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Abstract: A Császár frame is said to be proximal if it is symmetric, strong and
regular. Our aim in this paper is to apply the methods used by Banaschewski
and Mulvey in constructing the Stone-Céch compactification of completely regular
locale to construct a compactification of a proximal Császár frame.
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1. Introduction and Preliminaries

We recall that a frame is a complete lattice L satisfying the property:

x ∧
∨

S =
∨
{x ∧ s | s ∈ S),

for all x ∈ L and all S ⊆ L. The bottom (respectively, top) element of a frame L
will be denoted by 0 (resp., e). A frame homomorphism between two frames is a
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mapping that preserves finite meets (including e) and arbitrary joins (including 0).
The resulting category will be denoted by Frm. For general knowledge on frames,
we refer to [Johnstone 12 and Picado and Pultr 13].

A frame L is said to be regular if every a ∈ L is expressible as

a =
∨
{b ∈ L | b ≺ a} =

∨
{b ∈ L | b∗ ∨ a = e},

where b ≺ a means that b∗ ∨ a = e and b∗ =
∨
{c ∈ L | c ∧ b = 0}. We will denote

by RegFrm the category of regular frames and frame homomorphisms.

Lemma 1.1. ([Pultr 14, 8.1.1 (5)]) If ai ≺ bi for i = 1, 2 then a1 ∨ a2 ≺ b1 ∨ b2
and a1 ∧ a2 ≺ b1 ∧ b2.

Császár frames were introduced by Chung [6] into the category of frames and
frame homomorphisms as pointfree analogues of syntopogenous spaces, themselves
owing their origin to [Ákos Császár 8]. See also [Flax 10]. Proximal Császár frames
are completely regular, and so, they have compactifications. Classically, compacti-
fications can only be constructed for Hausdorff spaces [Tamano 15]. Since proximal
frames are regular (by definition), it makes sense to investigate a compactification
of a proximal frame. There have been developments over the past 30 years in the
area of frames (locales) that were driven by compactification of frames (locales):
see, for example, [Banaschewski and Pultr 4, Ferreira et al 9, Frith and Schauerte
11, and Bezhanishivili and Harding 5]. For background on compactifications, we
follow [Banaschewski 2]. See also [Baboolal and Banaschewski 1].

Definition 1.2. ([Chung 6, Definition 2.1.1]) A Császár order on a frame L is a
binary relation CL

i on L satisfying the following properties:
CO1) : 0 CL

i 0 and eCL
i e;

CO2) : xCL
i y ⇒ x ≤ y; and

CO3) : x ≤ uCL
i v ≤ y ⇒ xCL

i y.
Note that given a collection {CL

i | i ∈ I} of Császár orders on L, it is easily
seen that L = ∪{CL

i | i ∈ I} is a Császár order on L: in this case, the pair (L,L)
is called a Császár frame.

Definition 1.3. ([Chung 7, Section 2]) A Császár frame (L,L) is said to be
proximal if it symmetric, strong and regular in the sense that:

(a) A Császár order CL
i on a Császár frame L is said to be symmetric if whenever

aCL
i b then b∗CL

i a
∗. The Császár frame (L,L) is symmetric if each Császár

order on L is symmetric.

(b) A Császár frame (L,L) is said to be strong if for each CL
i ∈ L with u CL

i v,
there is a CL

0 ∈ L and some w ∈ L such that uCL
0 w CL

0 v.
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(c) A Császár frame (L,L) is said to be regular if every CL ∈ L is coarser than
≺, that is, CL

i ⊆≺ if and only if uCL
i v implies u ≺ v.

In [10, 1.4], Flax showed that if ≤ is a topogenous order on a set X, then the
relation c(≤) defined on the powerset of X by A c(≤)B if and only if X−B ≤ X−A
is also a topogenous order on X, for any subsets A and B of X. We prove a pointfree
version of this result, even though stronger than in syntopogenous spaces.

Lemma 1.4. Given a Császár order CL
i on a frame L, the relation CL

i(c) defined
by

uCL
i(c) v if and only if v∗ CL

i u
∗

is also a Császár order on L.
Proof:

CO1) : We have that 0∗CL 0∗ since CL
i is a Császár order, hence 0CL

i(c) 0. Similarly,

e∗ CL
i e
∗ implying that eCL

i(c) e.

CO2) : If uCL
i(c) v, then v∗ CL

i u
∗. But CL

i is a Császár order, we must have v∗ ≤ u∗

so that u ≤ v as desired.

CO3) : Suppose u ≤ x CL
i(c) y ≤ v. We want show that u CL

i(c) v. By definition of

CL
i(c), we have y∗ CL

i x
∗, and so v∗ ≤ y∗ CL

i x
∗ ≤ u∗. Since CL

i is a Császár

order on L, it follows that v∗ CL
i u
∗ and this shows that uCL

i(c) v.

2. Main Results: Banaschewski-Mulvey type Compactification of a
Proximal Császár Frame

In this section, we follow the construction of the Stone-Céch compactification
of a locale by [Banaschewski and Mulvey 3] to construct the compactification of
a proximal Császár frame. In their paper, Banschewski and Mulvey gave a con-
struction which showed that both compact regular locales and compact completely
regular locales are reflective in the category Loc of locales and localic maps: Loc
is the opposite category to Frm, thus, Loc = Frmop. For more on the category
Loc, please refer to [Johnstone 12]. In the following construction, we will show
that the category PCsFrm of proximal Császár frames and their homomorphisms
is reflective in the category Frm.

Recall that a frame L is said to be compact if for every subset U of L with∨
U = e there exists a finite subset T of U with

∨
T = e. By a compactification

of a frame L we mean a dense onto frame homomorphism h : M → L, where M is
a compact regular frame. Ideals are dual to filters in the sense that a non-empty
proper subset I of a frame L is said to be an ideal of L if:
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i) Whenever u, v ∈ I then u ∨ v ∈ I, and
ii) Whenever u ∈ I and v ≤ u, then v ∈ I.
An ideal I of a proximal Császár frame (M,M) is said to be strongly regular if

whenever u ∈ I there exists v ∈ I and some CM
i ∈M such that uCM

i v. We shall
denote by RM the set of all strongly regular ideals of M .

We will need the following result:

Lemma 2.1. (cf. 3, Lemma 1) Let (M,M) be a Császár frame and let CM
i ∈M.

i) If x ≤ y CM
i z, then x CM

i z: Since x ≤ z, it follows from the definition
that xCM

i z.

ii) (Refer also to Lemma 1.1 above) If xCM
i y and uCM

i v, then x∧uCM
i y∧v: By

hypothesis, we have x∧u ≤ xCM
i y and x∧u ≤ uCM

i v, and then x∧uCM
i y

and x ∧ u CM
i v. Since CM is a meet-sublattice of M ×M , we must have

x ∧ uCM
i y ∧ v.

Lemma 2.2. RM is a compact frame.
Proof.

a) The bottom and top elements of RM are respectively {0M} and {M}. Recall
that for ideals (even strongly regular ones) I, J ∈ RM, it holds that I ∧ J =
{x ∧ y | x ∈ I, y ∈ J}. Now, if u ∈ I ∧ J then u = x ∧ y, so that there exists
ux ∈ I and uy ∈ J such that u = x ∧ y CM

i ux ∧ uy ∈ I ∧ J for some CM
i ∈ M,

so strongly regular ideals are closed under finite meets. It is also easily seen that
I ∨ J ∈ RM for any I, J ∈ RM: For, if x ∈ I ∨ J there exist u ∈ I and v ∈ J ,
and then ux ∈ I, vx ∈ J such that uCM

i ux and vCM
i vx, for some CM

i ∈M. Then
x = u ∨ v CM

i ux ∨ vx ∈ I ∨ J , which establishes that I ∨ J is a strongly regular
ideal. We then consider

⋃
i Ii, where each Ii ∈ RM. It is easily shown that for any

x ∈
⋃

i Ii, there is a y ∈
⋃

i Ii such that x CM
i y, for some CM

i ∈ M. (For the
construction that follows, we are indebted to [Pultr 10].) Given a strongly regular
ideal I and a collection {Ji}i of strongly regular ideals in RM, let us consider∨

i

Ji = {
∨

E | E ⊆
⋃
i

Ji finite}.

We claim that
I ∩ (

∨
i

Ji) =
∨
i

(I ∩ Ji) :

Note that Ji ≤
∨

i Ji and Ji ∩ I ⊆ I, so it easily follows that∨
i

(Ji ∩ I) ≤ (
∨
i

Ji) ∩ I.
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For the opposite implication, we take u ∈ I ∩ (
∨

i Ji), say u = u1 ∨ u2 ∨ . . . ∨ un.

Since uj ≤ u, the definition of an ideal implies that u = u1∨u2∨ . . . ∨un ∈∨
i(I ∩ Ji), and so

(
∨
i

Ji) ∩ I ≤
∨
i

(Ji ∩ I),

showing that

(
∨
i

Ji) ∩ I =
∨
i

(Ji ∩ I).

Consequently, RM is a frame.

b) Finally, for compactness of RM, suppose
∨

i{Ji} = {M}. Remember, {M}
is the top element of RM. Since eM ∈ M , it follows that there are finitely many
uj ∈ Jij such that

u1 ∨ u2 ∨ . . . ∨ un = eM ∈
n∨
ij

Jij .

But then we must have {M} =
∨n

ij
Jij , making RM a compact frame.

Lemma 2.3. RM is a proximal Császár frame.
Proof. We start with the Császár part: we consider strongly regular ideals of the
form:

I CM
iC J if and only if for every x ∈ I there exists a y ∈ J such that xCM

i y,
for some CM

i ∈M.

We claim that: CM
iC is a Császár order on RM:

(CO1): For any CM
i ∈ C, we have 0M CM

i 0M , so {0M} CM
i {0M}. Similarly,

{M}CM
i {M}.

(CO2): Suppose that I CM
iC J . To see that I ≤ J , we take x ∈ I and y ∈ J

such that x CM
i y, for some CM

i ∈ C; this implies that x ≤ y, thus I ≤ J .

(CO3): We start with I ≤ ACM
iC B ≤ J . For any x ∈ I, there exist y ∈ A, z ∈ B

and t ∈ J such that

x ≤ y CM
i z ≤ t.

Since CM
i is a Császár order, we must have x CM

i t, showing that I CM
iC J . By

construction, RM is regular, being a collection of strongly regular ideals.

Now we denote by MC the Császár order on RM, that is,

MC = ∪{CM
iC | i ∈ I}.
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It remains to show that RM is strong and symmetric. Well, for symmetry, we
assume that x CM

iC y, for some CM
iC ∈ MC, and x ∈ I and y ∈ J . Then, by

definition, for some symmetric CM
i ∈M (since M is proximal),

xCM
i y and so y∗ CM

i x∗; thus y∗ CM
iC x

∗,

which shows that J∗CM
iC I

∗; thus RM is symmetric. Finally, for strongness of RM,
suppose that CM

iC ∈ MC and let I CM
iC J , and let CM

i be the associated Császár
order inM. Since M is strong (being proximal), we find a Császár order CM

◦ ∈M
such that

uCM
i v =⇒ uCM

◦ w CM
◦ v,

for some w ∈ M . There is a CM
◦C generating the CM

◦ so that CM
iC ⊆ (CM

◦C)
2, so CM

◦C
is strong as desired. And we then have a proximal Csśzár frame (RM,MC).

Remark 2.4. The category of proximal Császár frames and proximal frame homo-
morphisms is denoted by PCsFrm. Now, recalling that a frame homomorphism
h : M → L is dense if whenever h(a) = e, then a = e. For the following result, we
need:

Definition 2.5. A proximal homomorphism h : (M,M) → (L,L) between proxi-
mal Császár frames is one that satisfies:

i) h(0) = 0 and h(e) = e,

ii) h(a ∧ b) = h(a) ∧ h(b),

iii) If a1CM b1 and a2CM b2 for some CM ∈M, then f(a1∨b1)h(CM)h(a2)∨h(b2),
and

iv) h(b) =
∨
{h(a) | aCM

i b, for some CM
i ∈M}.

Lemma 2.6. The map νM : RM → (M,M), where I 7→
∨
I, is a dense onto

proximal map.
Proof.

We first note that for the map ρM : M → RM, u 7→↓ u, the map νM is onto
because for each u ∈ M , it holds that νM ◦ (ρM(u)) = νM(↓ u) = u. In addition,
for any I ∈ RM, we have that

(ρM ◦ νM)(I) = ρM(
∨

I) = ↓ (
∨

I) = I,

which means that νM is a left adjoint of ρM ; consequently, it must preserve all
updirected joins. So, if I1 CM

iC J1 and I2 CM
iC J2, then (see Definition 2.5)

νM(I1 ∨ I2) = νM(I1) ∨ νM(I2) νM(CM
iC ) νM(J1) ∨ νM(J2).
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In addition, if

J =
∨
{I ∈ RM | I CM

iC J, for some J ∈ RM, and for some CM
iC ∈M},

this left adjoint satisfies

νM(J) =
∨
{νM(I) | I CM

iC J, for some J ∈ RM, and for some CM
iC ∈M}.

To show that ρM : RM → M preserves finite meets, we take I, J ∈ RM, and note
that

νM(I ∧ J) =
∨

I ∧
∨

J

=
∨
{u ∧ v | u ∈ I, v ∈ J}

≤
∨
{w | w ∈ I ∩ J}

= νM(I ∩ J)

≤ νM(I) ∧ νM(J).

On the other hand, we also have νM(I) ∧ νM(J) = (
∨
I) ∧ (

∨
J) ≤

∨
(I ∩ J) =

νM(I ∧ J), whence νM(I ∧ J) = νM(I) ∧ νM(J). For denseness, we proceed thus:
let νM(I) = 0M and note that then

∨
I = 0M can only be true if I = {0M},

the bottom element of RM. It is also true that νM({L}) =
∨
{L} = eM . We have

therefore shown that νM is a dense onto proximal map.
Putting these results together, noting also that

∨
{L} = eM , we have proved

that.

Proposition 2.7. The pair (RM, νM) is the compactification of a proximal Császár
frame (M,M).
By definition, we have PCsFrm ⊆ RegFrm, so we derive the following:

Corollary 2.8. The proximal frame homomorphism νM : RM →M is a monomor-
phism.
Proof. Since RM ia proximal, it is regular. Since νM is dense (onto), the result
follows from a standard result of dense homomorphisms on regular frames. See, for
example, [Pultr 14, 8.3.2].

The following result, due to Pultr [10, Proposition 10.3.1], is needed in our last
result which is analogous to a result of [Banaschewski and Mulvey 3, Lemma 5].

Proposition 2.9. Let L be regular and let M be compact. Then each dense
homomorphism h : L→M is one-to-one.
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The proof of the following result requires a adaptation on the original proof of
the result of Banaschewski and Mulvey.

Proposition 2.10. In our construction, if M is compact, then for any strongly
regular ideal I ∈ RM, it holds that

x ∈ I if and only if xMC
∨
I,

for all x ∈M . Moreover, νM : RM →M is an isomorphism in PCsFrm.
Proof. By the above result (Proposition 2.9), νM is one-to-one; it is an isomor-
phism with inverse ρM : (M,M)→ (RM,MC).

3. Concluding Remarks.
If the underlying frame is completely regular, our construction reduces to that

of Banaschewski and Mulvey.
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