a)2n

Γ(1 + a+ 2n)Γ(2d− 2a− 1)

Γ(d+ 2n)Γ(d− a)

=
Γ(1 + a)Γ(2d− 2a− 1)

Γ(d)Γ(d− a)

(1 + 2a− d)2n
(d)2n

=
Γ(1 + a)Γ(2d− 2a− 1)

Γ(d)Γ(d− a)

(
1
2

+ a− d
2

)
n

(
1 + a− d

2

)
n(

d
2

)
n

(
1
2

+ d
2

)
n

(2.24)

provided Re(d− a) > 1
2
.

Putting these values in (1.4) we get,

Γ(1 + a)Γ(2d− 2a− 1)

Γ(d)Γ(d− a)

∞∑
n=0

(a)n
(
1 + a

2

)
n

(a− d)n(
a
2

)
n

(1 + d)nn!

=
∞∑
n=0

(1 + 2a− 2d)n
n!

= 0.

Thus we get

3F2

[
a, 1 + a

2
, a− d; 1

a
2
, 1 + d

]
= 0, (2.25)

provided Re(d− a) > 1
2
.

(g) In order to prove (2.7) let us take ur =
1

(1)r
, vr = (b)r and

αr =

(
a
2

)
r

(
1
2

+ a
2

)
r

(−)r(
b
2

)
r

(
1
2

+ b
2

)
r

(1 + a)r
in (1.2) we get,

βn =
(b)n
n!

4F3

[
a
2
, 1
2

+ a
2
, b+ n,−n; 1

b
2
, 1
2

+ b
2
, 1 + a

]
. (2.26)

Now, useing of the summation formula (1.11) we get,

βn =
(b− a)n
n!

. (2.27)
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Again, choosing δr = zr in (1.3) we have

γn = zn(b)r

∞∑
r=0

(b+ 2n)r
r!

zr

= (b)2nz
n(1− z)−b−2n. (2.28)

Putting these values in (1.4) we get (2.7) after some simplifications.
Making use of Bailey’s transform and certain known summation formulas, many
transformations formulas have been established for ordinary as well as basic hyper-
geometric series.
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