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Abstract: For the mth difference operator 4m and the admissible ideal I ⊆
P (N), the purpose of this paper is to introduce generalized summability methods:
4m(IN )−convergence and 4m(I∗N )−convergence in neutrosophic normed spaces
(briefly known as NNS). We develop some basics properties of these notions and
find condition on I for which two methods of summability coincides. Finally, we
define 4m(IN )−Cauchy sequences in NNS and obtain the Cauchy-convergence
criteria in these spaces.
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1. Introduction
Statistical convergence as a generalization of usual convergence was introduced

by H. Fast [7] and I. J. Schoenberg [24] independently and further developed in
[4], [8], [10] and [22] etc. A sequence (xk) of numbers is said to be statistical
convergent to a number L if for each ε > 0, limn

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

For any set K ⊆ N, the natural density of K is denoted by δ (K) and is de-
fined by limn

1
n
|{k ≤ n : k ∈ K}| . Using density, a sequence (xk) of numbers is

said to be statistical convergence to a number L if for each ε > 0, δ (Kε) = 0,
where Kε = {k ≤ n : |xk − L| ≥ ε} ⊆ N. The idea is generalized by Kostyrko et
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al.[15] with the help of an admissible ideal I called I−convergence. Their idea
attracted many mathematicians to work in this direction. For some pioneer work
on I−convergence, we refer [5, 6, 9, 14, 16, 17, 18, 19 and 20] etc. On another side,
Fuzzy sets were introduced by Zadeh [27] and generalized by Atanassov [1] while
observing that Zadeh’s idea of fuzzy sets need more attention to handle certain
problems in time domain. He called this set as intuitionistic fuzzy set. His work is
followed by many authors, for instance intuitionistic fuzzy metric spaces by Park
[21], intuitionistic fuzzy topological spaces by Saadati and Park [23] etc. In past
decade, the ideas of statistical convergence and I−convergence respectively have
been extended in intuitionistic fuzzy normed spaces in [10] and [19]. Smarandache
[26], presented a generalization of intuitionistic fuzzy sets and called it neutrosophic
set. This idea is further used to define neutrosophic metric spaces and neutrosophic
soft linear spaces respectively in [12] and [2]. Further, Bera and Mahapatra [3] in-
troduced the concept of neutrosophic norm and define some sequential concepts
like convergence, Cauchy and convexity in these spaces. Recently, Kirişci and
Şimşek [13] extended notion of statistical convergence and study its properties in
these spaces. We aim in this paper to introduce and study new kind of summa-
bility methods: 4m (IN )−convergence and 4m(I∗N )−convergence in NNS. We
find conditions on I for which the two methods coincide. Later, we define some
related concepts: 4m (IN )−Cauchy, 4m (IN )−completeness, 4m(I∗N )−Cauchy,
4m(I∗N )− completeness in NNS and obtain some relationships among these no-

tions.

2. Background and Preliminaries

We quote in this section some definition and results which form the base for
present study. We begin with the following definitions of triangular norm and tri-
angular conorm. A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous triangular norm or t−norm if it satisfies the following conditions: (i) ◦
is associative and commutative, (ii) ◦ is continuous, (iii) a ◦ 1 = a for every a ∈
[0, 1] and (iv) a◦b ≤ c◦d whenever a ≤ c and b ≤ d for each a, b, c and d ∈ [0, 1] .
A binary operation • : [0, 1]× [0, 1]→ [0, 1] is said to be a continuous triangular
conorm or t−conorm if it satisfies the following conditions:(i) • is associative and
commutative, (ii) • is continuous, (iii) a • 0 = a for every a ∈ [0, 1] and (iv)
a • b ≤ c • d whenever a ≤ c and b ≤ d for each a, b, c and d ∈ [0, 1]. Using these
definitions, Kirişci and Şimşek [13], recently defined neutrosophic normed spaces
and studied statistical convergence in these spaces.

Definition 2.1. [13] Let F be a vector space, N = {〈ϑ,G (ϑ) ,B (ϑ) ,Y (ϑ)〉 : ϑ ∈ F}
be a normed space such that N : F ×R+ → [0, 1] and ◦, • respectively are contin-
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uous t−norm and continuous t−conorm. Then a four touple V = (F,N , ◦, •, ) is
called a neutrosophic normed spaces (NNS) if the following conditions are satisfied.
For every u, v ∈ F and λ, µ > 0 and for every σ 6= 0 we have

(i) 0 ≤ G (u, λ) ≤ 1, 0 ≤ B (u, λ) ≤ 1, 0 ≤ Y (u, λ) ≤ 1 for every λ∈ R+ ;
(ii) G (u, λ) + B (u, λ) + Y (u, λ) ≤ 3 for λ∈ R+ ;
(iii) G (u, λ) = 1 (for λ > 0) if and only if u = 0;

(iv) G (σu, λ) = G
(
u, λ

|σ|

)
;

(v) G (u, µ) ◦ G (v, λ) ≤ G (u+ v, λ+ µ) ;
(vi) G (u, .) is continuous non-decreasing function;
(vii) limλ→∞ G (u, λ) = 1;
(viii) B (u, λ) = 0 (for λ > 0) if and only if u = 0;

(ix) B (σu, λ) = G
(
u, λ

|σ|

)
;

(x) B (u, µ) • B (v, λ) ≥ B (u+ v, λ+ µ) ;
(xi) B (u, .) is continuous non-decreasing function;
(xii) limλ→∞ B (u, λ) = 0;
(xiii) Y (u, λ) = 0 (for λ > 0) if and only if u = 0;

(xiv) Y (σu, λ) = G
(
u, λ

|σ|

)
;

(xv) Y (u, µ) • B (v, λ) ≥ Y (u+ v, λ+ µ) ;
(xvi) Y (u, .) is continuous non-decreasing function;
(xvii) limλ→∞ Y (u, λ) = 0;
If λ ≤ 0, then G (u, λ) = 0, B (u, λ) = 1 and Y (u, λ) = 1.

Here, N (G,B,Y) is called the neutrosophic norm. Some examples of neutrosophic
normed spaces can be found in [13]. A sequence (ak) in a neutrosophic normed
spaces V is said to convergent if for each ε > 0 and λ > 0, there exists a pos-
itive integer m and L ∈ F such that G (ak − L, λ) > 1 − ε, B (ak − L, λ) <
ε and Y (ak − L, λ) < ε for all k ≥ m. This is equivalent to say that limk→∞ G(ak−
L, λ) = 1, limk→∞ B (ak − L, λ) = 0 and limk→∞ Y (ak − L, λ) = 0 and we
write in this case N − limk→∞ ak = L. Moreover, the sequence (ak) is said to
be Cauchy if for each ε > 0 and λ > 0, there exists a positive integer p such that
G (ak − an, λ) > 1−ε, B (ak − an, λ) < ε and Y (ak − an, λ) < ε for all k, n ≥ p.

Definition 2.2. [13] Let V be a NNS; 0 < ε < 1 and λ > 0. A sequence (ak)
in V is said to statistical convergent if there exists L ε F such that limn

1
n
|{k ≤

n : G(ak − L, λ) ≤ 1 − ε or B(ak − L, λ) ≥ ε and Y(ak − L, λ) ≥ ε}| = 0; or
equivalently, the natural density of the set A((ε, λ) = {k ≤ n : G(ak − L, λ) ≤
1− ε or B(ak − L, λ) and Y(ak − L, λ) ≥ ε} is zero, i.e., δ (A (ε, λ)) = 0.

Definition 2.3. [13] Let V be a NNS; ε > 0 and λ > 0. A sequence (ak) in
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V is said to statistical Cauchy if there exists p ε N such that limn
1
n
|{k ≤ n :

G(ak − ap, λ) ≤ 1 − ε or B(ak − ap, λ) ≥ ε and Y(ak − ap, λ) ≥ ε}| = 0; or
equivalently, the natural density of the set A(ε, λ) = {k ≤ n : G(ak − ap, λ) ≤
1− ε or B(ak − ap, λ) ≥ ε and Y (ak − ap, λ) ≥ ε} is zero, i.e., δ (A (ε, λ)) = 0.

We now give a brief introduction related to I−convergence and related concepts.
For any set X, let P (X) denotes the power set of X. A family of sets I ⊆ P (X) is
called an ideal in X if and only if (i) ∅ ∈ I; (ii) A, B ∈ I implies that A∪B ∈ I and
(iii) for each A ∈ I and B ⊆ A, we have B ∈ I. Further, a non-empty family of sets
F ⊆ P (X) is called a filter on X if and only if (i) ∅ /∈ F ; (ii) A, B ∈ F implies
that A ∩ B ∈ F and (iii) for each A ∈ F and B ⊇ A, we have B ∈ F . An
ideal I is called non-trivial if I 6= ∅ and X /∈ I. A non-trivial ideal I ⊆ P (X)
is called an admissible ideal in X if and only if it contains all singletons, i.e.,
if it contains {{x} : x ∈ X} . If I ⊆ P (X) be a non-trivial ideal, then the class
F = F (I) =

{
AC ⊆ X : A ∈ I

}
is a filter on X and is called the filter associated

with the ideal I.
Let w denotes the set of all sequences in the neutrosophic normed space V =

(F,N , ◦, •, ). Define 4m : w → w by 40ak = ak;41ak = ak − ak+1 ; · · ·4mak =
4m−1 ( 4ak) = 4m−1 (ak − ak+1), m ≥ 2 and for all k ∈ N. We now turn our
attention to the main results.

3. ∆m(IN )-convergence

Definition 3.1. Let I ⊆ P (N) is an admissible ideal, V be a NNS; 0 < ε < 1 and
λ > 0. A sequence (ak) in V is said to 4m(IN )−convergent to a if there exists L ∈
F such that A(ε) = {k ∈ N : G(4mak − L, λ) ≤ 1 − ε or B(4mak − L, λ) ≥
ε and Y(4mak − L, λ) ≥ ε} ∈ I. In this case we write 4m(IN )− limk ak = a.

With particular choice of m = 0 and the ideal I = {K ⊆ N : K is an finite set},
4m(IN )−convergent coincides with the statistical convergence of [13] in NNS.

By a lacunary sequence we mean an increasing integer sequence θ = (pr) with
p0 = 0 and hr = pr − pr−1 → ∞ as r → ∞. If we denote Ir = (pr−1, pr] and
qr = pr

pr−1
, then for any set K ⊆ N the lacunary density of the set K is denoted

by δθ (K) and is defined by δθ (K) = 1
hr
|p ∈ Ir : p ∈ K| provided the limit exists.

For the choice m = 0 and the ideal I = {K ⊆ N : δθ (K) = 0}, then 4m(IN )−
convergence in this case coincides with lacunary statistical convergence of [11] in
NNS.

For K ⊆ N, K is said to be uniformly dense if u(K) = limn→∞
1
n

∑∞
j=1 χK(j +

p) = a uniformly p or equivalently limn→∞
1
n
|K ∩ {p+ 1, p+ 2, · · · p+ n}| = a

uniformly in p where p = 0, 1, 2, 3 · · · and χK is the characteristic function. If we
take ideal I = {K ⊆ N : u (K) = 0} and m = 0, then I is an admissible ideal and
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the corresponding 4m(IN )−convergence coincides with uniform statistical conver-
gence in NNS.

The following lemma is a direct implication of the Definition 3.1 together with
properties of ideal and filter.

Lemma 3.1. Let I ⊆ P (N) is an admissible ideal and V be a NNS, then for
every ε > 0 and λ > 0, the following conditions are equivalent.

(i) 4m(IN )− limk ak = a.

(ii) {k ∈ N : G(4mak−L, λ) ≤ 1−ε} ∈ I; {k ∈ N : B(4mak−L, λ) ≥ ε} ∈ I
and {k ∈ N : Y(4mak − L, λ) ≥ ε} ∈ I

(iii) {k ∈ N : G(4mak − L, λ) > 1 − ε and B(4mak − L, λ) < ε, B(4mak −
L, λ) < ε} ∈ F(I).

(iv) {k ∈ N : G(4mak − L, λ) > 1 − ε} ∈ F(I), {k ∈ N : B(4mak − L, λ) <
ε} ∈ F(I) and {k ∈ N : Y(4mak − L, λ) < ε} ∈ F(I).

(v) I − limk G (4mak − L, λ) = 1 and I − limk B (4mak − L, λ) = 0 , I −
limk Y (4mak − L, λ) = 0 .

We next formulate the following theorem of uniqueness.

Theorem 3.1. Let I ⊆ P (N) be an admissible ideal and V be a NNS. If (ak) is
a sequence in V such that 4m(IN ) − limk ak = L1 and 4m(IN ) − limk ak = L2 ,
then L1 = L2.
Proof. Suppose that L1 6= L2 and let ε > 0. Choose µ > 0 such that (1 −
ε) ◦ (1 − ε) > 1 − µ and ε • ε < µ. For λ > 0, we define the following sets.
KG1(ε, λ) = {k ∈ N:G(4mak − L1,

λ
2
) ≤ 1 − ε}, KG2(ε, λ) = {k ∈ N:G(4mak −

L2,
λ
2
) ≤ 1 − ε}, KB1(ε, λ) = {k ∈ N:B(4mak − L1,

λ
2
) ≥ ε}, KB2(ε, λ) =

{k ∈ N:B(4mak − L2,
λ
2
) ≥ ε}, KY1(ε, λ) = {k ∈ N:Y(4mak − L1,

λ
2
) ≥ ε} and

KY2(ε, λ) = {k ∈ N:Y(4mak − L2,
λ
2
) ≥ ε} Since 4m(IN ) − limk ak = L1 and

4m(IN )− limk ak = L2 so by Lemma 3.1, sets KG1 (ε, λ) ; KB1 (ε, λ) ; KY1 (ε, λ)
and KG2 (ε, λ) ; KB2 (ε, λ) and KY2 (ε, λ) belongs to I. Define a set KN (µ, λ)
by KN (µ, λ) = {{{KG1(µ, λ)} ∪ {KG2(µ, λ)}} ∩ {{KB1(µ, λ)} ∪ {KB2(µ, λ)}} ∩
{{KY1(µ, λ)} ∪ {KY2(µ, λ)}}}; then KN (µ, λ) ∈ I which immediately gives
{N−KN (µ, λ)} ∈ F (I) . Then {N−KN (µ, λ)} is a nonempty set as otherwise
{N−KN (µ, λ)} ∈ I. Let k ∈ {N−KN (µ, λ)}, then we have the following possi-
bilities: (i) k ∈ N − {{KG1(µ, λ)} ∪ {KG2(µ, λ)}}. (ii) k ∈ N − {{KB1(µ, λ)} ∪
{KB2(µ, λ)}} and (iii) k ∈ N− {{KY1(µ, λ)} ∪ {KY2(µ, λ)}}.

Assume (i) holds, then k /∈ {KG1 (µ, λ)} ∪ {KG2 (µ, λ)} which gives k /∈
KG1 (µ, λ) and k /∈ KG2 (µ, λ) . This implies that

G(4mak − L1,
λ
2
) > 1− ε and G(4mak − L2,

λ
2
) > 1− ε
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Now,

G(L1−L2, λ) ≥ G(4mak−L1,
λ

2
)◦G(4mak−L2,

λ

2
) > (1−ε)◦(1−ε) > 1−µ. (3.1)

Since µ is arbitrary and (3.1) holds for every λ > 0, it follows that G (L1 − L2, λ) =
1 and therefore L1 = L2.

We now assume (ii) holds, then k /∈ KB1 (ε, λ) and k /∈ KB2 (µ, λ) and therefore
we have
B(4mak − L1,

λ
2
) < ε and B(4mak − L2,

λ
2
) < ε.

Now,

B(L1 − L2, λ) ≤ B(4mak − L1,
λ

2
) • B(4mak − L2,

λ

2
) < ε • ε < µ. (3.2)

As µ is arbitrary and (3.2) holds for every λ > 0, we must have B (L1 − L2, λ) = 0,
which gives immediately L1 = L2.

Finally, if we assume (iii) holds then as in case (ii) one have L1 = L2. This
completes the proof of the Theorem.

Theorem 3.2. Let I ⊆ P (N) is an admissible ideal, V be a NNS and (ak), be
any sequences in V such that N−limk (4mak) = L , then 4m(IN )−limk ak = L .
Proof. Assume N − limk (4mak) = L . Then for each ε > 0 and λ > 0 there
exists a positive integer m0 such that G(4mak−L, λ) > 1−ε, B(4mak−L, λ) <
ε and Y(4mak − L, λ) < ε for all k ≥ m0. It follows that the set {k ∈ N :
G(4mak−L, λ) ≤ 1− ε or B(4mak−L, λ) ≥ ε , Y(4mak−L, λ) ≥ ε };
is a finite set and therefore belongs to I. Hence 4m(IN )− limk ak = L .

In next Theorem, we give linear property of I−convergence in a NNS.

Theorem 3.3. Let I ⊆ P (N) is an admissible ideal, V be a NNS and (ak), (bk) be
two sequences in V such that 4m(IN )−limk ak = L1 and 4m(IN )−limk bk = L2 ,
then

(i) 4m(IN )− limk(ak + bk) = L1 + L2

(ii) 4m(IN )− limk(β ak) = β L1 for β 6= 0
Proof. The proof of the Theorem follows parallel lines of Theorem 3.1 so we
skipped here.

4. I∗− convergence
Kirişci and Şimşek [13] proved that “Let V be a NNS. SN − limk ak = L if

and only if there exists a increasing index sequence J = {j1, j2, j3 · · · } ⊆ N, while
δ (J) = 1, N − limk ajk = L .” We use this result together via applying the
difference operator 4m to define a new type of convergence called 4m(I∗) −
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convergence in NNS.

Definition 4.1. Let I ⊆ P (N) is an admissible ideal and V be a NNS. A
sequence (ak) in V is said to 4m(I∗N )−convergent to L if and only if there exist
a set J = {j1, j2, j3 · · · } ∈ F(I) such that N − limn 4majn = L . In this case we
write 4m(I∗N )− limk ak = L .

Next Theorem gives relationship between 4m(I)−convergence and 4m(I∗)−
convergence in NNS.

Theorem 4.1. Let I ⊆ P (N) is an admissible ideal, V be a NNS and (ak) be
any sequences in V such that 4m(I∗N )−limk ak = L , then 4m(IN )−limk ak = L .
Proof. Since 4m(I∗N )− limk ak = L so there exist a set J = {j1, j2, j3 · · · } ∈
F(I) such that N − limn 4majn = L . For each ε > 0 and λ > 0 there exists a
positive integer p0, such that G( 4majn − L, λ) > 1 − ε , B( 4maJn − L, λ) >
ε and Y( 4maJn −L, λ) > ε for every n ≥ p0. If we take a set P = N−J , then
P ∈ I and therefore we have the containment A(ε, λ) = {k ∈ N : G( 4mak −
L, λ) ≤ 1 − ε or B( 4mak − L, λ) ≥ ε and Y( 4mak − L, λ) ≥ ε} ⊆ P ∪
{j1, j2, j3 · · · jp0} . Since P ∈ I and {j1, j2, j3 · · · jp0} is a finite set so their union
must be I which immediately gives A (ε, λ) ∈ I. Hence, 4m(IN )− limk ak = L .

We now describe the Lemma 4 of [20].

Lemma 4.1. Let {Ki}∞i=1be a countable collection of subsets of N such that Ki ∈
F(I) for each i where F(I) is a filter associate with an admissible ideal I satisfying
property (AP). Then there exists a set K ⊆ N such that K ∈ F(I) and the set
K −Kiis finite for each i.

Theorem 4.2. If I ⊆ P (N) is an admissible ideal with property (AP) then the
concepts of 4m(IN )−convergence and 4m(I∗N ) − convergence in neutrosophic
normed spaces coincide.
Proof. To prove the result it is sufficient to show that if I is an admissible ideal
with property (AP) then4m(IN )−convergence implies 4m(I∗N )−convergence in
neutrosophic normed spaces. Let (ak) be any sequences in V such that 4m(IN )−
limk ak = L . By definition, for every ε > 0 and λ > 0 we have A(ε, λ) = {k ∈
N : G(4mak − L, λ) ≤ 1 − ε or B(4mak − L, λ) ≥ ε and Y(4mak − L, λ) ≥
ε} ∈ I For µ ∈ N, we define sets K(µ, λ) and P (µ, λ) by K(µ, λ) = {k ∈ N :
G(4mak − L, λ) > 1 − 1

µ
and B(4mak − L, λ) < 1

µ
or Y(4mak − L, λ) < 1

µ
}

and P (µ, λ) = {k ∈ N : G(4mak − L, λ) ≤ 1 − 1
µ

or B(4mak − L, λ) >
1
µ
, Y(4mak − L, λ) > 1

µ
}. Since 4m(IN )− limk ak = L , so for λ > 0 and µ ∈

N, i.e µ = 1, 2, 3, · · · , P (µ, λ) ∈ I which immediately gives K(µ, λ) ∈ F(I).
Thus K (1, λ) , K (2, λ) , K (3, λ) , · · · is a sequence of sets in F(I). As the ideal
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satisfy the property (AP) so by Lemma 4.1, there exists a set K ⊆ N such that K =
{k1, k2, k3 · · · } ∈ F(I) and the set {K −K(µ, λ)} is finite for µ = 1, 2, 3, · · · .
Now to prove the result it is sufficient to show that N − limj4makj = L . Suppose
that N − limj4makj 6= L . Then there is some ε1 > 0 and a positive integer p
such that for all j ≥ p0 G(4makj − L, λ) ≤ 1 − ε1 or B(4makj − L, λ) ≥
ε1 and Y(4makj −L, λ) ≥ ε1; which immediately implies that the set {kj ∈ N :
G(4makj −L, λ) > 1− ε1 , B(4makj −L, λ) < ε1 or Y(4makj −L, λ) < ε1} is a
finite set and must be in I and therefore we obtain a contradiction as it belongs to
F(I). Hence, N − limj 4makj = L and this completes the proof of the Theorem.

5.4m(IN )−Completeness in NNS

In this section, we introduce the concepts of ∆m(IN )−Cauchy and ∆m(I∗N )−Cauchy
sequences in NNS and define corresponding completeness.

Definition 5.1. Let I ⊆ P (N) is an admissible ideal and V be a NNS. A sequence
(ak) in V is said to4m (IN )− Cauchy if and only if for every ε > 0 and λ > 0 there
exists a positive integer p such that the set {k ∈ N : G(4mak − ap, λ) ≤
1− ε or B(4mak − ap, λ) ≥ ε and Y(4mak − ap, λ) ≥ ε} is in I.

We next give the generalized Cauchy convergence criteria in neutrosophic normed
spaces.

Theorem 5.1. Let I ⊆ P (N) is an admissible ideal, V be a NNS and (ak) be any
sequences in V such that 4m (IN )− limk ak = L , then (ak) is 4m (IN )−Cauchy.
Proof. Assume that 4m (IN ) − limk ak = L . For every ε > 0 and λ > 0, choose
µ > 0 such that (1− ε) ◦ (1− ε) > 1− µ and ε • ε < µ. Then, A(ε, λ) = {k ∈ N :
G(4mak−L, λ

2
) ≤ 1−ε or B(4mak−L, λ

2
) ≥ ε and Y(4mak−L, λ

2
) ≥ ε} ∈ I

and AC(ε, λ) = {k ∈ N : G(4mak − L, λ
2
) > 1 − ε , B(4mak − L, λ

2
) <

ε or Y(4mak − L, λ
2
) < ε} ∈ F(I) and therefore, is a non-empty set. Let

p ∈ AC (ε, λ) , then we have G(4map − L, λ
2
) > 1 − ε , B(4map − L, λ

2
) <

ε or Y(4map − L, λ
2
) < ε Let, B(µ, λ) = {k ∈ N : G(4mak − ap, λ) ≤

1 − µ or B(4mak − ap, λ) ≥ µ and Y(4mak − ap, λ) ≥ µ} is in I. We
shall show that B (µ, λ) ⊆ A (µ, λ) . For this, let k0 ∈ B (µ, λ) − A (µ, λ) ,
then we have G(4mak0 − ap), λ) ≤ 1 − µ and G(4mak0 − L, λ2 ) > 1 − µ. In
particular G(4mak0 − L,

λ
2
) > 1 − ε. Now, 1 − µ ≥ G(4mak0 − ap), λ) ≥

G(4mak0 − L, λ
2
) ◦ G(4map − L, λ

2
) > (1 − ε) ◦ (1 − ε) > 1 − µ which is not

possible. If B
(
4m(ak0 − ap), λ

)
≥ µ and B

(
4mak0 − L, λ

2

)
< µ. In particu-

lar B
(
4mak0 − L, λ

2

)
< ε. Now, µ ≤ B(4m(ak0 − ap), λ) ≤ B(4mak0 − L, λ

2
) •

B(4mam − L, λ
2
) < ε • ε < µ which is not possible. Finally, if Y(4m(ak0 −

ap), λ) ≥ µ and Y(ak0 − L, λ
2
) < µ. In particular Y

(
4mak0 − L,

λ
2

)
< ε. Now,

µ ≤ Y(4m(ak0 − ap), λ) ≤ Y(4mak0 − L, λ
2
) • Y(4map − L, λ

2
) < ε • ε < µ
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which is not possible. Thus, in every case, B (µ, λ) ⊆ A (µ, λ). Since A (µ, λ) ∈I
therefore B (µ, λ) ∈ I as B (µ, λ) ⊆ A (µ, λ). Hence, (ak) is 4m(IN )−Cauchy
sequence.

Definition 5.2. Let I ⊆ P (N) is an admissible ideal and V be a NNS. V is said
to be ideal complete or 4m(IN )−complete if every 4m(IN )−Cauchy sequence in
V is 4m(IN )−convergent.

Theorem 5.2. Let I ⊆ P (N) is an admissible ideal, the NNS V is 4m(IN )−
complete.
Proof. Let (ak) be any 4m(IN )−Cauchy sequence in V . To prove the result,
we have to prove that (ak) is 4m(IN )−convergent in V . Suppose that (ak) is
not 4m(IN )−convergent in V . Let ε > 0 and λ > 0. Choose µ > 0 such
that (1− ε) ◦ (1− ε) > 1 − µ and ε • ε < µ. Since, (ak) is 4m(IN )−Cauchy
so there exists a positive integer p such that A(ε, λ) = {k ∈ N : G(4mak −
ap), λ) ≤ 1 − ε or B(4mak − ap), λ) ≥ ε andY(4mak − ap), λ) ≥ ε} ∈ I,
and ∅ 6= AC(ε, λ) = {k ∈ N : G(4mak − ap), λ) > 1 − ε , B(4mak − ap), λ) <
ε or Y(4mak − ap), λ) < ε} ∈ F(I). Let, B (ε, λ) be define by B(ε, λ) = {k ∈
N : G(4mak −L, λ) ≤ 1− ε or B(4mak −L, λ) ≥ ε and Y(4mak −L, λ) ≥ ε}.
Since, (ak) is not 4m(IN )−convergent in V so B (ε, λ) /∈ I and therefore in F(I),
which immediately implies that BC(ε, λ) = {k ∈ N : G(4mak − L, λ) >
1 − ε, B(4mak − L, λ) < ε or Y(4mak − L, λ) < ε} ∈ I. Now we shall
show that AC (ε, λ) ⊆ BC (ε, λ). Let k0 ∈ AC (ε, λ), then G(4m(ak0 − ap), λ) >
1−ε , B(4mak0−ap, λ) < ε or Y(4mak0−ap, λ) < ε. Now, as in Theorem 5.1,
we have G(4mak0−ap), λ) ≥ G(4mak0−L, λ

2
)◦G(4map−L, λ

2
) > (1−ε)◦(1−ε) >

1− µ; B(4m(ak − ap), λ) ≤ B(4mak −L, λ
2
) • B(4map−L, λ

2
) < ε • ε < µ and

Y(4m(ak − ap), λ) ≤ Y(4mak − L, λ
2
) • Y(4map − L, λ

2
) < ε • ε < µ. This

shows that k0 ∈ BC (µ , λ) and therefore we have AC (ε, λ) ⊆ BC (ε, λ). Since
BC (ε, λ) ∈ I so AC (ε, λ) ∈ I, which is a contradiction as AC (ε, λ) ∈ F(I) .
Hence, (ak) is 4m(IN )−convergent in V and therefore V is 4m(IN )−complete.

From, the above discussion we have the following Theorem.

Theorem 5.3. Let I ⊆ P (N) is an admissible ideal, and V be a NNS. For any
sequence (ak) in V, the following conditions are equivalents.

(i) (ak) is 4m(IN )−convergent in V ;

(ii) (ak) 4m(IN )−Cauchy in V and

(iii) V is 4m(IN )−complete.

Definition 5.3. Let I ⊆ P (N) is an admissible ideal and V be a NNS. A
sequence (ak) in V is said to 4m(I∗N )−Cauchy if and only if there exist a set
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J = {j1, j2, j3 · · · } ∈ F(I) such that the subsequence ( 4majn) is N−Cauchy.

Definition 5.4. Let I ⊆ P (N) is an admissible ideal and V be a NNS. V is said
to be 4m(I∗N )−complete if every 4m(I∗N )−Cauchy sequence in V is 4m(I∗N )−
convergent.

Theorem 5.4. Let I ⊆ P (N) is an admissible ideal, V be a NNS and (ak) be
any sequences in V such that 4m(I∗N )−Cauchy, then it is 4m(IN )−Cauchy.

Theorem 5.5. If I ⊆ P (N) is an admissible ideal with property (AP) then the con-
cepts of 4m( IN )−Cauchy and 4m(I∗N )−Cauchy in neutrosophic normed spaces
coincide.

Theorem 5.6. Let I ⊆ P (N) is an admissible ideal and NNS. For any sequence
(ak) in V, the following conditions are equivalents.

(i) (ak) is 4m(I∗N )−convergent in V ;
(ii) (ak) 4m(I∗N )−Cauchy in V and
(iii) V is 4m(I∗N )−complete.

References

[1] Atanassov K. K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986),
87-96.

[2] Bera T. and Mahapatra N. K., Neutrosophic soft linear spaces, Fuzzy Infor-
mation and Engineering, 9(2017), 299-324.

[3] Bera T. and Mahapatra N. K., Neutrosophic soft normed linear spaces, Neu-
trosophic Sets and Systems, 23(2018), 52-71.

[4] Connor J. S., The statistical and strong p−Cesaro convergence of sequences,
Analysis, 8(1988), 47-63.

[5] Demirci K., I−limit superior and inferior, Math. Commun., 6(2001), 165-
172.

[6] Dems K., On I−Cauchy sequences, Real Analysis Exchange, 30(2004), 123-
128.

[7] Fast H., Surla convergence statistique, Coll. Math., 2(1951), 241-24.

[8] Fridy J. A., On statistical convergence, Analysis, 5(1985), 301-313.



Some Remarks on Generalized Summability ... 163

[9] Hazarika B., Kumar V. and Lafuerza-Guillén B., Generalized ideal conver-
gence in Intuitionistic fuzzy normed linear spaces, Filomat, 27, 811-820.

[10] Karakus S., Demirci K. and Duman O., Statistical convergence on Intuition-
istic fuzzy normed spaces, Chaos Solitons Fractals, 35(2008), 763-769.

[11] Khan V. A., Khan M. D. and Ahmad M., Some New Type of Lacunary Statis-
tically Convergent Sequences in Neutrosophic Normed Space, Neutrosophic
Sets and Systems, Vol. 42, 2021.

[12] Kirisci M., and Simsek N., Neutrosophic metric spaces, arXiv:1907.00798.

[13] Kirisci M., and Simsek N., Neutrosophic normed spaces and statistical conver-
gence, The Journal of Analysis, https://doi.org/10.1007/s41478-020-00234-0

[14] Komisarski A., Point wise I-convergence and I∗-convergence in measure of
sequences of functions, J. Math. Anal. Appl., 340(2008), 770-779.

[15] Kostyrko P., Salat T., Wilczynski W., I−convergence, Real Anal. Exchange,
26(2000/2001), 669-686.

[16] Kostyrko P., Macaj M., Salat T. and, Sleziak M., I-convergence and extremal
I-limit points, Math. Slovaca, 4(2005), 443-464.

[17] Kumar V., On I and I∗-convergence of double sequences, Math. Commun,
12(2007), 171-181.

[18] Kumar V. and Lafuerza-Guillén B., On ideal convergence of double sequences
in probabilistic normed spaces Acta Mathematica Sinica, 29(2012), 1689-
1700.

[19] Mursaleen M., Mohiuddine S. A. and Edely O. H. H., On ideal convergence
of double sequences in Intuitionistic fuzzy normed spaces, Comput. Math.
Appl., 59(2010), 603-611.

[20] Nabiev A., Pehlivan S. and Gurdal M., On I−Cauchy sequences, Taiwanese
Journal of Mathematics, 2(2007), 569-576.

[21] Park J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals,
22(2004), 1039-46.

[22] Salat T., On statistically convergent sequences of real numbers, Math. Slo-
vaca, 30(1980), 139-150.



164 J. of Ramanujan Society of Mathematics and Mathematical Sciences

[23] Saadati R., Park J. H., On the Intuitionistic fuzzy topological spaces, Chaos,
Solitons & Fractals, 27(2006), 331-44.

[24] Schoenberg I. J., The inerrability of certain functions and related summability
methods, Amer. Math. Monthly, 66(1959), 361-375.

[25] Schweizer B., Sklar A., Statistical metric spaces, Pacific J Math, 10(1960),
314-44.

[26] Smarandache F., Neutrosophic set, a generalisation of the Intuitionistic fuzzy
sets, International Journal of Pure and Applied Mathematics, 24(2005), 287-
297.

[27] Zadeh L. A., Fuzzy sets, Inform Control, 8(1965), 338-53.


