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Abstract: In this paper, we present the sum of s+1 consecutive member of Bivari-
ate Fibonacci Polynomials and Bivariate Lucas Polynomials and related identities
consisting even and odd terms. We present its two cross two matrix and find in-
teresting properties such as nth power of the matrix. Also, we present the identity
which generalizes Catlan’s, Cassini’s and d’Ocagne’s identity. Binet’s formula will
employ to obtain the identities.
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1. Introduction
In [4, 5, 6], Catalani define generalized bivariate polynomials, from which speci-

fying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained
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and derived many interesting identities. Also derive a collection of identities for
bivariate Fibonacci and Lucas polynomials using essentially a matrix approach as
well as properties of such polynomials when the variables x and y are replaced by
polynomials.
For n ≥ 2, the bivariate Fibonacci polynomials sequence is defined by

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y) (1.1)

So, the first bivariate Fibonacci polynomials are

{Fn(x, y)} =
{

0, 1, x, x2 + y, x3 + 2xy, x4 + 3x2y + y2, . . .
}

Binet’s formula for the bivariate Fibonacci polynomials:

Fn(x, y) =
Rn

1 −Rn
2

R1 −R2

(1.2)

For n ≥ 2, the bivariate Lucas polynomials sequence is defined by

Ln(x, y) = xLn−1(x, y) + yLn−2(x, y) (1.3)

So, the first bivariate Lucas polynomials are

{Ln(x, y)} =
{

2, x, x2 + 2y, x3 + 3xy, x4 + 4x2y + 2y2, . . .
}

Binet’s formula for the bivariate Lucas polynomials:

Ln(x, y) = Rn
1 + <n

2 (1.4)

The characteristic equation of recurrence relation (1.1) and (1.3) is:

t2 − xt− y = 0 (1.5)

where x 6= 0, y 6= 0, x2 + 4y 6= 0. This equation has two real roots: R1 =
x+
√

x2+4y

2

and R2 =
x−
√

x2+4y

2
.

Note that: R1 + R2 = x,R1R2 = −y,R1 −R2 =
√

x2 + 4y. Also, F−n(x, y) =
−1

(−y)nFn(x, y) and L−n(x, y) = 1
(−y)nLn(x, y).

Some of relations between bivariate Fibonacci and Lucas polynomials are as follows:

Ln(x, y) = Fn+1(x, y) + yFn−1(x, y) (1.6)(
x2 + 4y

)
Fn(x, y) = Ln+1(x, y) + yLn−1(x, y) (1.7)
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Most of the authors introduce and present many properties and identities of Bi-
variate Fibonacci and Bivariate Lucas polynomials [1, 2, 3, 11, 12, 13, 14, 22, 23,
25, 26]. In [15], Kim et al., present sums of finite products of Chebyshev polyno-
mials of the second kind and of Fibonacci polynomials and derive Fourier series
expansions of functions associated with them. Also, express those sums of finite
products in terms of Bernoulli polynomials and obtain some identities by using
those expressions. In [16], Kim et al., present a new approach to the convolved
Fibonacci numbers arising from the generating function of them and give some new
and explicit identities for the convolved Fibonacci numbers. In [7, 9, 10], Z. Čerin
defines many results based on for alternating sums, sums of product, on sums of
squares of odd and even terms and properties of odd and even terms for Fibonacci
and Lucas numbers. In [8], Z. Čerin defines explicit formulae for sums of products
of a fixed number of consecutive generalized Fibonacci and Lucas numbers. In
this paper, we present the sum of s+1 consecutive member of Bivariate Fibonacci
Polynomials and Bivariate Lucas Polynomials and the same thing for even and for
odd and their product and square. Also, we present its two cross two matrix and
find interesting properties and we present the identity which generalizes Catlan’s,
Cassini’s and d’Ocagne’s identity. Binet’s formula will be used to establish identi-
ties.

2. Result and Discussion
In this section, we prove some identities for sums of a finite number of consec-

utive terms of the Bivariate Fibonacci Polynomials. First, we find the formula for
the

∑s
k=0 Fv+k(x, y) and

∑s
k=0 Lv+k(x, y) when s ≥ 0, v ≥ 0.

Proposition 2.1. For s ≥ 0 & v ≥ 0 the following equality holds:

(i)

s∑
k=0

Fv+k(x, y) =
{Lv+s+1(x, y)− Lv(x, y)} − (x− 2) {Lv+s+1(x, y)− Lv(x, y)}

2(x+ y − 1)

(2.1)

(ii)
s∑

k=0

Lv+k(x, y) =
y
{
Lv−1(x, y)−

√
x2 + 4yFv+s(x, y)

}
− {Lv+s+1(x, y)− Lv(x, y)}

1− (x+ y)

(2.2)

Proof. (i): By Binet’s formula (1.2), we have

s∑
k=0

Fv+k(x, y) =
s∑

k=0

(
Rv+k

1 −Rv+k
2

R1 −R2

)
=

1

R1 −R2

[
Rv+s+1

1 −Rv
1

R1 − 1
− Rv+s+1

2 −Rv
2

R2 − 1

]
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=
2

R1 −R2

[
Rv+s+1

1 −Rv
1√

x2 + 4y + (x− 2)
+

Rv+s+1
2 −Rv

2√
x2 + 4y − (x− 2)

]

=
1

2(x + y − 1)

[(
Rv+s+1

1 + Rv+s+1
2

)
− (x− 2)

(
Rv+s+1

1 −Rv+s+1
2

R1 −R2

)
− (Rv

1 + Rv
2) + (x− 2)

(
Rv

1 −Rv
2

R1 −R2

)]
=
{Lv+s+1(x, y)− Lv(x, y)} − (x− 2) {Fv+s+1(x, y)− Fv(x, y)}

2(x + y − 1)

This completes the proof.
Proof. (ii): By Binet’s formula (1.4), we have

s∑
k=0

Lv+k(x, y) =
s∑

k=0

(
Rv+k

1 + Rv+k
2

)
=

[
Rv+s+1

1 −Rv
1

R1 − 1
+

Rv+s+1
2 −Rv

2

R2 − 1

]

=

[
(<2 − 1)

(
<v+s+1

1 −Rv
1

)
+ (R1 − 1)

(
<v+s+1

2 −Rv
2

)
(<1 − 1) (<2 − 1)

]

=

[
Rv+m

1 (R1<2)−Rv
1R2 −Rv+m+1

1 + Rv
1 + Rv+m

2 (R1R2)−R1R
v
2 −Rv+m+1

2 + Rv
2

R1<2 −R1 −R2 + 1

]

=
y
{
Lv−1(x, y)−

√
x2 + 4yFv+s(x, y)

}
− {Lv+s+1(x, y)− Lv(x, y)}

1− (x + y)

This completes the proof.

Proposition 2.2. For s ≥ 0&v ≥ 0 the following equality holds:

(i)
s∑

k=0

F2v+2k(x, y)

=
xy {F2v−1(x, y)− F2v+2s+1(x, y)}+ (y − 1) {F2v+2s+2(x, y)− F2v(x, y)}

y2 − (x2 + 2y) + 1
(2.3)

(ii)
s∑

k=0

L2v+2k(x, y)

=
−xy {L2v+2s+1(x, y)− L2v−1(x, y)}+ (y − 1) {L2v+2s+2(x, y)− L2v(x, y)}

y2 − (x2 + 2y) + 1
(2.4)

Proof. Using the Binet’s formula (1.2) and (1.4), the proof is clear.
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Proposition 2.3. For s ≥ 0&v ≥ 0 the following equality holds:

(i)
s∑

k=0

{Fv+k+1(x, y) + yFv+k−1(x, y)}

=
y
{
Lv−1(x, y)−

√
x2 + 4yFv+s(x, y)

}
− {Lv+s+1(x, y)− Lv(x, y)}

1− (x + y)
(2.5)

(ii)
s∑

k=0

{Lv+k+1(x, y) + yLv+k−1(x, y)}

=
(x2 + 4y)

1− (x + y)
{Lv+s+1(x, y)− Lv(x, y)} − (x− 2) {Lv+s+1(x, y)− Lv(x, y)}

(2.6)

Proof. Using the Binet’s formula (1.2) and (1.4), the proof is clear.

3. Alternating sums of Bivariate Fibonacci Polynomials and Bivariate
Lucas Polynomials

Proposition 3.1. For s ≥ 0 & v ≥ 0 the following equality holds:

(i)
s∑

k=0

(−1)kFv+k(x, y)

=
(x + 2) {Fv(x, y) + (−1)sFv+s+1(x, y)} − {Lv(x, y) + (−1)sLv+s+1(x, y)}

2(1 + x− y)
(2.7)

(ii)
s∑

k=0

(−1)kLv+k(x, y) = 2 [(x + 2) {Lv(x, y)

+(−1)sLv+s+1(x, y)} −
(
x2 + 4y

)
{Fv(x, y) + (−1)sFv+s+1(x, y)}

]
(2.8)

Proof. (i): By Binet’s formula (1.2), we have

s∑
k=0

(−1)kFv+k(x, y) =
s∑

k=0

(−1)k
(
Rv+k

1 −<v+k
2

<1 −R2

)
=

1

<1 −R2

[
Rv

1 + (−1)sRv+s+1
1

R1 + 1
− Rv

2 + (−1)sRv+s+1
2

R2 + 1

]
=

2

R1 −R2

[
Rv

1 + (−1)sRv+s+1
1

(x + 2) +
√
x2 + 4y

− Rv
2 + (−1)sRv+s+1

2

(x + 2)−
√

x2 + 4y

]
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=
2

R1 −R2


(x + 2) (Rv

1 −Rv
2) + (−1)s+1(x + 2)

(
Rv+s+1

1 −Rv+s+1
2

)
−
√
x2 + 4y (Rv

1 + Rv
2)− (−1)s

√
x2 + 4y

(
Rv+s+1

1 + Rv+s+1
2

)
4(1 + x− y)


=

(x + 2) {Fv(x, y) + (−1)sFv+s+1(x, y)} − {Lv(x, y) + (−1)sLv+s+1(x, y)}
2(1 + x− y)

This completes the proof.

Proof. (ii): By Binet’s formula (1.4), we have

s∑
k=0

(−1)kLv+k(x, y) =
s∑

k=0

(−1)k
(
Rv+k

1 + Rv+k
2

)
=

[
Rv

1 + (−1)sRv+s+1
1

R1 + 1
+

Rv
2 + (−1)sRv+s+1

2

R2 + 1

]
= 2

[
(x + 2) (Rv

1 + Rv
2) + (x + 2)(−1)s

(
Rv+s+1

1 + Rv+s+1
2

)
= 2 [(x + 2) {Lv(x, y) + (−1)sLv+s+1(x, y)}
−
(
x2 + 4y

{
(Rv

1 −Rv
2)− (−1)s

(
Rv+s+1

1 −Rv+s+1
2

)}]
= [Fv(x, y) + (−1)sFv+s+1(x, y)}]

This completes the proof.

Proposition 3.2. For s ≥ 0&v ≥ 0 the following equality holds:

(i)
s∑

k=0

(−1)kF2v+2k(x, y)

=
xy {F2v+2s+1(x, y)− F2v−1(x, y)}+ (y + 1) {F2v(x, y)− F2v+2s+2(x, y)}

x2 + y2 + 2y + 1
(2.9)

(ii)
s∑

k=0

(−1)kL2v+2k(x, y)

=
xy {L2v+2s+1(x, y)− L2v−1(x, y)}+ (y + 1) {F2v(x, y)− F2v+2s+2(x, y)}

x2 + y2 + 2y + 1
(2.10)

Proof. Using the Binet’s formula (1.2) and (1.4), the proof is clear.
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4. Product and Square of adjacent Bivariate Fibonacci polynomials and
Bivariate Lucas Polynomials

Proposition 4.1. For s ≥ 0&v ≥ 0 the following equality holds:

(i)
s∑

k=0

Fv+k(x, y)Fv+k+1(x, y) =
1

x2 + 4y[
xy {L2v(x, y)− L2v+2s+2(x, y)}+ (y − 1) {L2v+2s+3(x, y)− L2v+1(x, y)}

y2 − x2 − 2y + 1

−x
{

(−y)v+s+1 − (−y)v

y + 1

}]
(2.11)

(ii)
s∑

k=0

Lv+k(x, y)Lv+k+1(x, y)

=

[
xy{L2v(x,y)−L2v+2s+2(x,y)}+(y−1){L2v+2s+3(x,y)−L2v+1(x,y)}

y2−x2−2y+1

−x
{

(−y)v+s+1−(−y)v
y+1

} ] (2.12)

Proof. By Binet’s formula (1.2) and (1.4), the proof is clear.

Proposition 4.2. For s ≥ 0 & v ≥ 0 the following equality holds:

(i)
s∑

k=0

F 2
v+k(x, y) =

1

x2 + 4y[
xy {L2v−1(x, y)− L2v+2s+1(x, y)}+ (y − 1) {L2v+2s+2(x, y)− L2v(x, y)}

y2 − x2 − 2y + 1

]
1

y + 2

[
(−y)v+s+1 − (−y)v

y + 1

}]
(2.13)

(ii)
s∑

k=0

L2
v+k(x, y)

=
xy {L2v−1(x, y)− L2v+2s+1(x, y)}+ (y − 1) {L2v+2s+2(x, y)− L2v(x, y)}

y2 − x2 − 2y + 1

− 2

{
(−y)v+s+1 − (−y)v

y + 1

}
(2.14)

Proof. By Binet’s formula (1.2) and (1.4), the proof is clear.
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5. Matrix Representation of Bivariate Fibonacci polynomials and Bi-
variate Lucas Polynomials

In [17], Özkan and Altun, find elements of the Lucas polynomials by using two
matrices and extend the study to the n-step Lucas polynomials. In [18] Özkan
and Taştan, define the new families of Gauss k-Jacobsthal numbers and Gauss
k-Jacobsthal-Lucas numbers and obtain some exciting properties of the families.
Also, find the new generalizations of these families and the polynomials in matrix
representation. In [19], Özkan and Taştan, define a new family of Gauss k-Lucas
numbers and find new generalizations of these families and the polynomials in ma-
trix representation. In [20], Özkan and Taştan, define the Gauss Fibonacci polyno-
mials and define the matrices of the Gauss Fibonacci polynomials and the Gauss
Lucas polynomials. Also, examine properties of the matrices. In [21], Taştan,
Özkan and Shannon define new families of Generalized Fibonacci polynomials and
Generalized Lucas polynomials and develop some elegant properties of these fami-
lies and also, find new generalizations of these families and the polynomials in ma-
trix representation. In this section, we present two cross two matrix for bivariate

Fibonacci polynomials and bivariate Lucas Polynomials is given by A =

[
x 1
y 0

]
.

Theorem 5.1. For n ∈ N we have[
Fn+1(x, y)
yFn(x, y)

]
= A

[
Fn(x, y)

yFn−1(x, y)

]
(3.1)

Proof. To prove the result we will use induction on n. (3.1) is true for n = 1.
Suppose (3.1) is true for n, we get[

Fn+2(x, y)
yFn+1(x, y)

]
=

[
xFn+1(x, y) + yFn(x, y)

yFn+1(x, y)

]
=

[
x 1
y 0

] [
Fn+1(x, y)
yFn(x, y)

]
=

[
x 1
y 0

] [
x 1
y 0

] [
Fn(x, y)

yFn−1(x, y)

]
=

[
x 1
y 0

] [
xFn(x, y) + yFn−1(x, y)

yFn(x, y)

]
=

[
x 1
y 0

] [
Fn+1(x, y)
yFn(x, y)

]
= A

[
Fn+1(x, y)
yFn(x, y)

]
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Theorem 5.2. For n ∈ N we have[
Ln+1(x, y)
yLn(x, y)

]
= A

[
Ln(x, y)

yLn−1(x, y)

]
(3.2)

Theorem 5.3. For n ∈ N we have[
Fn+1(x, y)
yFn(x, y)

]
= An

[
F1(x, y)
yF0(x, y)

]
(3.3)

Theorem 5.4. For n ∈ N we have[
Ln+1(x, y)
yLn(x, y)

]
= An

[
L1(x, y)
yL0(x, y)

]
(3.4)

6. Generalized identity of Bivariate Fibonacci polynomials and Bivariate
Lucas Polynomials

In this section, we present some generalized identities for bivariate Fibonacci
polynomials and bivariate Lucas Polynomials, from which we obtain Catlan’s iden-
tity, Cassini’s identity and d’Ocagne’s identity.

Proposition 6.1. (Generalized identity) For n > m ≥ k ≥ 1,

Fm(x, y)Fn(x, y)− Fm−k(x, y)Fn+k(x, y) = (−y)m−kFk(x, y)Fn−m+k(x, y) (4.1)

Proof. By Binet’s formula (1.2), we have

Fm(x, y)Fn(x, y)− Fm−k(x, y)Fn+k(x, y)

=

(
Rm

1 −Rm
2

R1 −R2

)(
Rn

1 −Rn
2

R1 −R2

)
−
(
Rm−k

1 −Rm−k
2

R1 −R2

)(
Rn+k

1 −
R1−

R1

)
=

Rm
1 R

n
2

(
R−k1 Rk

2 − 1
)

+ Rn
1R

m
2

(
Rk

1R
−k
2 − 1

)
(R1 −R2)

2

=
(−y)m

(
Rk

1 −Rk
2

)
(R1 −R2)

2

(
Rn−m

1

Rk
2

− Rn−m
2

Rk
1

)
= (−y)m−k

(
Rk

1 −Rk
2

R1 −R2

)(
Rn−m+k

1 −Rn−m+k
2

R1 −R2

)
= (−y)m−kFk(x, y)Fn−m+k(x, y)

This completes the proof.
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Corollary 6.2. (Catlan’s identity). If m = n in the generalized identity (4.1), we
obtain,

F 2
n(x, y)− Fn−k(x, y)Fn+k(x, y) = (−y)n−kF 2

k (x, y) (4.2)

Corollary 6.3. (Cassini’s identity). If m = n and k = 1 in the generalized identity
(4.1), we obtain,

F 2
n(x, y)− Fn−1(x, y)Fn+1(x, y) = (−y)n−1 (4.3)

Corollary 6.4. (d’Ocagne’s identity). If n = m,m = n + 1 and k = 1 in the
generalized identity (4.1), we obtain,

Fm(x, y)Fn+1(x, y)− Fn(x, y)Fm+1(x, y) = (−y)nFm−n(x, y) (4.4)

Proposition 6.5. (Generalized identity) For n > m ≥ k ≥ 1,

Lm(x, y)Ln(x, y)−Lm−k(x, y)Ln+k(x, y) = −
(
x2 + 4y

)
(−y)m−kFk(x, y)Fn−m+k(x, y)

(4.5)
Proof. By Binet’s formula (1.4), we have

Lm(x, y)Ln(x, y)− Lm−k(x, y)Ln+k(x, y)

= (Rm
1 + Rm

2 ) (Rn
1 + Rn

2 )−
(
Rm−k

1 + Rm−k
2

) (
Rn+k

1 + Rn+k
2

= Rm
1 R

n
2

(
1−R−k1 Rk

2

)
+ Rn

1R
m
2

(
1−Rk

1R
−k
2

)
= −(−y)m−k

(
Rk

1 −Rk
2

) (
Rn−m+k

1 −Rn−m+k
2

)
= −

(
x2 + 4y

)
(−y)m−k

(
Rk

1 −Rk
2

R1 −R2

)(
Rn−m+k

1 −Rn−m+k
2

R1 −R2

)
= −

(
x2 + 4y

)
(−y)m−kFk(x, y)Fn−m+k(x, y)

This completes the proof.

Corollary 6.6. (Catlan’s identity). If m = n in the generalized identity (4.5), we
obtain,

L2
n(x, y)− Ln−k(x, y)Ln+k(x, y) = −

(
x2 + 4y

)
(−y)n−kF 2

k (x, y) (4.6)

Corollary 6.7. (Cassini’s identity). If m = n and k = 1 in the generalized identity
(4.5), we obtain,

L2
n(x, y)− Ln−1(x, y)Ln+1(x, y) = −

(
x2 + 4y

)
(−y)n−1 (4.7)
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Corollary 6.8. (d’Ocagne’s identity). If n = m,m = n + 1 and k = 1 in the
generalized identity (4.5), we obtain,

Lm(x, y)Ln+1(x, y)− Ln(x, y)Lm+1(x, y) = −
(
x2 + 4y

)
(−y)nFm−n(x, y) (4.8)

Proposition 6.9.

Fm+n(x, y)Fm+t(x, y)− Fm(x, y)Fm+n+t(x, y) = (−y)mFn(x, y)Ft(x, y) (4.9)

Proof.

Fm+n(x, y)Fm+t(x, y)− Fm(x, y)Fm+n+t(x, y)

=

(
Rm+n

1 −Rm+n
2

R1 −R2

)(
Rm+t

1 −Rm+t
2

R1 −R2

)
−
(
Rm

1 −Rm
2

R1 −R2

)(
Rm+n+t

1 −Rm+n+t
2

R1 −R2

)
=

(
Rk

1 −Rk
2

)
(R1 −R2)

2

{
Rm+t

1

(
−y
R1

)m

−Rm+t
2

(
−y
R2

)m

= (−y)m
(
Rn

1 −Rn
2

R1 −R2

)(
Rt

1 −Rt
2

R1 −R2

)
= (−y)mFn(x, y)Ft(x, y)

This completes the proof.

Proposition 6.10.

Fm(x, y)Fn+1(x, y) + Fm−1(x, y)Fn(x, y)

=
{Lm+n+1(x, y) + Lm+n−1(x, y)}+ (y − 1)(−y)nLm−n−1(x, y)

(x2 + 4y)
(4.10)

Proof. By Binet’s formula (1.2), we have

Fm(x, y)Fn+1(x, y) + Fm−1(x, y)Fn(x, y)

=

(
Rm

1 −Rm
2

R1 −R2

)(
Rn+1

1 −Rn+1
2

R1 −R2

)
−
(
Rm−1

1 −Rm−1
2

R1 −R2

)(
Rn

1 −Rn
2

R1 −R2

)
=

Rm+n
1

(
R1 +R−11

)
+Rm+n

2

(
R2 +R−12

)
−Rm

1 Rn
2

(
R2 +R−11

)
−Rm

2 Rn
1

(
R1 +R−12

)
(R1 −R2)

2

=
Rm+n−1

1

(
R2

1 + 1
)
+Rm+n−1

2

(
R2

2 + 1
)
−Rm−1

1 Rn
2 (R1R2 + 1)−Rm−1

2 Rn
1 (R1R2+

(R1 −R2)
2

)

=
Rm+n+1

1 +Rm+n+1
2 +Rm+n−1

1 +Rm+n−1
2 + (y − 1)(−y)n

(
Rm−n−1

1 +Rm−n−1
2

)
(R1 −R2)

2

=
{Lm+n+1(x, y) + Lm+n−1(x, y)}+ (y − 1)(−y)nLm−n−1(x, y)

(x2 + 4y)
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This completes the proof.

7. Conclusion
In this paper, we have stated and derived many identities. We define the sum of

s+ 1 consecutive members of Bivariate Fibonacci polynomials and Bivariate Lucas
polynomials and the same thing for even and for odd and for their product and
square. Also, we present their two cross two matrix representation and the general-
ized identities of bivariate Fibonacci polynomials and bivariate Lucas polynomial.
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[8] Čerin, Z., Sums of Product of Generalized Fibonacci and Lucas Numbers,
Demonstratio Mathematica, 42 (2) (2009), 247-258.
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[17] Özkan, E. and Altun, I., Generalized Lucas polynomials and relationships
between the Fibonacci polynomials and Lucas polynomials, Communications
in Algebra, 47 (10) (2019), 4020-4030.
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