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Abstract: In this paper, we assume that L =< L, <, A,\/, > is a complete dis-
tributive lattice set with at least 2 elements and (L, +) is also an additive group.
We introduce an LT-norm T and an LC-conorm C on the lattice set L (briefly
L(T,C)-norm). Furthermore using this norm, we define spiral LT-norm and spiral
LC-conorm of any countable sequence in L. Also we introduce I L(T, C')-gradations
of openness on X which X is an L-fuzzy subset of a nonempty set M and we prove
that the set of all IL(T, C')-gradations of openness on X is a semicomplete lattice.
We introduce intuitionistic L-fuzzy topological space with L-gradation of openness
and nonopenness with respect to the L(T', C')-norm ( briefly I LG (T, C')-fuzzy topo-
logical space). As an example we define an I L(T, C)-fuzzy subspace of AR™, the
exterior algebra on R™.
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1. Introduction and Preliminaries

Fuzzy topology was defined by Chang [10] as a generalization of the concept of
fuzzy sets introduced by Zadeh [43]. In consequence of the development of fuzzy
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topology, various concepts of fuzzy topology were defined, such as [11, 12, 15, 19,
22, 23, 24, 25, 38, 39, 40, 41, 42]. In 1985, Shostak [38] introduced a concept of
gradation of openness of fuzzy subsets of X. Also many authers discussed graded
fuzzy topological spaces. See [11, 12, 15, 25]. Many of them suggested that the
properties should be considered fuzzy that is, one should be able to measure a
degree to which a property holds. See [23, 24, 42, 39, 40].

In 1983 Atanassov [4], introduced intuitionistic fuzzy sets to overcome the dif-
ficulties in dealing with uncertainties. Later, with Stefka Stoeva, he [5], further
generalized that concept to an intuitionistic L-fuzzy set , where L stands for some
lattice coupled with a special negation. Subsequently, many mathematicians gen-
eralized this concept. For example [3, 7, 8, 13, 16, 17]. See the book [6] as a
comprehensive, complete coverage of virtually all results obtained up to 2012, in
the area of the theory and applications of intuitionistic fuzzy sets.

In 1960 Schweizer and Sklar [37] introduced a class of semi-groups on [0, 1].
Rosenfeld [36] defined fuzzy subgroupoids and fuzzy subgroups. Anthony and Sher-
wood [2] redefined a fuzzy subgroup of a group using the concept of triangular norm
(t-norm, for short). In mathematics, a t-norm (also T-norm or, unabbreviated, tri-
angular norm) is a sort of binary operation used in the frame of probabilistic metric
spaces and in fuzzy logic. Osman, [1], defined some products of fuzzy subgroups.
Recently Rassuli [30, 31, 34, 35| defined fuzzy modules, fuzzy subrings and fuzzy
subgroups, fuzzy sub-vector spaces and sub-bivector spaces under t-norms.

We investigated in [26], some properties of a novel fuzzy topological space (X, 7),
where X is itself a fuzzy subset of a crisp set M. We assumed that L =< L, <
.\, V' > is a complete distributive lattice set with at least 2 elements. An L-fuzzy
subset D of the crisp set M, in Goguen’s sense [14], is a function D : M — L
and is denoted by D € L. In order to discuss the L-fuzzification of the concepts
of geometry, we introduced in [27], the concept of C*° L-fuzzy manifold with L-
gradation of openness. Also we defined and investigated LG-paracompactness of
LG-fuzzy topological metric spaces in [28] and Z,-graded intuitionistic L-fuzzy ¢-
deformed quantum subspaces of A, in [29].

The purpose of this paper is to deal with the geometric structure of intuitionistic L-
fuzzy topological space with L-gradation of openness and nonopenness with respect
to LT-norm T and LC-conorm C (ILG(T,C)-fuzzy topological space). Using t-
norm defined in [9], we introduce an LT-norm 7" and LC-conorm C on the lattice
set L. We define IL(T,C)-gradation of openness on the fuzzy set X and give
some related properties and results. Also we establish the spiral LT-norm and
spiral LC-conorm of any sequence in L and then we prove that the set of all
IL(T, C)-gradations of openness on X is a semicomplete lattice. Our notation and
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terminology for intuitionistic fuzzy sets follows that of [4, 5]. For definitions of
T-norms and C-conorms we follow Rassuli [34].

2. Spiral LT-norm and Spiral LC-conorm of a Sequence in L
In this manuscript, we assume that L =< L, <, A\,\/,’ > is a complete distribu-
tive lattice set with at least 2 elements and (L, +) is also an additive group.

Definition 2.1. An LT-norm T is a function T : L x L. — L having the following
four properties:

(LT1) T(x,1) = x (neutral element),

(LT2) y) < T(x,z) if y < z (monotonicity),
)

T(x,
(LT3) T(x,y) =T(y,x) (commutativity),
(LT4) T(x,T(y,z)) =T(T(x,y),z) (associativity),

for all x,y,z € L.
We say that T is idempotent if for all z € L, T(x,x) = x.

Example 2.2. (1) Standard intersection LT-norm T, (z,y) = min{z, y}
(2) Bounded sum LT-norm Ty(z,y) = maxz{0,x +y — 1}
(3) algebraic product LT-norm T,(x,y) = zy
(4) Drastic LT-norm
y if x=1
Ip(z,y)=q = uf y=1
0 otherwise.

(5) Nilpotent minimum L7-norm

| min{x,y} if x+y>1
TnM<x7y) - { 0 otherwise.

(6) Hamacher product LT-norm

0 if x=y=0
T(w,y) =4 Y otherwise.
r+y—xy

The drastic LT-norm is the pointwise smallest LT-norm and the minimum is the
pointwise largest LT-norm: Tp(x,y) < T(x,y) < Thin(x,y) for all z,y € L.

Definition 2.3. An LC-conorm C' is a function C : L x L — L having the
following four properties:
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(LC1) C(z,0) = x (neutral element),

(LC3) y) = Cly,
(LC4) C(x,C(y,2)) = C(C(x,y), 2) (associativity),

(commutativity),

(

(LC2) C(z,y) < C(z,2) if y < z (monotonicity),
Clz, z)
(

forall x,y,z € L.
We say that the LC-conorm C'is idempotent if for all x € L, C(z,x) = x.

Example 2.4. (1) Standard union LC-conorm Ci,a.(x,y) = maz{z,y}
(2) Bounded sum LC-conorm Cy(x,y) = max{l,z + y}

(3) Algebraic product LC-conorm Cy(z,y) = +y — xy

(4) Drastic LC-conorm

y of v=1
Cp(r,y)=4q = if y=1

1 otherwise.
(5) Nilpotent maximum LC-conorm

| max{z,y} if v+y<l1
Crnr(2,y) = { 1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity)

Tty

CH2(x7y) = 1 —i—a:y

Note that for all LC-conorm C, we have Cia.(x,y) < C(z,y) < Cp(z,y) for all
x,y € L.

Lemma 2.5. Consider an L(T,C)-norm. Then for all x,y,z,w € L we have

T(x,y) <z Ay, (2.1)
C(x,y) >z Vy, (2.2)
T(T(z,y), T(z,w)) =T(T(x,2),T(y,w)), (2.3)

C(Clz,y), C(z,w)) = C(C(x,2),Cly,w)), (24)
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Proof. Using (LT1) and (LT2) we have T'(z,y) < T(x,1) = x. Also using (LT3)
we have T'(z,y) = T(y,x) < T(y,1) =y. Thus T'(z,y) <z A
Similarly using (LC1) and (LC2) we have C(z,y) > C(z, O) =z and using (LC3)
we have C(x,y) = C(y,z) > C(y,0) = y. Therefore C(z,y) >z V y.
To prove (2.3) with frequent use of (LT'4) and using (LT3), we see

T(T(x,y),T(z,w)) = T(T( )

The proof of (2.4) is similar.

Definition 2.6. Let T' be an LT-norm and {x;|i € N} be a countable subset of L.
Define

To({wi}) = w1, Tg({zi}) = T(w1,22)
To({wi}) = T(T(x1,22),23),  Tg({wi}) = T(T(T (w1, 22), 73), 24)
Té‘%({xz}) =T(...T(T(x1,22),23),...,2k)
Then we define
T3 ({ai}) = lim T({x:}) (25)
called spiral LT-norm of {x;}.

Lemma 2.7. Let T be an LT-norm. Then the definition of spiral L'T-norm of a
countable subset {x;|i € N} of L, is well defined. Also we have

T ({w:i}) < a, Vi € N (2.6)
Proof. Using (LT'1) and (LT2), we have
Ts({zi}) < T(x1,1) = 21 = Tg({x:})

T3 ({x:}) = T(T(w1, 22), 23) < T(T(21,22), 1) = T(a1,22) = T3 ({2:})

By contradiction on k, we can prove that {7 ({x;})} is a decreasing sequence in L.
Since we assumed that the lattis L is complete so limy o T ({x;}) exists. Because
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of (LT4), the associativity of T, this definition is independent of the ordering of the
elements of this subset. Hence definition of spiral LT-norm of {x;} is well defined.

Definition 2.8. Let C' be an LT-conorm and {z;|i € N} be a countable subset of
L. Define
Col{zi}) =21, Cg({zi}) = Clan, 22)
Co{zi}) = C(T (w1, 22),23),  Tg({i}) = T(T(T (w1, x2), 23), 4)
CE({xi}) =C(...C(C(x1,22),23), ..., k)

Then we define

€3 () = Jim Ch({m) (2.7
called spiral LC-conorm of {x;}.

Lemma 2.9. Let C be an LC-conorm. Then the definition of spiral LC-conorm
of any countable subset of L, is well defined. Also we have

Proof. We can prove this lemma similarly to the proof of Lemma 2.7.

3. Intuitionistic L-fuzzy Subgroups with Respect to the L(7,C)-norm

Definition 3.1. Let M be a nonempty set. An intuitionistic L-fuzzy subset B of
M is defined as an object having the form B = {{(z,u,(z),v,(z)) | * € M} or
B = (u,,v,), where the functions u, : M — L and v, : M — L denote the degree
of membership and the degree of non-membership of each element x € M to the
set B, respectively s.t. 0 < u,(z) +v,(x) <1 for each v € M. We denote all
intuitionistic L-fuzzy subsets of M by ILM.

We assume that £k = R, C or any field with characteristic> 2.

Definition 3.2. Let V' be a k-vector space. An intuitionistic L-fuzzy subset B =
(g, vy) of Vis called an intuitionistic L-fuzzy subspace with respect to the L(T,C)-
norm if

frp (YT 4+ Ny) > T (1 (), 11,(y), ve(ve + dy) < Clvy(a),v,(y))

for any x,y € V and v,\ € k. Then we can write briefly B = (pu,,v,) is an
IL(T, C)-fuzzy subspace of V or B = (u,,v,) € ILFTC(V).
Definition 3.3. Let A = (u,,v,) and B = (u,,v,) be intuitionistic L-fuzzy
subsets of a nonempty set M. We define intuitionistic L-fuzzy subsets ANB, AUB
by

IuAﬁB(I) = T(MA(x)nuB(x))’ VAmB(x) = C(VA('I)’ VB('I))
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II“’LAUB(x) = O(/’LA(’I)7/’LB<CC>)’ VAUB(x> - T(VA(x)v VB(’I))'

The intuitionistic L-fuzzy subsets A+ B and v.A of V' for each v € k, v € X, are
defined by

fap () = { Sup,—op AT (1a(@) s (0))} if x=atb

0 elsewhere
v (2) = inf,—op {C(v,(a),v, (b))} if v =a+b,
A+B 0 elsewhere
and
pa(za)  ifv#0
(@) =11 ify=0, 2=0
0 ifvy=0, 2#0
v,(32)  if 7 #0
VW.A(QT): 0 if’}/ZO, x =0
1 if v=0, z#0.

Further if ANB = 0, then A+ B is said to be the direct sum and denoted by A® B.

Lemma 3.4. Let A = (u,,v,) and B = (p,,v,) be IL(T,C)-fuzzy subspaces of
V. Then A4+ B = (j,, 5 Varp)s ANB = (lyp:Vany) and v. A = (:“wwVv.A) for
each v € k, are also IL(T,C)-fuzzy subspaces of V.

Definition 3.5. Let B = (u,,v,) be an IL(T,C)-fuzzy subspace of a group G.
Then B = (uy,v,) is called an intuitionistic L-fuzzy subgroup of G, with respect to

the L(T, C')-norm, (briefly IL(T, C)-fuzzy subgroup of G ) if it satisfies two following
conditions:

) a(ay) = T, (2),1y(2), valay) < C(v, (), vy(2))
i) (@) > (@), vy(al) < vy (o).

for any x,y € G.

Example 3.6. The set of natural numbers, N, partially ordered by divisibility,
is a distributive lattice set, for which the unique supremum is the least common
multiple and the unique infimum is the greatest common divisor. Let L = NU{oo}.
Then L is a complete lattice.

Let G = {1,—1,i,—i} be a group with respect to multiplication. Define L-fuzzy
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subsets
Uy, Vy G — L as

5if x=1 7Taf x=1
pgp(z) =19 4 if v =-1 vy(x)=4¢ 8 if x=-1
3 if x=+i 90 if x=+i

If T(z,y) =Tmin(z,y) and C(z,y) = Cpe(z,y) for all z,y € G, then
B = (u,,v,) is an I L(T, C)-fuzzy subgroup of G.

Definition 3.7. Let f be a mapping from a nonempty set M to a nonempty set M.
Let A= (u,,v,) and B = (u,,v,) be intuitionistic L-fuzzy subsets of M and M’
respectively. Then the inverse image of B = (p,,v,) under f, is an intuitionistic
L-fuzzy subset f~1[B] = (u defined by

1By’ follB])
,ufq[B] (ZL‘) = Up (f(l‘)), fol[B] (ZE) = VB(f(x))

for all x € V and the image of A = (u,,v,) under f is an intuitionistic L-fuzzy
subset f[A] = (V1) defined by

) = { P e € Sy S A

0 if y& f(V)
_ | inf {v, (@) z € f(y)} if ye f(V)
%“w{o T e,
for ally € V'.

Proposition 3.8. Let f be a linear mapping from the k-vector space V' to the k-
vector space V'. If A= (u,,v,) and B = (u,,v,) are IL(T,C)-fuzzy subspaces of
V' and V' respectively. Then f~[B] = (T fol[B]) and  flA] = (1,105 Vya)
are IL(T, C)-fuzzy of V and V' respectively.

Proof. For each x,2 € V and 7,0 € k, we have

T,y (), 10, (2)) = T (1 (f (), 105 (f(2)))
< g (7f (@) +6£(2)),
= g (f(yz +02)),
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Similarly we can prove

C’(l/

-1(8] (z),v (Z)) > - (yx + 02).

P B

Hence f~'[B] = (ufﬁl[B], fol[B]) is an I L(T, C)-fuzzy subspaces of V.
To prove that f[A] = (11,1, V) is an IL(T, C)-fuzzy subspaces of V', we show
that for each y,w € V' and ~,0 € k, we have

T (1t (0): 1y (w)) < pryp (7Y + Ow).
1) It y,w € f(V), then we have
T (500 (W) 1,0 (W) = T (sup {p,(x)] € [ (y)}, sup {p,(2)] z € [ (w)})
= sup {T'(p,(2), 11, (2))| @ € fH(y), 2 € [ (w)}
< sup {u, (ye +02)[ z € f(y), 2 € [ (w)}
<sup {p, ()t € fH(yy +ow)}
=ty (Y + Ow).
2) Tty € f(V) and w ¢ f(V), we have
T (150 (W) 1,0 (w)) = T (sup {p,(x)] 2 € )}, 0) =0 < gy (yy + 6w).
3) Tfy,w ¢ f(V), we have
T (g (W) 5 (W) = T(0, 0) =0 < gy, (vy + ow).
Similarly we can show that

C('uf[AJ <y)7uf[A] (w>) > Viia (’yy + 5w).

Proposition 3.9. Let f: V — V' be a linear mapping from the k-vector spaces.
Then for any IL(T,C)-fuzzy subspaces A = (u,,v,) and D = (u,,v,) of V and
all X € k, we have

1) flA+ D] = flAl + fD],
2) fIMA] = Af[A]
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Proof. 1) Let w € V'. We want to show that a = b where a = pisa1p)(w) and
b= pisia1+ o) (w). Suppose first that w ¢ I'mf. Then a = 0. Also if x,y € V' with
r+y = w, then at least one of the x,y is not in Im f and thus jupa(x) A gy (y) =
0. So using (2.1) we have

T(ppra(), oy (y)) = 0. Hence b =0 = a.
Assume next that w € I'mf. Given € > 0, there exists z € V with f(z) = w
such that p,,,(z) > a —e. Then there exist z,y € V with 4+ y = 2, such that

T(py(z), pp(y)) > a—e. Since f(z) + f(y) = w, we have

b= supy_ypy {1 (ti51)(w); pisim) (v)) }
> T (ppra(f(2)), goy (f ()

> T(py (@), 1, (y)
>a—¢€

Since € > 0 was arbitrary, we get b > a. On the other hand given £ > 0, there
exists uq, us with u; + us = w such that

b—e < T(ppa(u), prip)(uz))

Taking ¢ < b (if b = 0 then a = 0 and we have nothing to prove), we have that
uy,uz € Imf. Therefore there exist xq, 29 in V with u; = f(x1), ug = f(x3) such
that

b—e< T(NJA (wl)’ Hp (mQ))

Since f(zy + x2) = w, we get a > b — ¢ and hence a > b, because ¢ > 0 was
arbitrary. So a = b. Similarly we can prove that vyai.p) = V45D

2) Let w € V', ¢ = pypay(w) and d = pygpra(w). Ifw ¢ Imf. Then ¢ = d = 0.
Assume that w € Imf. If X #£ 0,

¢ =sup {p,,(2)] f(z) = w}
=sup {p, (52)| f(z) = w}
= sup {n, ()| f(Ay) = w}
= sup {1, (y)| Mf(y) = w}

= pafa)(w) = d.
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Next suppose that A = 0. If w # 0, then ¢ = 0 and d = pg 4 (w) = 0.
If w =0, we have

c=sup {p,,(z)| f(z) =0}
=sup {1] f(z) =0}
=sup {p,(y) y € V}

= poga(0) = d.
In a similar manner, we can show that vy 4] = vxf4) and this completes the proof.

4. Intuitionistic L-fuzzy Topological Space with L-gradation of Openness
and Nonopenness with respect to the L(T,C)-norm

Definition 4.1. Let X be an intuitionistic L-fuzzy subset of M. We denote the
set of all intuitionistic L-fuzzy subsets of M which are less or equal to X (called
I L-fuzzy subsets of X ) by ILY. If 7 as a collection of intuitionistic L-fuzzy subsets
of X, satisfies the following conditions:

1) X, o€,

2) {Ai}ielgT = UAZ‘ET,
i€l

3) AABer = ANBer,

then (X, 7) is called an intuitionistic L-fuzzy topological space (ILfts).

Example 4.2. Let M = R” and X = 1 be a constant intuitionistic L-fuzzy subset
of M. Let B(a,7,0,¢) = (Hp b0 Vaarse) P an intuitionistic L-fuzzy subset of
M that p, ., and v, - are equal to 0 and 1 outside or on the sphere B(a,r)
and equal to the functions b and ¢ on M with values in L, respectively, where
0 < b+ ¢ < 1. We call the intuitionistic L-fuzzy topology induced by

Birn = {B(a,r,b,¢),a € R",r € RT b, c: B(a,r) — L,are functions s.t. 0 < b+c <1}

the intuitionistic L-fuzzy Euclidean topology of dimension n and denote it by T,

Therefore we have the I L-fuzzy Euclidean topological space (1gn, 7,,. ).

Ln*
Definition 4.3. Let T, T*: ILY¥ — L, be two mappings satisfying:

(i VA= (u,,v,) € ILY , 0 <T(A)+T¥(A) <1

(i ,T(X)=F(0)=1, T(X)=30)=0
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(ZZZ VA = (MA7VA)7 B = (MA’VA) € ]L%
TANB) 2 T(S(A),3(B)),  T(ANB) < C(T(4) v T(B),

(v ,\V{4; = (/"LAj’VAj)? jEJ}C IL%

(Z(UjeJ Aj) > /\MGJT(T(Ai),‘Z(Aj)), S*(UjeJ Aj) < Vi,jejc((’z*(Ai) \
TH(4)))

Then (%, T*) is called an intuitionistic L-gradation of openness and nonopenness
with respect to the L(T,C)-norm, (briefly IL(T,C)-gradation of openness) and
(X, T, ) is called an ILG(T,C)-fuzzy topological space (ILG(T,C)-fts).

Example 4.4. Let M = R" and X = 1 be a constant intuitionistic L-fuzzy subset
of M. As two useful examples, we define T;r,, %5, : IL¥ — L, by

1 Ber,,, N _J 0 Ber,,,
Trn(B) = { 0 elsewhere. Trin(B) = { 1 elsewhere. (4.1)
and FTping, Tpinp L¥ — L, by

1 B =0,

Trinf(B) = inf{B(z) :x € M} 0#BerT,, (4.2)
0 elsewhere,
0 B =0,

Ting(B) = sup{B(z):z € M} 0#BerT,., (4.3.)
1 elsewhere,

Obviously both are intuitionistic L-gradation of openness and nonopenness w.r.t.
the L(Tnin, Cinaz)-norm. In general if (T, T*) is any [L(T, C')-gradation of open-
ness on lgn, such that supp® = 7,, , then we call (1gn, T;p,,) the ILG(T, C)-fuzzy
Fuclidean topological space.

Proposition 4.5. Let (X,%, ) be an ILG(T,C)-fuzzy topological space. For
any r,s € [0,1], such that 0 < r+s <1 we define T,, ={A e LY : T(A) >
r, T(A) < s}. Then (X,%,;) is a fuzzy topological space.

Proof. Since Dom¥ = LY then for all A € suppT, we have A is less than or equal
to X. Hence suppA C suppX. Also we have

) TO) =F(X)=1>7T0)=T(X)=0<s = ¢ XcT,..
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ii) For any A, B € T, ,, using the condition (7ii) of Definition 4.3 and (LT2) we
have

T(ANB) >T(T(A),Z(B)) > T(r, ) r,
T(ANB) < C(T(A) VT (B)) <Cs,s) =s.
Thus AN B € %,,.

iii) For all family {A; = (uAj,l/Aj), je€J} CILY, we have

T(JA) = A\ T(T(A),3T(4)) = A\ Tlrr) =

jeJ ijed ijed
T(J4a4) <V o@T@) vI(4)) <\ Cs ) =s.
jeJ i,j€J i,jeJ
Hence |J A; € T, ;.

jeJ
Therefore (X, %, ) is a fuzzy topological space.

Definition 4.6. Let L be a lattice set. If any countable subset {z; | i € J C N} of
L, has an infimum in L, then L s called a semicomplete lattice.

Proposition 4.7. We assume that X is an intuitionistic L-fuzzy subset of M and
T,C are respectively LT-norm and LC-conorm on L . Let Mz z-(X) be the set
of all IL(T,C)-gradations of openness on X. We write (1,%7) < (T2, T5) if we
have T1(A) < To(A), Tj(A) > T5(A), for all A€ LY. Then (Msx(X), <) is
a semicomplete lattice.

Proof. It is clear that < between functions from I'LY to L, is an equivalence

relation. Hence (M<(X),T* <) is a partially ordered set. We define
TO(A) =0, , SS(‘A) =1, VA € L% - {67X}7
T(A) =1, T{(A) =0, VAc LY.

Then (%o, T5) and (T, %7) are two IL(T,C)-gradation of openness on X. Since
we have

To(A) < T(A) < T (A), THA) > THA) > THA), VAe LY

then (%o, T)), (%1,%F;) are respectively, 0, 1 in the lattice set Mg <+ (X).
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We show that every countable subset {(%;,T}), j € N} of Mg 5-(X) has an
infimum in it.

Define (%,%*) by T(A) = T ({%i(A)}) and T(A) = CF({F;(A)}). Then we
have

0 <%(A) +3°(A4) = Tg({T(A)}) + Cg({T(A)}) < T(A) +31(4) <1

for all A € ILY. Since for each i € N we have

Ti(X) =%,(0) =1, T(X)=%;(0)=0,
hence
T(T(X),%(X))=T01,1) =1 = T(T(T1(X),T(X)),T5(X)) =T(1,1) =1,

C(TH(X), T(X)) = C(0,0) =0 = C(C(T{(X), T5(X)), T3(X)) = C(0,0) =0,

By contradiction on k, we can show TF({T;(X)}) = 1 and CE({T:(X)}) =0
for each k£ € N. . .
Therefore T(X) =1 and T*(X) = 0. Similarly we can show T(0) = 1 and T*(0) =
0.

Also for each A, B € ILY we have

AN B)) = T(T(S(4N B). TN B). T4 D)

> T(T (T(%(A» S1<B>>,T(EQ<A>,%<B>>) , T(%(A»%(B)))

T(T(T(‘Zl(A),CZQ(A)),T(‘Il(B),‘ZZ(B))>,T(%(A),%(B))) by (3.1)
:T(T(T(‘Zl(A),SQ(A)),%(A)), T(T(Il(B),QQ(B)),‘Ig(B))) by (3.1)

- (13N e, )

By contradiction on k, we can show for each £ € N we have

TS AN ) 2 T( TS AN TS,
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Therefore
T(ANB) =Tg({%i(ANnB)})

= limk%oo TCI;)({SZ(A N B>}>

> i T( TSN TESAB, ) by (3)

> 113 T3 m) )

=T(%(A4),%(B)),

Similarly we can prove that T*(AN B) < C(T*(A) vV T*(B)).
For any arbitrary family {Ag, k € K} C ILY, we have

T A0 = A\ T(T(A), T(A)).

keK kleK

for each j € N. Hence

T35 Urex A0D = (T Uper 401 T2 Ugere A00)- FalUgerc 40) )

2 (1 Avsee T (A TA0). Agsore T(82(40) 52(40) ). Avscr T (Tal A, () )
> /\MGKT<T<T(§1(Ak),zl(A,)), T(Sg(Ak),Ig(Al))>,T(Zg(Ak),'Zg(Al))>

= /\MGKT<T(T(‘21(Ak),12(Ak)), T(SQ(AI),‘IQ(Al))),T(T:a(Ak),Ts(Az)))

= /\kyleKT<T<T(‘Il(Ak),‘IQ(Ak)),‘Zg(Ak)>, T<T(51(Az),52(Az))aTS(Az))>

= Nterx T (Té({fi(Ak)})v T(Zﬁ({Tz‘(Az)})>

By contradiction on k, we can show for each £ € N we have

rss(Jam = A 7T . TS )

kleK
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Therefore
T(U;4) =Tg{%(U; A4)1

= limy_,e0 Té({izz( Uj Aj)})

> i Ay iex T(Tgmmkn), qusi(m)}))
— At iy T(ng({si(Ak)}), ng({w,)}))

_ /\k,leKT(Tgm-(Ak)}), Tg({zmz)}))

= Neser T(T(Ar), T(A)).

Similarly we can prove that

T(Ja) < V o (0.7 (4).

jeJ klEK
Hence (¥, %*) € Mz <+ (X). Therefore this lattis set is semicomplete.
Definition 4.8. Let €, &* : LY — L satisfy following conditions:
i) 0 < C(A) + € (A) <1, for all A e LY.

i) €(X)=¢€0)=1, €(X)=e¢*(0)=0
iti—) For all A, B € LY we have

C(AUB) > €(A)NE(B)C*(AUB) < ¢*(A) Vv & (B)

w) For all family {A;, j € J} C L¥
C(jes A) = Njes €4;) T (Njes A) < Ve T(A4)).
then the pair (€, €) is called an intuitionistic L-gradation of closeness and non-
closeness with respect to the L(T,C)-norm on X (briefly 1L(T,C)-gradation of
closeness).

Proposition 4.9. Let (T,%*) and (€, &%) be IL(T, C)-gradation of openness and
closeness on X respectively, then
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i) The pair (Te, Te.) defined by Te(A) = €(X — A) and Ti.(A) = €(X — A)
1S an

I L-fuzzy of X defined by
i a(P) = by () = 1a(P)s Vi u(®) =1 = py(p) + p,(p)

ii) The pair (€<, €%.) defined by €<(A) =FT(X—A) and €L (A) =T(X—-A),
is an IL(T, C)-gradation of closeness on X.

iii) We have (€., €§E*) = (€,¢") and (K%,‘I&*) = (T,%%).

Proof. The proof is straightforward.

Example 4.10. Let E = AR™ be an exterior algebra on R™ with anticommutative
generators {&1, ..., &n}. Hence & =0, and A E = =& AE. Theneach £ € F
has the form

§= Z iy, Eis N N &y Qi €R

1<i1 <. <, <m

Let B(ry, ..., Tm, t1, ..., tm) = (g, v,) be an intuitionistic L-fuzzy subset of
E defined by

MB(é.i) =T, VB(&) = ti, TZ‘,ti - L, st. 0O S r; + tj S 1,
for all 1 <47,7 <m. Hence we have

wy (&) = sup {T(...T(T(riy,73,),7i3)s - -y 73 (4.4)

1<i1<...<i<m

VB(f) = inf {C(C(C(t“,tzz),t%),,tzk)} (45)

1<i1 <. < <m

Then B = (u,,v,) is an IL(T, C)-fuzzy subspace of E.
Proof. Let r = max{ry,rs,..., 7} and s = min{sy, so,..., S, }. Then V¢ € F,

0<py() +rp(§) <rt+s<l.

Also for each &, n € E and ~v,«a € k, we have

n= Z /le...jl gjl ARERNA fj” ﬁjlmjl €R

1<j1<..<ji<m
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T(/LB (5)7 Mg (77)) = T(Sup1§i1<...<ik§m {T( . 'T(T(Th’ Tiz)a ri:a)? te 77nik-) }7

SUD <y <. <ji<m {T( T (15, 75) s )s - - ,rjk) })

< SUDj << <ip<m {T( (T (ryyTiy), Tig )y - - - ,rik) },
\/ SUP1<j) <...<ji<m {T( e 'T<T(rj1vrj2)a rj3)7 <. 7rjk)} by (31)

=y (v E+amn),

Similarly we can prove

1]

[7]

8]

C(vs(&),vs(m) = vy(y §+am).
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