ON THE EXTENSION OF A CLASS OF BILATERAL GENERATING FUNCTION INVOLVING MODIFIED BESSEL POLYNOMIALS

Nabin Chandra Biswas and Amartya Chongdar*
Department of Mathematics, Dum Dum Motijheel College, 1, Motijheel Avenue, Kolkata - 700074, West Bengal, INDIA
E-mail : nabinchandra_math@yahoo.com
*Meghdoot Apartment, Flat No. D 3, J-G /7, Aswininagar, Kolkata - 700159, West Bengal, INDIA
E-mail : amartyajoy@gmail.com

(Received: Jan. 03, 2021 Accepted: Jul. 25, 2022 Published: Aug. 30, 2022)
Abstract: In this note, we have obtained an extension of a general result on bilateral generating function of modified Bessel polynomials from the existence of a quasi-bilateral generating function.
Keywords and Phrases: Bessel polynomial, Generating function.
2020 Mathematics Subject Classification: 33C45.

1. Introduction

In [1], Chatterjea and Chakraborty defined quasi-bilateral generating relation as follows :

$$
G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} p_{n}^{(\alpha)}(x) q_{m}^{(n)}(z),
$$

where the coefficients a_{n} 's are arbitrary and $p_{n}^{(\alpha)}(x), q_{m}^{(n)}(z)$ are two special functions of orders n and m and of parameters α and n respectively.

In [3], A. K. Chongdar obtained the following theorem on bilateral generating functions for Modified Bessel polynomials by group-theoretic method, same theorem was also found derived in [2] while unifying a class of bilateral generating relation for certain special functions by classical method.

Theorem 1: If

$$
G(x, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{(\alpha-n)}(x) w^{n}
$$

then

$$
\exp (\beta w)(1-x w)^{-\alpha+1} G\left(\frac{x}{1-x w}, v w\right)=\sum_{n=0}^{\infty} Y_{n}^{(\alpha-n)}(x) \sigma_{n}(v) w^{n}
$$

where

$$
\sigma_{n}(v)=\sum_{r=0}^{n} a_{r} \frac{\beta^{n-r}}{(n-r)!} v^{r}
$$

In this note, we shall extend the above result in the following form from the existence of a quasi-bilateral generating relation for the modified Bessel polynomials.

2. Group-theoretic Discussion

We first consider the quasi-bilateral generating function for the modified Bessel polynomials

$$
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{(\alpha-n)}(x) Y_{m}^{(n)}(u) w^{n}
$$

replacing w by wytv on both sides we get

$$
\begin{equation*}
G(x, u, w y t v)=\sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{(\alpha-n)}(x) y^{n}\right)\left(Y_{m}^{(n)}(u) t^{n}\right)(w v)^{n} \tag{2.1}
\end{equation*}
$$

We now consider the following operators [2, 3]

$$
\begin{array}{r}
R_{1}=x^{2} y \frac{\partial}{\partial x}+y\{\beta+(\alpha-1) x\} \\
R_{2}=u t \frac{\partial}{\partial u}+t^{2} \frac{\partial}{\partial t}+t(m-1)
\end{array}
$$

such that

$$
\begin{array}{r}
R_{1}\left(Y_{n}^{(\alpha-n)}(x) y^{n}\right)=\beta Y_{n+1}^{(\alpha-n-1)}(x) y^{n+1} \\
R_{2}\left(Y_{m}^{(n)}(u) t^{n}\right)=(m+n-1) Y_{m}^{(n+1)}(u) t^{n+1}
\end{array}
$$

and

$$
\begin{array}{r}
e^{w R_{1}} f(x, y)=\exp (\beta y w)(1-x y w)^{-(\alpha-1)} f\left(\frac{x}{1-x y w}, y\right) \\
e^{w R_{2}} f(u, t)=(1-w t)^{-m+1} f\left(\frac{u}{1-w t}, \frac{t}{1-w t}\right)
\end{array}
$$

Operating $e^{w R_{1}} e^{w R_{2}}$ on both sides of (2.1), we get

$$
\begin{equation*}
e^{w R_{1}} e^{w R_{2}} G(x, u, w y t v)=e^{w R_{1}} e^{w R_{2}} \sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{(\alpha-n)}(x) y^{n}\right)\left(Y_{m}^{(n)}(u) t^{n}\right)(w v)^{n} \tag{2.2}
\end{equation*}
$$

Left member of (2.2) is

$$
\begin{gather*}
e^{w R_{1}} e^{w R_{2}} G(x, u, w v t y) \\
=\exp (\beta y w)(1-x y w)^{-(\alpha-1)}(1-w t)^{-m+1} G\left(\frac{x}{1-x y w}, \frac{u}{1-w t}, \frac{w y t v}{1-w t}\right) \tag{2.3}
\end{gather*}
$$

The right member of (2.2) is

$$
\begin{align*}
& e^{w R_{1}} e^{w R_{2}} \sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{(\alpha-n)}(x) y^{n}\right)\left(Y_{m}^{(n)}(u) t^{n}\right)(w v)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} a_{n} \frac{w^{r+k}}{r!k!} R_{1}^{r}\left(Y_{n}^{(\alpha-n)}(x) y^{n}\right) \\
& \times R_{2}^{k}\left(Y_{m}^{(n)}(u) t^{n}\right)(v w)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} a_{n} \frac{w^{n+r+k}}{r!k!} v^{n} \cdot \beta^{r} Y_{n+r}^{(\alpha-n-r)}(x) y^{n+r} \\
& \times(m+n-1)_{k} Y_{m}^{(n+k)}(u) t^{n+k} \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} a_{n} \beta^{r} \frac{w^{n+r+k}}{r!k!}(m+n-1)_{k} v^{n} Y_{n+r}^{(\alpha-n-r)}(x) y^{n+r} \\
& \times Y_{m}^{(n+k)}(u) t^{n+k} . \tag{2.4}
\end{align*}
$$

Equating (2.3) and (2.4) and then putting $y=t=1$, we get

$$
\begin{aligned}
& \exp (\beta w)(1-x w)^{-(\alpha-1)}(1-w)^{-m+1} G\left(\frac{x}{1-x w}, \frac{u}{1-w}, \frac{w v}{1-w}\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} a_{n} \beta^{r} \frac{w^{n+r+k}}{r!k!}(m+n-1)_{k} v^{n} Y_{n+r}^{(\alpha-n-r)}(x) Y_{m}^{(n+k)}(u)
\end{aligned}
$$

which is our derived result.

Corollary.

Putting $m=0$, we get

$$
\begin{aligned}
& \exp (\beta w)(1-x w)^{-(\alpha-1)}(1-w) G\left(\frac{x}{1-x w}, \frac{w v}{1-w}\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} a_{n} \beta^{r} \frac{w^{n+r}}{r!} v^{n} Y_{n+r}^{(\alpha-n-r)}(x) \sum_{k=0}^{\infty} \frac{(n-1)_{k}}{k!} w^{k} \\
& =(1-w) \sum_{n=0}^{\infty} \sum_{r=0}^{n} a_{n-r} \beta^{r} \frac{w^{n}}{r!} v^{n-r} Y_{n}^{(\alpha-n)}(x)\left(\frac{1}{1-w}\right)^{n-r} \\
& =(1-w) \sum_{n=0}^{\infty} Y_{n}^{(\alpha-n)}(x)\left(\sum_{r=0}^{n} a_{n-r} \frac{\beta^{r}}{(r)!}\left(\frac{v}{1-w}\right)^{n-r}\right) w^{n} \\
& =(1-w) \sum_{n=0}^{\infty} Y_{n}^{(\alpha-n)}(x)\left(\sum_{r=0}^{n} a_{r} \frac{\beta^{n-r}}{(n-r)!}\left(\frac{v}{1-w}\right)^{r}\right) w^{n}
\end{aligned}
$$

Therefore,

$$
\exp (\beta w)(1-x w)^{-(\alpha-1)} G\left(\frac{x}{1-x w}, \frac{w v}{1-w}\right)=\sum_{n=0}^{\infty} Y_{n}^{(\alpha-n)}(x)\left(\sum_{r=0}^{n} a_{r} \frac{\beta^{n-r}}{(n-r)!}\left(\frac{v}{1-w}\right)^{r}\right) w^{n}
$$

Replacing $\frac{v}{1-w}$ by v on both sides

$$
\exp (\beta w)(1-x w)^{-\alpha+1} G\left(\frac{x}{1-x w}, v w\right)=\sum_{n=0}^{\infty} Y_{n}^{(\alpha-n)}(x) \sigma_{n}(v) w^{n}
$$

where

$$
\sigma_{n}(v)=\sum_{r=0}^{n} a_{r} \frac{\beta^{n-r}}{(n-r)!} v^{r}
$$

which is theorem 1 .

Acknowledgement

We are grateful to Prof. A. K. Chongdar for his kind help in the preparation of this paper.

References

[1] Chatterjea S. K. and Chakraborty S. P., A unified group-theoretic method of obtaining more general class of generating relations from a given class of quasi-bilateral (or quasi-bilinear) generating relations involving some special functions, Pure Math. Manuscript, 8 (1989), 153-162.
[2] Chen M. P. and Feng C. C., Group-theoretic origins of certain generating functions of generalized Bessel polynomials, Tamkang Jour. Math., 6 (1975), 87-93.
[3] Chongdar A. K., Some generating functions of modified Bessel polynomials from the view point of Lie group, Int. J. Math. Sci., 7 (1984), 823-825.

