South Fast Asian J. of Mathematics and Mathematical Sciences
Vol. 18, No. 2 (2022), pp. 39-52

DOI: 10.56827/SEAJMMS.2022.1802.4 ISSN (Online): 2582-0850
ISSN (Print): 0972-7752

FRACTIONAL INTEGRAL OF WHITTAKER k-FUNCTION
AND ITS PROPERTIES

Savita Panwar and Prakriti Rai*

Department of Mathematics,
Amity Institute of Applied Sciences,
Amity University, Noida, Uttar Pradesh - 201313, INDIA

E-mail : savitapanwarl119@gmail.com

*Department of Mathematics,
Siddharth University, Kapilvastu, Uttar Pradesh, INDIA

E-mail : prakritirai.rai@gmail.com

(Received: Dec. 10, 2021 Accepted: Aug. 10, 2022 Published: Aug. 30, 2022)

Abstract: In this paper, we introduce a generalized form of Whittaker function
with the help of generalized confluent k-hypergeometric function. We establish
several interesting properties of the Whittaker k-function such as its integral repre-
sentations, derivative, Laplace transform and Hankel transform. Further, we inves-
tigate the Riemann-Liouville fractional integral and k-Riemann-Liouville fractional
integral of Whittaker k-function. Some intriguing particular cases of the main re-
sults are also mentioned.
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1. Introduction
Special Functions are remarkable for their significance and utilization in several
domains, particularly in mathematical physics such as astronomy, string theory,



40 South FEast Asian J. of Mathematics and Mathematical Sciences

statistics, and engineering sciences. Numerous authors considered the various gen-
eralizations of the most eminent Special functions like Beta function, Gamma func-
tion, and hypergeometric functions [1, 8, 20, 22, 25, 28]. Many functions, includ-
ing the Legendre and Logarithm functions, are particular cases of hypergeometric
functions, while some other functions (e.g., Bessel functions and the Exponential
functions) are the limiting cases of hypergeometric functions. Whittaker function
is also a solution of the modified form of a confluent hypergeometric differential
equation. As a result, the generalization of hypergeometric functions has many ap-
plications in mathematics as well as in other fields. Whittaker functions have been
generalized in a number of intriguing ways by numerous authors [2, 17]. In response
to the frequency occurrence of expressions of the form a(a + k)...(a + (n — 1)k)
in a variety of contexts, particularly in the combinatorics of creation and in the
computation of Feynman integrals (see [4, 5]).

Diaz and Pariguan introduced a new form of the Pochhammer symbol as the
Pochhammer k-symbol and gamma k-function [6]. Successively, k-analogue of other
functions like Beta k-function, hypergeometric k-function, zeta k-function, and Ap-
pell k-functions based on k-analogue of Pochhammer symbol was proposed and
investigated [13, 15, 16, 27]. Kokologiannki [10] derived many inequalities and
properties of beta k-function and gamma k-function. Further, Krasniqi [11] stud-
ied limiting behavior for the k-gamma and k-beta functions. Fractional calculus
provides numerous prospects for applications across many fields of science and en-
gineering, and it has emerged as an intriguing research topic. In recent years,
attention to fractional operators and special functions has developed and a spec-
tacular array of advances and generalizations have been made by many researchers
(see [3, 8, 9, 24]). The Riemann-Liouville fractional integral has a significant role in
fractional calculus, where the fractional derivatives are defined through fractional
integrals [9, 12, 21]. By utilizing the k-gamma function, Mubeen et al. introduced
the k-Riemann Liouville fractional integral [14, 18]. This paper is organized as fol-
lows. In the next section, we examine the properties of confluent k-hypergeometric
functions. In section 3, we introduce the Whittaker k-function and discuss the
main properties of the Whittaker k-function. In section 4, we develop the Laplace
transforms and Hankel transform of the Whittaker k-function. In section 5, we
investigate the fractional integrals of the Whittaker k-function. Section 6 presents
a brief conclusion. We begin by recalling some important definitions.

Diaz et al. [6] defined the following k-generalized gamma function I'y given by:

o > tk
Ti(a) = krlr(%) :/O to~le= "% gt (1)
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(R(a) > 0 and k > 0).

In the same paper, they have also defined the k-beta function By as follows:

1
Bufnd) = 1 [ 00 )

(k>0 ,R(a) > 0and R(S) > 0).
Let « € C, k € R and n € NT, the Pochhammer k-symbol is defined by (see [6])
(W)n =a(a+k)(a+2k)...(a+ (n—1)k). (3)
In particular, (a)ox := 1. If @« € C and p,n € N7 then for £ € RT, we have

. Fk(a + Hk’)

(a>n,k - Fk(OZ) (4)

and
(a>p+n,k = (O‘>p,k(04 + pk)n,k-

Diaz [6] introduced the following form of hypergeometric function:

n

_ OO (a1>n,k1 (O‘2)n7k2 o (a )n,kp z
F(a, k,B,5)(z) = ; AN (@j)msq ok

where o = (aq, -+ ,a,,) € CP, = (P, ,0y) €CI k= (k1, -+ ,ky) € (RT)P and
s=(s1,--,8,) € (RT)? such that §; € C\ s;Z".

In 2012, Mubeen et. al [13] defined the confluent k-hypergeometric function |Fy j
as follows:

(5)

1F1 k(8573 2) = Z Ef;n:%T,

n=0

(6)

where k € R*,n € N; 3,7,z € C and ~ is neither zero nor a negative integer and
its integral representation is given by

e ) Li(v) ! 8_ 1By
lFLk(ﬁ”%Z)_krk(ﬁ)rk(’}/—ﬁ) /0 tr= N1 —t) Le#t dt, (7)

(k> 0,R(y) > R(S) > 0).

In other paper, Mubeen [15] gave the following k-analogue of Kummer’s first for-
mula:

1F1,k(5§7; z) = €z1F1,k(’V — B35 —2). (8)
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In [23], the Riemann-Liouville fractional integral for a function f of order —pu is
defined as follows:

DE{f(2) L, (9)

where R(p) < 0
In particular, for the case n—1 < R(p) < n (n=1,2,...), (9) is written in the form:

DI = e { rag | SOG =0 al )

The k-Riemann-Liouville fractional integral of order —u is defined by (see [14, 18])

WD ()} / )=t at (11)

where R(p) < 0 and k € RT. If we set k = 11in (11) then this k-Riemann-Liouville
fractional integral of order —u reduces to the Riemann-Liouville fractional integral
given in (9). In particular, for the case, n — 1 < R(u) < n where n =1,2;3. ..

D) = o e | fOE -0 a2

The classical Whittaker function is defined as (see [25])

1 z 1
Map(z) = 2772e720(p = A+ 532p + 15 2), (13)

(R(p) > S+ and R(p+ X) > )

where ¢ is the confluent hypergeometric function which is defined as (see [19]),

1Fi(B37:2) = o(B5 73 2 Z (5) 2~ (14)

(V) 0!

3

n=0
(BeC,yeC\Z;;z€C).

2. Some Properties of Confluent k-hypergeometric Function
For the new confluent k-hypergeometric function, we have

i By (B + nk,y — ) 2"

1Fie(B57;2) = Br(B,y—B) nl

n=0
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Theorem 2.1. For confluent k-hypergeometric function, we have the following
differential formula:
dm
d m

~~

B)M,k
(7)m,k

— (Fie(B;7:2) = 1F1 k(B + mk;y +mk; z), (16)

where m € N and k > 0 .
Proof. Using mathematical induction, for m=1 and from (15)

d o 4 & Bu(B 4k, = B) 2"
E{IFLIJﬂv’y?’Z)}_ dz {; Bk(ﬁ’fy_ﬁ) n'}’

replacing n by n+1 and after simplification, we get

I EBBtmi kg
E{lFl,k(Bnyv Z)} - nZ:% Bk(ﬁar}/_ﬁ) n|

Since

By(8,7y — B) = %Bkw + k- B).

Using this, we get

ﬁBk B+nk+k,v— ﬁ)
_{1F1k5% E BeB+Fy—B) g
o Fon(Bivie)) = oF ki + ks 17
%{1 1,k(/8777z)}_;1 1716(6—}_ 7Y+ 73)7 ( )

let it is true for m-1, then we have

! )} = P
gomt aF(Bi72)} = e

1Fre(B4 (m = Dk + (m— 1)k; 2).

Now,

(6)m 1,k d
(’7)m lkd

C;iz_mmhFl,k(ﬁW;z)}: —{1F1(B+ (m—Dk;y+ (m —1)k; 2)}.

Using (17), we get

(5)771—1, (ﬁ + (m — 1)/{3) . .
(7%-1,2(7 F(m—1Dk) 1F1i(B+ mk;y + mk; 2).

dm
dz—m{lFl,k(ﬁ;% Z>} =
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After simplification, we get the desired result.

3. Whittaker k-Function
The Whittaker k-function, denoted by My , (%), for £ > 0 is defined as

1 —z ]_
M ,r(z) =22 e7 1F1,k(p_)\+§§2p+ 1;2), (18)

where R(p) > —1/2, R(p £ A) > 5 and 1 F is the confluent k-hypergeometric
function given in (6).

Remark. If we take k=1, then the Whittaker k-function given in (18) reduces to
classical Whittaker function given in (13).

3.1. Integral representations of Whittaker k-Function

Theorem 3.1. Each of the following integral representations holds true:

22 03 Th(20 + 1)

My, k(2) = kTp(p— A+ 1/2)Tk(p+ A+ 1/2)

. (19)
X / tp_Aljl/Q_l(l — t)pﬂijl/Q_leZt dt,
0
-1 -1
(k>0, 8>a,R(p) > 5 and R(p £ \) > 7),
22 03 T (2p+ 1
M)\,p,k(z) _ k( p )
ETr(p— A+ 1/2)Tk(p+ A+ 1/2) (20)
X /1 upﬂljl/z_l(l — u)pikljw_le_zu du,
0
(5 _ a)1_2p:1 PH1/2 o5 I (Q,O'f‘ 1)
Mjpi(2) =
ETk(p— A+ 1/2)Tk(p+ A+ 1/2) (21)

X /B(u — a) p_AI;H/Q*I(ﬁ — u) lejl/Q*lez(E:Z) du.
o

Proof. Using the integral representation of 1 F; given in (7) in the definition
(18), we get (19). Now,if we put t= 1-u, t= =2 in (19), we get (20) and (21)
respectively.
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Corollary. For k=1, in equations (19), (20) and (21) respectively, we get the
integral representations of Classical Whittaker functions as follows:

T2 e5 T(2p+ 1)

M —
rol?) T(p—A+1/2)0(p+ A+ 1/2) 22)
1
% / tpf)\fl/2<1 _ t>p+)\71/26zt dt,
0
p+1/2 % (2 1
T(p— A+ 1/2)T(p+ A+ 1/2) 3)
1
% / up+)\—1/2(1 o u)p—)\—l/Qe—zu du,
0
— ) ®p2 e T(2p+ 1
My () — (8 — ) (20 +1)
C(p—A+1/2)T(p+ A+ 1/2) (24)
B
g / (u— )PV — ) PR du,
Remark. Using equation (7) in the above equation (20), we get
1 z ]_
Mipi(z) =272 e2 1Fip(p+ A+ 5520+ 15 —2), (25)

2

Thus, it is seen that generalized Whittaker k-function can also be expressed by
equation (25).

Theorem 3.2. For k > 0, the following relation holds true:

My pi(—2) = (=1)P* 2 M_y 4 (2), (26)

(R(p) > ;and R(p+ ) > _71).

Proof. Replacing z by -z in (18), we get
2 1
Mipp(=2) = (=2 2eE 1 Frilp = At 5329+ 15 —2),
using k-analogue of Kummer’s first formula (8), we get

z 1
Mipr(=2) = (-1)P72(2)7 € 3\ Frilp+ A+ 5329+ 132),
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Again using (18), we get the desired result.
Corollary. When k=1, equation (26) reduces to the standard transformation for-
mula for M) ,(z) (see [26]).

Myp(=2) = (1) 2M_,(2), (27)

3.2. Derivative of Whittaker k-Function

Theorem 3.3. The following differential formula for Whittaker k-function holds
true:

dn (p - A + )n k =z nk 1
dzn[wz P73 My p(2)] = We RS )MA—L’“ prori(2),(28)
where n € N.
Proof. Using (18), we have
d" dar 1
dzn[ezzﬂ 2M,\ x(2)] = dn[F1k<p )\+§ 2p+1; 2)],
using Theorem (2.1), we get
dn (p — A+ %)n,k

1
——[e2z7P~ 2 My, 1(2)] = 1F17k(,0—)\+nk+5;2p+1+nk;z).

dz" (2p 4+ 1)ni

Again using (18), we get the desired result.
4. Integral transforms of Whittaker k-Function
4.1. Laplace transform of Whittaker k-Function

Theorem 4.1. For k > 0 and R(\ £ p) > S, the following Laplace transform
holds true:

1 in(p—/\+1/2+nk,p+/\+1/2)
Br(p—A+1/2,p+X+1/2)

Llo+n+3/2)

sl

LexMpr(2)} = o 2

(29)

Proof. By using the definition of Laplace transform and equation (18), we have

L{e2 My pp(2)} = / e P P (p = A+ 1/2;2p + 15 2)dz,
0
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using (15), we get

:/Ooe—szzp+1/2iBk(p_A+1/2+nkap+>‘+1/2)£ .
0 —  Blp—A+1/2,p+A+1/2) nl 7

changing the order of integration and summation, we get

p A+ 1/2 4 nk, p+)\—|—1/2)/ sz P12 g
c(p—A+1/2,p+ 1+ 1/2n! J, ’

o0

M

n=0

using the definition of classical gamma function, we get

_i": w(p—A+1/2+nk,p+A+1/2) T(p+n+3/2)
B Kp—A+1/2,p+ A+ 1/2)n! gptntd/z

After simplification, we get the desired result.
2. Hankel transform of Whittaker k-Function
Theorem 4.2. Fork >0, R(p£X) > 5 and R(p+v) > 32, the following Hankel

transformation holds true:

-  T(p+v+5/2)
/0 £ My pul2) o) d = ol
ZBk PN+ 1/2 4 ik, pE A+ 1/2)

Bk p )\+1/2 p+)\+1/2)n'
x(p+v+5/2)n P { 1 }

(a2 + 1/4)n/2 p+n+3/2 4a2 + 1

where Pp+n+3/2( z) Legendre function of first kind [23].

Proof. By using the definition of Hankel transform and equation (18), we have
/ 2 My, i(2) Jy(az)dz = / 2PH3/272/2
0 0
X1 Fip(p—A+1/2;2p+1; 2)J,(az) dz,

using (15), we have

/oo P 32522 Z Bi(p—A+1/24+nk,p+A+1/2) 2" J,(az) dz.

0 —~  Bulp—A+1/2,p+A+1/2) nl
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Changing the order of integration and summation and using the well known formula
[7]

/0 e P, (at)dt = T(u+v +1) r’“’lpu’”(]—?),

,
(R(p+v) > —1andr =+/p?+ a?),

we get

p A+ 1/24nk,p+A+1/2) T(p+n+v+5/2)
w(p—A+1/2,p+ X+ 1/2)n! (a4 1/4)p/2+n/2+5/4

— 1
XE, fntay2 (m) :

Mg

After simplification, we get the desired result.
5. Fractional Integral of Whittaker k-Function

5.1. Riemann-Liouville fractional integral of order —u of Whittaker k-
Function

Theorem 5.1. For R(u) < 0,k € RT, R(p£A) > 3, R(p) > 3L and R(p+n) >
’73, we have

SP—HF1/2 2 (p—)\+1/2)nk:2
= Blp+n+3/2,— 31
T 2 @pt D W TIH32mm B

D¥{ez My ,1(2)} =

Proof. Using the definition of Riemann-Liouville fractional integral given in (9)

z 1 z 1 1
DE{ez M, r(2)} = / P Fp(p— A+ 5 20+ 1;t) (2 — t)"*L dt,

L(=p) Jo

using (6), we have

2p—|—1 n!

DM{62M)\pk( p+

‘(z — ) dt,
n=0

Changing the order of integration and summation (which is permissible under the
conditions stated along with the theorem), we have

z 1 > -\ 1 n z )
Dg{eiM)\7p7k<Z>} = Z (p + 2) K / tp+n+§(z . t>,#,1 dt’
0

I(—p) &= (2p+ 1Dpund
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putting t=uz, we get

Zpu%

D#{es My ,x(2)} Z o= ’“Z—/ w1 — u) T du,
0

) o 2p + 1 n k n!
Using the definition of classical beta function, we get the desired result.

5.2. Riemann-Liouville k-fractional integral of order —u of Whittaker
k-Function

Theorem 5.2. For R(p) <0,k € RY, R(p£A) > 5, R(p) > 5 and R(p +n) >

-3
<, we have

2Ptk

kTy(—

- = (p— )\—l— Yok 2" 3
D{ei M, ,0(2)} = Z M2 o Blpan+ 2, 2H) (32)

(2p+1) ,n! 2" k

Proof. Using the definition of k-fractional integral given in (11)

2 z 1
kDE{e2 M, ,k(2)} = / o2 1Figlp— A+ 5 2p+ 1;1)

kTk(=p) Jo
x(z—t)"* Lt
using (6), we have

dt.

R'h:

z 1 z
D#{e2 M, = — tp+ —t)”
DM} = s |

n=

Changing the order of summation and integration (which is permissible under the
conditions stated along with the theorem), we get

: 1T & (p—>\+l)nk/z . -
DH{e2 M )} = 2/ e (z — )"kt dt,
KD Aok(2)} kT (—p) ;% (2p4+ 1)pin! Jo ( )

putting t=uz, we get

—Etptnts

00 )\+ n 1
Z P2 — k2 k ' / up+n+%(1_u)f%fl du,
- (2p n: 0

D*{ez M
k 2{62 )\:P:k( ) ka

using the definition of classical beta function, we get the desired result.



50 South FEast Asian J. of Mathematics and Mathematical Sciences

Corollary. For k=1 in Theorem (5.1) and (5.2), we get

Dt{ed My ,(2)} = ?p;fu; > ('O(;pif) % B(p+n+ % —n). (33)
(R(x) < 0, R(p\) > 21 R(p) > SHiR(p+m) > =)

6. Conclusion

Whittaker functions are utilized in numerous different fields, including mathe-
matical physics, holonomic systems, modelling hydrogen atoms, and more. There-
fore, the generalization of Whittaker functions has applicability in some pertinent
areas of engineering sciences and mathematical physics. In this paper, we de-
fine the k-analogue of Whittaker function by using the confluent k-hypergeometric
function. We then discussed its some important properties, like integral representa-
tions, derivative and Integral transforms. By applying the theory of the Riemann-
Liouville fractional integral to the Whittaker k-function, we obtain some results in
terms of the Beta function.
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