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1. Introduction, Notations and Definitions

Throughout the present paper, we adopt the following notations and definitions.
For a and q complex numbers with |q| < 1 the q-shifted factorial is defined as,

(a; q)n =
(a; q)∞

(aqn; q)∞
= (1− a)(1− aq)...(1− aqn−1),

(a; q)0 = 1
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and

(a; q)∞ =
∞∏
r=0

(1− aqr).

For brevity we write,

(a1; q)n(a2; q)n...(ar; q)n = (a1, a2, ..., ar; q)n.

Also,

(a; q)−n =
(−1)nqn(n+1)/2

an(q/a; q)n
.

Following [Gasper and Rahman [5]] the basic hypergeometric series is defined as,

rΦs

[
a1, a2, ..., ar; q; z

b1, b2, ..., bs

]
=
∞∑
n=0

(a1, a2, ..., ar; q)n
(q, b1, b2, ..., bs; q)n

zn
{

(−1)nqn(n−1)/2
}1+s−r

, (1.1)

which converges for |z| <∞ if r ≤ s and for |z| < 1 if r = s+ 1.
The basic bilateral hypergeometric series is defined as

rΨs

[
a1, a2, ..., ar; q; z

b1, b2, ..., bs

]
=

∞∑
n=−∞

(a1, a2, ..., ar; q)n
(b1, b2, ..., bs; q)n

zn
{

(−1)nqn(n−1)/2
}s−r

, (1.2)

which converges for

∣∣∣∣ b1b2...bsa1a2...ar

∣∣∣∣ < |z| < 1 if r = s and for s > r it converges in the

whole complex-plane i.e. for |z| <∞.
A great deal of literature is available on special functions of two and more variables,
transformations formulas and identities [1, 2, 5]. However, the literature on basic
multiple hypergeometric functions seems to be a lot less extensive. Apart from the
aforementioned work on basic (q) series identities have developed [6, 7, 8, 9, 10, 11]
various interesting properties of basic (q) series and their generalizations and special
cases. In the present paper we prove a number of general bilateral q-series identities
and transformations which are shown to be applicable in the derivation of continued
fraction and partition theoretic interpretation and its generating functions. We also
consider several other interesting consequences of some of the results presented here.
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2. Main Results
In this section we establish following results

(b− c) 3Ψ3

[
a, b, c; q; 1

a

d, bq, cq

]
=

(q; q)2∞
(q/a, d; q)∞

×
{
b2(1− c)(bq/a, d/b; q)∞

(bq, q/b; q)∞
− c2(1− b)(cq/a, d/c; q)∞

(cq, q/c; q)∞

}
. (2.1)

(b− c) 3Ψ3

[
a, b, c; q; q

a

d, bq, cq

]
=

(q; q)2∞
(q/a, d; q)∞

×
{
b(1− c)(bq/a, d/b; q)∞

(bq, q/b; q)∞
− c(1− b)(cq/a, d/c; q)∞

(cq, q/c; q)∞

}
. (2.2)

4Ψ4

[
a, b, cq, λq; q; 1

a

d, bq, c, λ

]
=

(b− c)(b− λ)

b(1− λ)(1− c)
(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

. (2.3)

Proof of (2.1)-(2.3)
Let us consider the Bailey’s transform,

2Ψ2

[
a, b; q; z

d, c

]
=

(az, d/a, c/b, dq/abz; q)∞
(z, d, q/b, cd/abz; q)∞

2Ψ2

[
a, abz/d; q; d/a

az, c

]
. (2.4)

[5; (5.20) (i), p.150]

Putting c = bq and z = q/a in (2.4) we have,

2Ψ2

[
a, b; q; q/a

d, bq

]
=

(q; q)2∞(d/a, d/b; q)∞
(q/a, q/b, d, d; q)∞

2Φ1

[
a, bq/d; q; d/a

bq

]
. (2.5)

Summing the 2Φ1-series by making use of [5; App. II (II.8)] we have,

2Ψ2

[
a, b; q; q/a

d, bq

]
=

(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

, (2.6)

which is a known result [3; (1.1) p. 165].
Now, let us consider

2Ψ2

[
a, b; q; 1/a

d, bq

]
− b 2Ψ2

[
a, b; q; q/a

d, bq

]
=

∞∑
n=−∞

(a; q)n(1− b)
(d; q)n

1

an
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= (1− b) 1Ψ1

[
a; q; 1/a

d

]
. (2.7)

If we make use of the summation formula [5; App. II (II.20)] to sum 1Ψ1-series in
(2.7) we get,

2Ψ2

[
a, b; q; 1/a

d, bq

]
= b 2Ψ2

[
a, b; q; q/a

d, bq

]
. (2.8)

From (2.6) and (2.8) we find,

2Ψ2

[
a, b; q; 1/a

d, bq

]
= b

(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

. (2.9)

Now, consider

3Ψ3

[
a, b, c; q; 1/a

d, bq, cq

]
−c 3Ψ3

[
a, b, c; q; q/a

d, bq, cq

]
= (1−c) 2Ψ2

[
a, b; q; 1/a

d, bq

]
. (2.10)

From (2.9) and (2.10) we get,

3Ψ3

[
a, b, c; q; 1/a

d, bq, cq

]
− c 3Ψ3

[
a, b, c; q; q/a

d, bq, cq

]
= (1− c)b(q; q)2∞(bq/a, d/b; q)∞

(q/a, q/b, d, bq; q)∞
.

(2.11)
Again, interchanging b and c in (2.11) we get,

3Ψ3

[
a, b, c; q; 1/a

d, bq, cq

]
− b 3Ψ3

[
a, b, c; q; q/a

d, bq, cq

]
= (1− b)c(q; q)2∞(cq/a, d/c; q)∞

(q/a, q/c, d, cq; q)∞
.

(2.12)
Substracting (2.12) from (2.11) we get

(b− c) 3Ψ3

[
a, b, c; q; q

a

d, bq, cq

]
=

(q; q)2∞
(q/a, d; q)∞

×
{
b(1− c)(bq/a, d/b; q)∞

(bq, q/b; q)∞
− c(1− b)(cq/a, d/c; q)∞

(cq, q/c; q)∞

}
(2.13)

which is precisely (2.2).
Multiplying (2.11) by b and (2.12) by c and then Substracting second from first we
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have,

(b− c) 3Ψ3

[
a, b, c; q; 1

a

d, bq, cq

]
=

(q; q)2∞
(q/a, d; q)∞

×
{
b2(1− c)(bq/a, d/b; q)∞

(bq, q/b; q)∞
− c2(1− b)(cq/a, d/c; q)∞

(cq, q/c; q)∞

}
(2.14)

which is precisely (2.1).
Let us now consider,

3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
=

∞∑
n=−∞

(a, b; q)n
(d, bq; q)n

1

an

(
1− cqn

1− c

)

=
1

1− c 2Ψ2

[
a, b; q; 1/a

d, bq

]
− c

1− c 2Ψ2

[
a, b; q; q/a

d, bq

]
.

(2.15)

Using (2.6) and (2.9) in (2.15) we get,

3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
=

(b− c)
(1− c)

(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

. (2.16)

which is a known result [4, page 305].
Now, let us consider

3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
− b 3Ψ3

[
a, b, cq; q; q/a

d, bq, c

]

= (1− b) 2Ψ2

[
a, cq; q; 1/a

d, c

]

=
1− b
1− c 1Ψ1

[
a; q; 1/a

d

]
− c(1− b)

1− c 1Ψ1

[
a; q; q/a

d

]
.

(2.17)

Summing 1Ψ1 series in (2.17) by using [5; App. II (II.20)] we find,

3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
= b 3Ψ3

[
a, b, cq; q; q/a

d, bq, c

]
. (2.18)
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Thus from (2.16) and (2.18) we have

3Ψ3

[
a, b, cq; q; q/a

d, bq, c

]
=

(b− c)
b(1− c)

(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

. (2.19)

Again, proceeding by taking

4Ψ4

[
a, b, cq, λq; q; 1/a

d, bq, c, λ

]
=

∞∑
n=−∞

(a, b, cq; q)∞
(d, bq, c; q)∞

(
1− λqn

1− λ

)
1

an

=
1

1− λ 3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
− λ

1− λ 3Ψ3

[
a, b, cq; q; q/a

d, bq, c

]
. (2.20)

Making use of (2.16) and (2.19) in (2.20) we have

4Ψ4

[
a, b, cq, λq; q; 1/a

d, bq, c, λ

]
=

(b− c)(b− λ)

b(1− λ)(1− c)
(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

, (2.21)

which is precisely (2.3).

3. Special Cases
In this section we deduce certain special cases of the results established in

section 2.
(i) Taking d = 0 and a→∞ in (2.1) we get,

(b− c)
∞∑

n=−∞

(−1)nqn(n−1)/2

(1− bqn)(1− cqn)

= (q; q)2∞

{
b2

(1− b)
1

(bq, q/b; q)∞
− c2

(1− c)
1

(cq, q/c; q)∞

}
. (3.1)

Putting b = eiθ and c = e−iθ in (3.1) we get,

∞∑
n=−∞

(−1)nqn(n−1)/2

(1− 2qn cos θ + q2n)
=

(2 cos θ − 1)

(1− cos θ)

(q; q)2∞∏∞
n=1(1− 2qn cos θ + q2n)

. (3.2)

Taking θ = π/2 in (3.2) we have

∞∑
n=−∞

(−1)nqn(n−1)/2

(1 + q2n)
= − (q; q)2∞∏∞

n=1(1 + q2n)
= − (q; q)2∞

(−q2; q2)2∞
. (3.3)
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Taking θ = π in (3.2) we get,

∞∑
n=−∞

(−1)nqn(n−1)/2

(1 + qn)2
=
−3

2

(q; q)2∞∏∞
n=1(1 + qn)2

=
−3

2

(q; q)2∞
(−q; q)2∞

. (3.4)

Putting π
2

+ θ for θ in (3.1) we have

∞∑
n=−∞

(−1)nqn(n−1)/2

(1 + 2qn sin θ + q2n)
= −1 + 2 sin θ

1 + sin θ

(q; q)2∞∏∞
n=1(1 + 2qn sin θ + q2n)

. (3.5)

(ii) Taking d = 0 and a→∞ in (2.2) we get,

(b− c)
∞∑

n=−∞

(−1)nqn(n+1)/2

(1− bqn)(1− cqn)

= (q; q)2∞

{
b

(1− b)
1

(bq, q/b; q)∞
− c

(1− c)
1

(cq, q/c; q)∞

}
. (3.6)

(3.6) can be expressed as,

(b− c)
∞∑

n=−∞

(−1)nqn(n+1)/2

(1− bqn)(1− cqn)
= (q; q)2∞

{
(1− c)

(c, 1/c; q)∞
− (1− b)

(b, 1/b; q)∞

}
.

= (q; q)∞

{
(q; q)∞

(1− 1/c)(cq, q/c; q)∞
− (q; q)∞

(1− 1/b)(bq, q/b; q)∞

}
. (3.6A)

Comparing (3.6A) with [2; (3.8) p. 34] we have,

(q; q)∞

{
b

1− b

∞∑
m=−∞

∞∑
n=0

Nv(m,n)bmqn − c

1− c

∞∑
m=−∞

∞∑
n=0

Nv(m,n)cmqn

}

= (q; q)∞

∞∑
m=−∞

∞∑
n=0

Nv(m,n)qn
{
bm+1

1− b
− cm+1

1− c

}
, (3.6B)

where Nv(m,n) stands for the number vector partitions of n with crank m.
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Putting b = λeiθ and c = λe−iθ in (3.6) we have,

2λi sin θ
∞∑

n=−∞

(−1)nqn(n+1)/2

1− 2λqn cos θ + λ2q2n

= (q; q)2∞


λeiθ

(1− λeiθ)
∞∏
n=1

(1− 2λqn cos θ + λ2q2n)

− λe−iθ

(1− λe−iθ)
∞∏
n=1

(1− 2λqn cos θ + λ2q2n)


(3.7)

which on simplification gives

∞∑
n=−∞

(−1)nqn(n+1)/2

(1− 2λqn cos θ + λ2q2n)
=

(q; q)2∞
(1− 2λ cos θ + λ2)

∏∞
n=1(1− 2λqn cos θ + λ2q2n)

.

(3.8)
Taking θ = 0 in (3.8) we get

∞∑
n=−∞

(−1)nqn(n+1)/2

(1− λqn)2
=

(q; q)2∞
(1− λ)2

∏∞
n=1(1− λqn)2

. (3.9)

For θ = π/2, (3.8) yields

∞∑
n=−∞

(−1)nqn(n+1)/2

(1 + λ2q2n)2
=

(q; q)2∞
(1 + λ)2

∏∞
n=1(1 + λ2q2n)

. (3.10)

For θ = π, (3.8) yields

∞∑
n=−∞

(−1)nqn(n+1)/2

(1 + λqn)2
=

(q; q)2∞
(1 + λ)2

∏∞
n=1(1 + λqn)2

. (3.11)

If we take λ = 1 in (3.11) we get,

∞∑
n=−∞

(−1)nqn(n+1)/2

(1 + qn)2
=

(q; q)2∞
2(−q; q)2∞

. (3.12)

Putting λ = 1 in (3.10) we get

∞∑
n=−∞

(−1)nqn(n+1)/2

(1 + q2n)
=

(q; q)2∞
2(−q2; q2)2∞

. (3.13)
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(iii) Putting d = 0 and a→∞ in (2.3) we get

∞∑
n=−∞

(−1)nqn(n−1)/2(1− cqn)(1− λqn)

(1− bqn)
=

(b− c)(b− λ)

b(1− b)
(q; q)2∞

(bq, q/b; q)∞
. (3.14)

Comparing (3.14) with [2; (3.8) p. 34] we have,

=
(b− c)(b− λ)

b(1− b)
(q; q)∞

∞∑
m=−∞

∞∑
n=0

Nv(m,n)bmqn,

where Nv(m,n) is the number of vector partitions of n with crank m.
Taking q5 for q and then putting b = q2 in (3.14) we have

∞∑
n=−∞

(−1)nq5n(n−1)/2(1− cq5n)(1− λq5n)

(1− q5n+2)
=

(q2 − c)(q2 − λ)

q2(1− q2)
(q5; q5)2∞

(q3, q7; q5)∞

=
(q2 − c)(q2 − λ)

q2
(q5; q5)2∞

(q2, q3; q5)∞
. (3.15)

Taking q5 for q and then putting b = q in (3.14) we get

∞∑
n=−∞

(−1)nq5n(n−1)/2(1− cq5n)(1− λq5n)

(1− q5n+1)
=

(q − c)(q − λ)

q(1− q)
(q5; q5)2∞

(q4, q6; q5)∞

=
(q − c)(q − λ)

q

(q5; q5)2∞
(q, q4; q5)∞

. (3.16)

From (3.15) and (3.16) and corollary [1; (6.2.6) p. 153] we have

∞∑
n=−∞

(−1)nq5n(n−1)/2(1− cq5n)(1− λq5n)

(1− q5n+2)

∞∑
n=−∞

(−1)nq5n(n−1)/2(1− cq5n)(1− λq5n)

(1− q5n+1)

=
(q2 − c)(q2 − λ)

q(q − c)(q − λ)

(q, q4; q5)∞
(q2, q3; q5)∞

=
(q2 − c)(q2 − λ)

q(q − c)(q − λ)

{
1

1+

q

1+

q2

1+

q3

1 + ...
.

}
(3.17)

Taking λ = c = 0 in (3.17) we find,

∞∑
n=−∞

(−1)nq5n(n−1)/2

(1− q5n+2)

∞∑
n=−∞

(−1)nq5n(n−1)/2

(1− q5n+1)

=
q

1+

q

1+

q2

1+

q3

1 + ...
. (3.18)
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(iv) Putting λ = 0 in (2.3) we get

3Ψ3

[
a, b, cq; q; 1/a

d, bq, c

]
=

(b− c)
(1− c)

(q; q)2∞(bq/a, d/b; q)∞
(q/a, q/b, d, bq; q)∞

. (3.19)

Taking d = c = 0, a→∞ in (3.19) we get,

∞∑
n=−∞

(−1)nqn(n−1)/2

(1− bqn)
=

b

1− b
(q; q)2∞

(bq, q/b; q)∞
. (3.20)

Replacing q by q2 and putting b = q in (3.20) and using [1; (1.1.7), p. 11] we get,

∞∑
n=−∞

(−1)nqn(n−1)

(1− q2n+1)
= q

(q2; q2)2∞
(q; q2)2∞

= qΨ2(q). (3.21)

Replacing q by q8 and b by q in (3.20) we get,

∞∑
n=−∞

(−1)nq4n(n−1)

(1− q8n+1)
= q

(q8; q8)2∞
(q, q7; q8)∞

. (3.22)

Again, replacing q by q8 and b by q3 in (3.20) we find,

∞∑
n=−∞

(−1)nq4n(n−1)

(1− q8n+3)
= q3

(q8; q8)2∞
(q3, q5; q8)∞

. (3.23)

Taking the ratio of (3.22) and (3.23) and using [1; (6.2.38), p. 154] we get,

∞∑
n=−∞

(−1)nq4n(n−1)

(1− q8n+3)

∞∑
n=−∞

(−1)nq4n(n−1)

(1− q8n+1)

=
q2

1+

q + q2

1+

q4

1+

q3 + q6

1 + ...
. (3.24)

(v) Taking d = q, a→∞ and c = 0 in (3.19) we get,

∞∑
n=0

(−1)nqn(n−1)/2

(q; q)∞(1− bqn)
=

b

1− b
(q; q)∞
(bq; q)∞

=
b(q; q)∞
(b; q)∞

. (3.25)
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Replacing q by q3 and putting b = q2 in (3.25) we get,

∞∑
n=0

(−1)nq3n(n−1)/2

(q3; q3)n(1− q3n+2)
= q2

(q3; q3)∞
(q2; q3)∞

. (3.26)

Again, replacing q by q3 and b by q in (3.25) we have,

∞∑
n=0

(−1)nq3n(n−1)/2

(q3; q3)n(1− q3n+1)
= q

(q3; q3)∞
(q; q3)∞

. (3.27)

Taking the ratio of (3.26) and (3.27) and using [1; (7.1.1), p. 179] we get,

∞∑
n=0

(−1)nq3n(n−1)/2

(q3; q3)n(1− q3n+1)
∞∑
n=0

(−1)nq3n(n−1)/2

(q3; q3)n(1− q3n+2)

= q−1
(q2; q3)∞
(q; q3)∞

=
q−1

1−
q

1 + q−
q5

1 + q2−
q5

1 + q3 − ...
. (3.28)

Putting q4 for q and b = q in (3.25) we get,

∞∑
n=0

(−1)nq2n(n−1)

(q4; q4)n(1− q4n+1)
=
q(q4; q4)∞
(q; q4)∞

. (3.29)

Putting q4 for q and b = q3 in (3.25) we find,

∞∑
n=0

(−1)nq2n(n−1)

(q4; q4)n(1− q4n+3)
=
q3(q4; q4)∞
(q3; q4)∞

. (3.30)

Taking the ratio of (3.29) and (3.30) and using [1; (7.1.2) p. 179] we get

∞∑
n=0

(−1)nq2n(n−1)

(q4; q4)n(1− q4n+1)
∞∑
n=0

(−1)nq2n(n−1)

(q4; q4)n(1− q4n+3)

= q−2
(q3; q4)∞
(q; q4)∞

=
q−2

1−
q

1 + q2−
q3

1 + q4−
q5

1 + q6 − ...
.

(3.31)
A number of similar results can also be deduced.
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