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1. Introduction
Since ancient time continued fractions have been playing a very important role

in Number theory and Classical Analysis. The Indian mathematician Arya Bhatt
(475-550 AD) used a continued fraction to solve a linear equation [9]. In the
beginning of 20th century, the theory of continued fractions got advancement due
to the Indian genius Srinivasa Ramanujan. Chapter 12 of Ramanujan’s second
notebook [11] is entirely devoted to the study of continued fractions.

Various continued fractions representations for the ratio of two 2Ψ2’s are known
in the literature. A good number of them are established by Bhagirathi [2], Denis
[5], Gupta [7], Pathak and Srivastava [10] and Srivastava [12]. The region of con-
vergence of some of these collapses unless one of the denominator parameters is of
the form qn(n ∈ N).
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In the present paper, by making use of a known transformation established by
Bailey [1], we attempt to establish the continued fraction representation for the
ratio of two 2Ψ2’s, where above problem does not arise. Also, by making use of a
known transformation of a poly-basic q-series established by Denis and Singh [6],
we established the continued fraction representation for the ratio of two 3Ψ2’s with
two bases q and q2.

2. Definitions and Notations
We shall use the following definitions and notations throughout the paper. A

generalized bi-basic hypergeometric function of one variable is defined as,

A+BΦC+D

[
(a); (b); q, q1; z

(c); (d); qi, qj1

]
=
∞∑
n=0

[(a); q]n[(b); q1]nz
nqi(

n
2)q

j(n
2)
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[q; q]n[(c); q]n[(d); q1]n
(2.1)

where (a) stands for the sequence of A parameters a1, a2..., aA.
Also, for |q| < 1 and arbitrary a
[a; q]n ≡ (1− a)(1− aq)(1− aq2)...(1− aqn−1), n > 0 and [a; q]0 = 1.

Further

(
n

2

)
≡ n(n− 1)

2
.

The series on the right of (2.1) converges for |q|, |q1| < 1, |z| < ∞, when i, j > 0
and |q|, |q1|, |z| < 1 when i = 0 = j, in which case we drop qi and qj1, from the
notation.

We also define a generalized basic hypergeometric series with one base as,

AΦB

[
(a); q; z

(b)

]
=
∞∑
n=0

[(a); q]nz
n

[q; q]n[(b); q]n
(2.2)

valid for |z| < 1, |q| < 1.
We further, define a generalized basic bilateral hypergeometric series,

rΨr

[
(ar); q; z

(br)

]
=

∞∑
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n
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(2.3)

for,

∣∣∣∣ b1b2...bra1a2...ar

∣∣∣∣ < |z| < 1 and the parameters (ar) stands for the sequence of param-

eters a1, a2, ..., ar. (2.3) reduces to rΦr−1 when any of the denominator parameters
is q. also, ∏[

a; q

b

]
=

[a; q]∞
[b; q]∞

. (2.4)
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3. Main Results
In this paper we shall establish the following results,
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×
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4. Proof. Bailey [1; 3.12] established the following transformation of a 2Ψ2 into
another 2Ψ2,
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Taking d = q we get the following transformation of a 2Ψ2 into a

2Ψ2
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]
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∏[
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Also, Denis [4; 3.9] established the following continued fraction for the ratio of two

2Φ1’s,
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[
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c
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Now, replacing the two 2Φ1’s on the left of (4.3) by their equivalent 2Ψ2’s with the
help of (4.2), we easily get (3.1).

Denis and Singh [6] established the following transformation of 3Φ2 with three
bases q, pq and p into 2Φ1 with two bases q and p,

3Φ2

[
b; apq; a; q, pq, p; z

−; a; ap/b

]
= (1− bz) 2Φ1

[
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]
(4.4)

Setting, p = q in (4.4) we get,
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[
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]
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[
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]
(4.5)

By making use of the transformation (4.5) into (4.3) we obtain (3.2).
Also, (4.5) can be rewritten as,
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[
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√
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√
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[
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By making use of transformation (4.6) into (4.3) we get (3.3).
It is quite difficult to find the continued fraction representation for the ratio of

3Φ2, 4Φ3 and higher order with general argument, but from the above results it is
evident that the same can be achieved with the help of suitable transformations.

Also, it has not been possible to establish continued fraction representation
for the ratio of basic hypergeometric function with more than one base. In this
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paper we have showed that this is also possible with the help of certain transfor-
mation, which express a q-series with more than one base into another q-series
with one base. Thus success of this attempt depends on the existence of suitable
transformation.
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