THE EULER METHOD IN THE BLOW-UP NUMERICAL SOLUTIONS FOR A REACTION-DIFFUSION PROBLEMS WITH BOUNDARY CONDITIONS

Kambire Diopina Gnowille, H. Nachid ${ }^{\top}$ and ${ }^{\text {N'takpe J. Jacques }}$
Université Nangui Abrogoua, UFR-SFA, Département de Mathématiques et Informatiques, 02 BP 801 Abidjan 02, CÔTED'IVOIRE
${ }^{4}$ International University of Grand-Bassam
Route de Bonoua Grand-Bassam
BP 564 Grand-Bassam, CÔTED'IVOIRE
E-mail : gnowille@gmail.com, halimanachid@yahoo.fr, njjlabellsfauna225@gmail.com

(Received: Mar. 19, 2022 Accepted: Apr. 15, 2022 Published: Jun. 30, 2022)
Abstract: This paper concerns the study of the numerical approximation for the following initial-boundary value problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=\gamma e^{u(a, t)}, \quad x \in(0,1), \quad t \in(0, T), \\
u(0, t)=0, \quad u_{x}(1, t)=0, \quad t \in(0, T), \\
u(x, 0)=u_{0}(x) \geq 0, \quad x \in[0,1],
\end{array}\right.
$$

where $u_{0} \in C^{1}([0,1]), u_{0}(0)=0, u_{0}^{\prime}(1)=0 . a \in(0,1), \gamma$ is a positif parameter. We find some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We study the asymptotic behavior of a semi-discrete numerical approximation. We also prove the convergence of the semidiscrete blow-up time to the theoretical one. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.Also obtaining results on the convergence of the numerical blow-up times to the theoretical limit
when the mesh parameter is small enough.
Keywords and Phrases: Semidiscretization in space, Quasilinear reaction diffusion equation, blow-up, numerical blow-up time, Euler method, Asymptotic behaviour.

2020 Mathematics Subject Classification: 35B40, 35B50, 35K60, 65M06.

1. Introduction and Definitions

Consider the following initial-boundary value problem

$$
\begin{gather*}
u_{t}(x, t)-u_{x x}(x, t)=\gamma e^{u(a, t)}, x \in(0,1), \tag{1.1}\\
u(0, t)=0, \quad u_{x}(1, t)=0, t \in(0, T) \tag{1.2}\\
u(x, 0)=u_{0}(x) \geq 0, x \in[0,1] \tag{1.3}
\end{gather*}
$$

which models the temperature distribution of a large number of physical phenomena from physics, chemistry and biology. The diffusion and the boundary condition have the tendency to decrease the solution. The initial data $u_{0}(x)$ is a continuous and non decreasing function in $[0,1], u_{0}(0)=0, u_{0}^{\prime}(1)=0$. Here $(0, T)$ is the maximal time interval of existence of the solution u. The time T may be finite or infinite. When T is infinite, we say that the solution u exists globally. When T is finite, the solution u develops a singularity in a finite time, namely

$$
\lim _{t \rightarrow T}\|u(x, t)\|_{\infty}=+\infty
$$

where $\|u(x, t)\|_{\infty}=\max _{0 \leq x \leq 1}|u(x, t)|$.
In this case, we say that the solution u blows up in a finite time and the time T is called the blow-up time of the solution u.
Blow-up phenomena for reaction diffusion problems in bounded domains have been studied for the first time in a seminal paper by Kaplan [12].
Solutions of nonlinear reaction diffusion equations which blow up in a finite time have been the subject of investigation of many authors (see [1], [2], [15-16], [19-21] and the references cited therein). In particular, the above problem has been studied and existence and uniqueness of a classical solution has been proved. Under some assumptions, it is also shown that the classical solution blows up in a finite time and its blow-up time has been estimated.
This problem arises in combustion theory where blow-up phenomena play an important role. In this paper we are interesting in the numerical study of the above
problem. The rest of the paper is organized as follows. In the next section, we give some result which will be used later. In the third section, under some assumptions, we show that the solution of the semidiscrete problem blows up in a finite time and estimate its semidiscrete blow-up time. In the fourth section, we show that, under some additional hypotheses, the semidiscrete blow-up time goes to the real one when the mesh size goes to zero. In the fifth section we obtain similar results as in section 3 and 4 using a discrete scheme. Finally, in the last section, we give some numerical results to illustrate our analysis.

2. Semi-discrete Problem and its Properties

In this section, we give some lemmas about the discrete maximum principle for localized parabolic problems and reveal certain properties concerning the semidiscrete solution. After discretizing the spatial coordinate x. Let I be a positive integer, $a=1$ and let $h=1 / I$. Define the grid $x_{i}=i h, 0 \leq i \leq I$ and approximate the solution u of the problem (1.1)-(1.3) by the solution $U_{h}(t)=$ $\left(U_{0}(t), U_{1}(t), \ldots, U_{I}(t)\right)^{T}$ of the following semidiscrete equations

$$
\begin{gather*}
\frac{d U_{i}(t)}{d t}=\delta^{2} U_{i}(t)+\gamma e^{U_{I}(t)}, 1 \leq i \leq I, \quad t \in\left(0, T_{b}^{h}\right), \tag{1.4}\\
U_{0}(t)=0, t \in\left(0, T_{b}^{h}\right), \tag{1.5}\\
U_{i}(0)=\varphi_{i} \geq 0,0 \leq i \leq I, \tag{1.6}
\end{gather*}
$$

where

$$
\begin{gathered}
\varphi_{i+1} \geq \varphi_{i}, \quad 0 \leq i \leq I-1, \\
\delta^{2} U_{i}(t)=\frac{U_{i-1}(t)-2 U_{i}(t)+U_{i+1}(t)}{h^{2}}, \quad 1 \leq i \leq I-1, \\
\delta^{2} U_{I}(t)=\frac{2 U_{I-1}(t)-2 U_{I}(t)}{h^{2}} .
\end{gathered}
$$

Here $\left(0, T_{b}^{h}\right)$ is the maximal time interval on which $\left\|U_{h}(t)\right\|_{\infty}$ is finite where $\left\|U_{h}(t)\right\|_{\infty}$ $=\max _{0 \leq i \leq I}\left|U_{i}(t)\right|$. When T_{b}^{h} is finite, we say that the solution u of (2.1)-(2.3) blows up in a finite time.
In [5], the authors have considered the problem (1.1)-(1.3) in the case where the
boundary conditions are replaced by the Dirichlet boundary conditions and the initial data is symmetric. They have considered a scheme as the one given in (2.1)(2.3). They have shown that the semidiscrete solution blows up in a finite time and its blow-up time goes to the real one when the mesh size tends to zero. Let us notice that when u vanishes, the source $e^{u}=1 \neq 0$. In this case, it is not easy to have the convergence of the semidiscrete blow-up time. In fact, if e^{u} is replaced by u^{p} with $\mathrm{p}_{\dot{\prime}} 1$, one establishes that there exists a constant $A>0$ such that

$$
\begin{equation*}
\frac{d U_{i}(t)}{d t} \geq A U_{i}^{p}(t), 0 \leq i \leq I \tag{1.7}
\end{equation*}
$$

and this estimate is crucial to obtain the convergence of the semidiscrete blow-up time. It is not possible to establish the estimate in (2.4) when the term of the source is γe^{u}. In this case, one introduces an auxiliary function and obtain an estimate of the following form

$$
\frac{d U_{i}(t)}{d t} \geq c_{i}(t) e^{U_{i}(t)}, \quad 0 \leq i \leq I
$$

(see [5] for the details). In this paper, firstly, we show that under some assumptions, the solution of the semidiscrete problem defined in (2.1)-(2.3) blows up in a finite time and estimate its semidiscrete blow-up time. We also show that the semidiscrete blow-up time converges to the real one when the mesh size goes to zero. A similar study has been also undertaken for a full discrete form of (1.1)(1.3). Let us notice that in [5], only the semidiscrete scheme has been analyzed. At the end of the paper, we have shown how one may treat the case Dirichlet boundary condition. One may find in [8] similar studies concerning other parabolic problems. Let us notice that many authors have used numerical methods to study the phenomenon of blow-up but there are only a few studies on the convergence of the numerical blow-up time for solutions which blow up in L^{∞} norm. Four instance in [10], the authors have proved the convergence of numerical blow-up time for solutions which blow up in L^{p} norm with $1<p<\infty$. The following lemma is a discrete form of the maximum principle for localized reaction diffusion problems.
Lemma 2.1. Let $U_{h} \in \mathbb{R}^{I+1}$ such that $U_{h} \geq 0$. Then we have

$$
\delta^{2} e^{U_{I}} \geq e^{U_{I}} \delta^{2} U_{I}(t)
$$

Proof. Apply Taylor's expansion to obtain

$$
\delta^{2} e^{U_{I}}=e^{U_{I}} \delta^{2} U_{I}+\frac{\left(U_{I-1}-U_{I}\right)^{2}}{h^{2}} e^{\eta_{I}}
$$

Use the fact that $U_{h} \geq 0$ to complete the rest of the proof.
To end this section, let us give another property of the operator δ^{2}.
Lemma 2.2. Let U_{h} and $U_{h} \in C^{1}\left([0, T], R^{I+1}\right)$ if $\delta^{+}\left(U_{i}\right) \delta^{+}\left(V_{i}\right) \geq 0$ and $\delta^{-}\left(U_{i}\right)$ $\delta^{-}\left(V_{i}\right) \geq 0$

$$
\delta^{2}\left(U_{i} V i\right) \geq U_{i} \delta^{2}\left(V_{i}\right)+V_{i} \delta^{2}\left(U_{i}\right),
$$

where $\delta^{+}\left(U_{i}\right)=\frac{U_{i+1}-U_{i}}{h}$ and $\delta^{-}\left(U_{i}\right)=\frac{U_{i-1}-U_{i}}{h}$.
Proof. A straightforward computation yields

$$
\begin{aligned}
h^{2} \delta^{2}\left(U_{i} V_{i}\right)= & U_{i+1} V_{i+1}-2 U_{i} V_{i}+U_{i-1} V_{i-1}=\left(U_{i+1}-U_{i}\right)\left(V_{i+1}-V_{i}\right) \\
& +V_{i}\left(U_{i+1}-U_{i}\right)+U_{i}\left(V_{i+1}-V_{i}\right)+U_{i} V_{i}-2 U_{i} V_{i} \\
& +\left(U_{i-1}-U_{i}\right)\left(V_{i-1}-V_{i}\right)+\left(U_{i-1}-U_{i}\right) V_{i}+U_{i}\left(V_{i-1}-V_{i}\right)+U_{i} V_{i} .
\end{aligned}
$$

Which implies that

$$
\delta^{2}\left(U_{i} V_{i}\right)=\delta^{+}\left(U_{i}\right) \delta^{+}\left(V_{i}\right)+\delta^{-}\left(U_{i}\right) \delta^{-}\left(V_{i}\right)+V_{i} \delta^{2}\left(U_{i}\right) .
$$

Using the assumption of the lemma. We obtain the desired result.

3. Full Discretizations of the Problem

In this section, we study the phenomenon of blow-up, using a full discrete explicit scheme of (1.1)-(1.3). Approximate the solution $u(x, t)$ of the continuous problem by the solution $U_{h}^{n}=\left(U_{0}^{(n)}, U_{1}^{(n)}, \ldots, U_{I}^{(n)}\right)^{T}$ of the following explicit scheme

$$
\begin{gather*}
\delta_{t} U_{i}^{(n)}=\delta^{2} U_{i}^{(n)}+\gamma e^{U_{i}^{(n)}}, 0 \leq i \leq I, \tag{3.1}\\
U_{0}^{(n)}=0 \tag{3.2}\\
U_{i}^{(0)}=\varphi_{i} \geq 0,0 \leq i \leq I \tag{3.3}
\end{gather*}
$$

where $n \geq 0 \varphi_{i+1}>\varphi_{i} 0 \leq i \leq I-1$,

$$
\delta_{t} U_{i}^{(n)}=\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}
$$

In order to permit the discrete solution to reproduce the properties of the continuous one when the time t approaches the blow-up time T, we need to adapt the size of the time step so that we take

$$
\Delta t_{n}=\min \left\{\frac{h^{2}}{3}, \tau e^{-\left\|U_{h}^{(n)}\right\| \infty}\right\}, \quad 0<\tau<1 .
$$

Let us notice that the restriction on the time step ensures the positivity of the discrete solution.
Definition 3.1. We say that the solution $U_{h}^{(n)}$ of the explicit scheme blows up in a finite time if $\lim _{n \rightarrow \infty}\left\|U_{h}^{(n)}\right\|_{\infty}=\infty$, and the series $\sum_{n=0}^{\infty} \Delta t_{n}$ converges. The quantity $\sum_{n=0}^{\infty} \Delta t_{n}$ is called the numerical blow-up time of the discrete solution.
Lemma 3.1. Let $U_{h}^{(n)}$ be the solution of (3.1)-(3.3). Then we have $U_{i+1}^{(n)}>U_{i}^{(n)}$, $0 \leq i \leq I-1$.
Proof. Let $Z_{i}^{(n)}=U_{i+1}^{(n)}-U_{i}^{(n)}, 0 \leq i \leq I-1$. Obviously, $Z_{0}^{(n)}>0$. A routine computation reveals that

$$
\begin{gathered}
\frac{Z_{i}^{(n+1)}-Z_{i}^{(n)}}{\Delta t_{n}}=\frac{Z_{i+1}^{(n)}-2 Z_{i}^{(n)}+Z_{i-1}^{(n)}}{h^{2}}+e^{U_{i+1}^{(n)}}-e^{U_{i}^{(n)}}, \quad 0 \leq i \leq I-2 \\
\frac{Z_{I-1}^{(n+1)}-Z_{I-1}^{(n)}}{\Delta t_{n}}=\frac{-3 Z_{I-1}^{(n)}+Z_{I-2}^{(n)}}{h^{2}}+e^{U_{I}^{(n)}}-e^{U_{I-1}^{(n)}}
\end{gathered}
$$

Apply the mean value theorem to obtain

$$
\begin{gathered}
Z_{i}^{(n+1)}=\frac{\Delta t_{n}}{h^{2}} Z_{i+1}^{(n)}+\left(1-\frac{2 \Delta t_{n}}{h^{2}}\right) Z_{i}^{(n)}+\frac{\Delta t_{n}}{h^{2}} Z_{i-1}^{(n)}+e^{\xi_{i}^{(n)}} Z_{i}^{(n)}, \quad 1 \leq i \leq I-2, \\
Z_{I-1}^{(n+1)}=\frac{\Delta t_{n}}{h^{2}} Z_{I+1}^{(n)}+\left(1-\frac{3 \Delta t_{n}}{h^{2}}\right) Z_{I-1}^{(n)}+e^{\xi_{i}^{(n)}} Z_{i}^{(n)}
\end{gathered}
$$

where $\xi_{i}^{(n)}$ is an intermediate value between U_{i} and U_{i+1}. Since $Z_{i}^{(0)} \geq 0,1 \leq i \leq$ $I-1$, we deduce by induction that $Z_{i}^{(n)} \geq 0,0 \leq i \leq I$ and the proof is complete. The following lemma is a discrete form of the maximum principle.
Lemma 3.2. Let $a_{h}^{(n)}$ be a bounded vector and let $V_{h}^{(n)}$ a sequence such that

$$
\begin{gathered}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)} \geq 0, \quad 1 \leq i \leq I, \quad n \geq 0 \\
V_{i}^{(n)} \geq 0, \quad n \geq 0 \\
V_{i}^{(0)} \geq 0, \quad 0 \leq i \leq I
\end{gathered}
$$

Then $V_{i}^{(n)} \geq 0$ for $n \geq 0,0 \leq i \leq I$ if $\Delta t_{n} \leq \frac{h^{2}}{2+\left\|a_{h}^{(n)}\right\|_{\infty} h^{2}}$.
Proof. If $V_{h}^{(n)} \geq 0$ then a routine calculation gives

$$
\begin{gathered}
V_{i}^{(n+1)} \geq \frac{\Delta t_{n}}{h^{2}} V_{i+1}^{(n)}+\left(1-2 \frac{\Delta t_{n}}{h^{2}}-\Delta t_{n}\left\|a_{h}^{(n)}\right\|_{\infty}\right) V_{i}^{(n)}+\frac{\Delta t_{n}}{h^{2}} V_{i-1}^{(n)}, \quad 1 \leq i \leq I-1 \\
V_{I}^{(n+1)} \geq \frac{2 \Delta t_{n}}{h^{2}} V_{I-1}^{(n)}+\left(1-2 \frac{\Delta t_{n}}{h^{2}}-\Delta t_{n}\left\|a_{h}^{(n)}\right\|_{\infty}\right) V_{I}^{(n)}
\end{gathered}
$$

Since $\Delta t_{n} \leq \frac{h^{2}}{2+\left\|a_{h}^{(n)}\right\|_{\infty} h^{2}}$, we see that $1-2 \frac{\Delta t_{n}}{h^{2}}-\Delta t_{n}\left\|a_{h}^{(n)}\right\|_{\infty}$ is nonnegative. Due to the fact that $V_{h}^{(n)} \geq 0$, we deduce by induction that $V_{h}^{(n)} \geq 0$ for $n \geq 0$ which ends the proof.
A direct consequence of the above result is the following comparison lemma. Its proof is straightforward.
Lemma 3.3. Suppose that $a_{h}^{(n)}$ and $b_{h}^{(n)}$ are two vectors such that $a_{h}^{(n)}$ is bounded. Let $V_{h}^{(n)}$ and $V_{h}^{(n)}$ two sequences such that

$$
\begin{aligned}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)}+b_{h}^{(n)} \leq \delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)} & +a_{i}^{(n)} W_{i}^{(n)}+b_{i}^{(n)} \\
& 1 \leq i \leq I, n \geq 0
\end{aligned}
$$

$$
\begin{gathered}
V_{0}^{(n)} \leq W_{0}^{(n)}, \quad n \geq 0 \\
V_{i}^{(0)} \leq W_{i}^{(0)}, \quad 0 \leq i \leq I
\end{gathered}
$$

Then $V_{i}^{(n)} \leq W_{i}^{(n)}$ for $n \geq 0,0 \leq i \leq I$ if $\Delta t_{n} \leq \frac{h^{2}}{2+\left\|a_{h}^{(n)}\right\|_{\infty} h^{2}}$.
Now, let us give a property of the operator δ_{t}.
Lemma 3.4. Let $U^{(n)} \in R$ be a sequence such that $U^{(n)} \geq 0$. Then we have

$$
\delta_{t} e^{U^{(n)}} \geq e^{U^{(n)}} \delta_{t} U^{(n)}, \quad n \geq 0
$$

Proof. From Taylor's expansion, we find that

$$
\delta_{t} e^{U^{(n)}}=e^{U^{(n)}} \delta_{t} U^{(n)}+\Delta t_{n} \delta_{t}\left(U^{(n)}\right)^{2} e^{\theta^{(n)}}
$$

where $\theta^{(n)}$ is an intermediate value between $U^{(n)}$ and $U^{(n+1)}$. Use the fact that $U^{(n)} \geq 0$ for $n \geq 0$ to complete the rest of the proof.

Our first result on blow-up times is the following theorem.
Theorem 3.1. Suppose that there exists a positive constant $A \leq 1$ such that

$$
\begin{equation*}
\delta^{2} \varphi_{i}+e^{\varphi_{i}} \geq \text { Aihe }^{\varphi_{i}}, 0 \leq i \leq I . \tag{3.4}
\end{equation*}
$$

Then the solution $U_{h}^{(n)}$ of (3.1)-(3.3) blows up in a finite time and its numerical blow-up time $T_{h}^{\Delta t}$ is estimated as follows

$$
T_{h}^{\Delta t} \leq \frac{\tau e^{-\left\|\varphi_{h}\right\|_{\infty}}}{1-e^{-\tau^{\prime}}} .
$$

where $\tau^{\prime}=\min \left\{\frac{h^{2}}{3} e^{-\left\|\varphi_{h}\right\|_{\infty}}, \tau\right\}$.
Proof. Introduce the vector J_{h} such that

$$
J_{i}^{(n)}=\delta_{t} U_{i}^{(n)}-A i h e^{U_{i}^{(n)}}, \quad 0 \leq i \leq I .
$$

A straightforward computation yields

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=\delta_{t}\left(\delta_{t} U_{i}^{(n)}-\delta^{2} U_{i}^{(n)}\right)-A i h \delta_{t} e^{U_{i}^{(n)}}+A h \delta^{2}\left(i e^{U_{i}^{(n)}}\right), \quad 0 \leq i \leq I-1, \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}=\delta_{t}\left(\delta_{t} U_{I}^{(n)}-\delta^{2} U_{I}^{(n)}\right)-A \delta_{t} e^{U_{I}^{(n)}}+A \delta^{2}\left(e^{U_{I}^{(n)}}\right) .
\end{gathered}
$$

Using (3.1), we arrive at

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=(1-A i h) \delta_{t} e^{U_{i}^{(n)}}+A h \delta^{2}\left(i e^{U_{i}^{(n)}}\right), \quad 1 \leq i \leq I-1, \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}=(1-A) \delta_{t} e^{U_{I}^{(n)}}+A \delta^{2} e^{U_{I}^{(n)}} .
\end{gathered}
$$

It follows from Lemmas 2.1, 3.1, 3.2 and 3.4 that

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq(1-A i h) e^{U_{i}^{(n)}} \delta_{t} U_{i}^{(n)}+A h i e^{U_{i}^{(n)}} \delta^{2} U_{i}^{(n)}, \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)} \geq(1-A) e^{U_{I}^{(n)}} \delta_{t} U_{I}^{(n)}+A e_{I}^{U_{I}^{(n)}} \delta^{2} U_{I}^{(n)} .
\end{gathered}
$$

Taking into account (3.1), we deduce that

$$
\begin{equation*}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq e^{U_{i}^{(n)}} \delta_{t} U_{i}^{(n)}-A h i e^{U_{i}^{(n)}} e^{U_{i}^{(n)}}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)} \geq e^{U_{I}^{(n)}} \delta_{t} U_{I}^{(n)}-A e^{U_{I}^{(n)}} e^{U_{I}^{(n)}}, \tag{3.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq e^{U_{i}^{(n)}} J_{i}^{(n)}, 1 \leq i \leq I . \tag{3.7}
\end{equation*}
$$

Obviously, we have $J_{0}^{(n)}=0$. From Lemma 3.2 principle, we obtain $J_{h}^{(0)} \geq 0$. It follows from Lemma 3.2 that $J_{h}^{(n)} \geq 0,0 \leq i \leq I$. Hence, we have

$$
\begin{equation*}
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}} \geq \operatorname{Aihe}^{U_{i}^{(n)}} .0 \leq i \leq I, \tag{3.8}
\end{equation*}
$$

Consequently, we get

$$
U_{I}^{(n+1)} \geq U_{I}^{(n)}+A \Delta t_{n} e^{U_{I}^{(n)}}
$$

Since $U_{I}^{(n)}=\left\|U_{h}^{(n)}\right\|_{\infty}$, we arrive at

$$
\begin{equation*}
\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}+A \Delta t_{n} e^{\left\|U_{h}^{(n)}\right\|_{\infty}} . \tag{3.9}
\end{equation*}
$$

We observe that

$$
\begin{aligned}
\Delta t_{n} e^{\left\|U_{h}^{(n)}\right\|_{\infty}} & =\min \left\{\frac{h^{2}}{3}, \tau e^{-\left\|U_{h}^{(n)}\right\|_{\infty}}\right\} \times e^{\left\|U_{h}^{(n)}\right\|_{\infty}} \\
& =\min \left\{\frac{h^{2}}{3} e^{\left\|U_{h}^{(n)}\right\|_{\infty}}, \tau\right\}
\end{aligned}
$$

From (3.9), $\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}$ and by induction $\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(0)}\right\|_{\infty}=\left\|\varphi_{h}\right\|_{\infty}$. It follows that

$$
\Delta t_{n} e^{\left\|U_{h}^{(n)}\right\|_{\infty}} \geq \min \left\{\frac{h^{2}}{3} e^{\left\|\varphi_{h}\right\|_{\infty}}, \tau\right\} \quad=\tau^{\prime} .
$$

Consequently, we have

$$
\begin{equation*}
\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}+\tau^{\prime} \tag{3.10}
\end{equation*}
$$

Using a recursion argument, we discover that

$$
\begin{equation*}
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(0)}\right\|_{\infty}+n \tau^{\prime} . \tag{3.11}
\end{equation*}
$$

Hence, we see that $\left\|U_{h}^{(n)}\right\|_{\infty}$ goes to infinity as n approaches infinity. Now let us estimate its numerical blow-up time. From the restriction on the time step, we get

$$
\Sigma_{n=0}^{\infty} \Delta t_{n} \leq \Sigma_{n=0}^{\infty} \tau e^{-\left\|U_{h}^{(n)}\right\|_{\infty}}
$$

Due to (3.11), we arrive at

$$
\Sigma_{n=0}^{\infty} \Delta t_{n} \leq \sum_{n=0}^{\infty} \tau e^{-\left\|\varphi_{h}\right\|_{\infty}-n \tau^{\prime}}
$$

which implies that

$$
\Sigma_{n=0}^{\infty} \Delta t_{n} \leq \tau e^{-\left\|\varphi_{h}\right\|_{\infty}} \sum_{n=0}^{\infty}\left(e^{-\tau^{\prime}}\right)^{n}
$$

Since the series on the right hand side the above inequality converges to $\frac{1}{1-e^{-\tau^{\prime}}}$, we deduce that

$$
\Sigma_{n=0}^{\infty} \Delta t_{n} \leq \frac{\tau e^{-\left\|\varphi_{h}\right\|_{\infty}}}{1-e^{-\tau^{\prime}}}
$$

Use the fact that the quantity on the right hand side of the above inequality is finite to complete the rest of the proof.
Remark 3.1. From (3.11), we get $\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(q)}\right\|_{\infty}+\tau^{\prime}(n-q)$. Hence

$$
T_{h}^{\Delta t}-T_{q} \leq \Sigma_{n=q}^{\infty} \Delta t_{n} \leq \Sigma_{n=q}^{\infty} \tau e^{-\left\|U_{h}^{(n)}\right\|_{\infty}}
$$

which implies that

$$
T_{h}^{\Delta t}-T_{q} \leq \tau e^{-\left\|U_{h}^{(q)}\right\|_{\infty} \Sigma_{n=q}^{\infty} e^{-(n-q) \tau^{\prime}} .}
$$

Since the series on the right hand side of the above inequality converges to $\frac{1}{1-e^{-\tau^{\prime}}}$, we deduce that

$$
T_{h}^{\Delta t}-T_{q} \leq \frac{\tau e^{-\left\|U_{h}^{(q)}\right\|_{\infty}}}{1-e^{-\tau^{\prime}}}
$$

Use Taylor's expansion to obtain

$$
e^{-\tau^{\prime}}=1-\tau^{\prime}+o\left(\tau^{\prime}\right)
$$

which implies that

$$
\frac{\tau}{1-e^{-\tau^{\prime}}}=\frac{\tau}{\tau^{\prime}(1+o(1))} \leq \frac{2 \tau}{\tau^{\prime}}
$$

Since $\tau^{\prime}=\min \left\{\frac{h^{2}}{3} e^{\left\|\varphi_{h}\right\|_{\infty}}, \tau\right\}$, if we take $\tau=h^{2}$, we get $\frac{\tau}{\tau^{\prime}}=\min \left\{\frac{1}{3} e^{\left\|\varphi_{h}\right\|_{\infty}}, 1\right\}$, which implies that there exists a positive constant K such that $\frac{\tau}{\tau^{\prime}} \leq K$. Then, we see that $\frac{\tau}{1-e^{-\tau^{\prime}}}$ is bounded from above by $2 K$.

4. Convergence of the Numerical Blow-up Time

In this section, under some conditions, we show that the discrete solution blows up in a finite time and its numerical blow-up time converges to the real one when the mesh size goes to zero. In order to prove this result, we firstly show that the discrete solution approaches the continuous one on any interval $[0,1] \times[0, T-\tau]$ with $\tau \in(0, T)$ as the parameter h goes to zero.
The result on the convergence of the discrete solution to the theoretical one is stated in the following theorem.
Theorem 4.1. Suppose that the problem (1.1)-(1.3) has a solution $u \in C^{4,2}([0,1] \times$ $[0, T]$). Assume that the initial data at (3.3) verifies

$$
\begin{equation*}
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=o(1) a s \quad h \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Then the problem (3.1)-(3.3) has a solution $U_{h}^{(n)}$ for h sufficiently small, $0 \leq n \leq J$ and we have the following estimate

$$
\max _{0 \leq n \leq J}\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}=O\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+h^{2}+\Delta t_{n}\right), \quad \text { as } \quad h \rightarrow 0
$$

where J is such that $\Sigma_{n=0}^{J-1} \Delta t_{n} \leq T$ and $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$.
Proof. For each h, the problem (3.1)-(3.3) has a solution $U_{h}^{(n)}$. Let $N \leq J$ be the greatest value of n such that

$$
\begin{equation*}
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<1 \quad \text { for } \quad n<N \tag{4.2}
\end{equation*}
$$

We know that $N \geq 1$, because of (3.13). The fact that $u \in C^{4,2}$, there exists a positive constant α and that $\|u\| \leq \alpha$. Applying the triangle inequality, we obtain

$$
\begin{equation*}
\left\|U_{h}^{(n)}\right\|_{\infty} \leq\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}+\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq 1+\alpha \tag{4.3}
\end{equation*}
$$

As in the proof of Theorem 3.1, using Taylor's expansion, we find that

$$
\delta_{t} u\left(x_{i}, t_{n}\right)-\delta^{2} u\left(x_{i}, t_{n}\right)-e^{u\left(x_{i}, t_{n}\right)}=-\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x}, t_{n}\right)+\frac{\Delta t_{n}}{2} u_{t t}\left(x_{i}, \widetilde{t_{n}}\right)
$$

Let $e_{h}^{(n)}=U_{h}^{(n)}-u_{h}\left(t_{n}\right)$ be the error of discretization. From the mean value theorem, we get

$$
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)}=e^{\varsigma_{i}^{(n)}} e_{i}^{(n)}+\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x_{i}}, t_{n}\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{i}, \widetilde{t_{n}}\right)
$$

where ς_{i} is an intermediate value between $u\left(x_{i}, t_{n}\right)$ and $U_{i}^{(n)}$. Since $u_{x x x x}(x, t)$, $u_{t t}(x, t)$ are bounded, there exists a positive constant M such that

$$
\begin{equation*}
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)} \leq e^{\varsigma_{i}^{(n)}} e_{i}^{(n)}+M \Delta t_{n}+M h^{2}, 0 \leq i \leq I \tag{4.4}
\end{equation*}
$$

Let $K=1+\alpha$ and introduce the vector $V_{h}^{(n)}$ defined as follows

$$
V_{i}^{(n)}=e^{(K+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+M h^{2}+M \Delta t_{n}\right), \quad 0 \leq i \leq I .
$$

A straightforward computation gives

$$
\begin{aligned}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}>e^{\varsigma_{i}^{(n)}} V_{i}^{(n)}+M \Delta t_{n}+M h^{2}, & 0 \leq i \leq I, \\
V_{0}^{(n)} \geq e_{0}^{(n)} . & \\
V_{i}^{(0)} \geq e_{i}^{(0)}, & 0 \leq i \leq I .
\end{aligned}
$$

We observe that $e^{\varsigma_{i}^{(n)}}$ is bounded from above by e^{K}. It follows from comparison Lemma 3.3 that $V_{h}^{(n)} \geq e_{h}^{(n)}$. By the same way, we also prove that $V_{h}^{(n)} \geq-e_{h}^{(n)}$. which implies that

$$
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq e^{(K+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}\right)+M h^{2}+M \Delta t_{n} .
$$

Let us show that $N=J$.
Suppose that $N<J$. If we replace n by N in the above inequality and use (3.14), we find that

$$
1 \leq\left\|U_{h}^{(N)}-u_{h}\left(t_{N}\right)\right\|_{\infty} \leq e^{(K+1) t_{N}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+M h^{2}+M \Delta t_{n}\right) .
$$

Since term on the right hand side of the second inequality goes to zero as h tends to zero, we deduce that $1 \leq 0$, which is contradiction and the proof is complete. Now, we are in a position to prove the mean theorem of this section.
Theorem 4.2. Suppose that the problem (1.1)-(1.3) has a solution u which blows up in a finite time T_{0} and $u \in C^{4,2}\left([0,1] \times\left[0, T_{0}\right]\right)$. Assume that the initial data at (3.6) satisfies

$$
\begin{equation*}
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=0(1) \text { as } \quad h \rightarrow 0 \tag{4.5}
\end{equation*}
$$

Under the assumption of Theorem 3.1, the problem (3.1)-(3.3) has a solution $U_{h}^{(n)}$ which blows up in a finite time $T_{h}^{\Delta t}$ and the following relation holds

$$
\lim _{h \rightarrow 0} T_{h}^{\Delta t}=T_{0} .
$$

Proof. We know from Remark that $\frac{\tau}{1-e^{-\tau^{\prime}}}$, is bounded. Letting $\varepsilon>0$ there exists a constant $R>0$ such that

$$
\begin{equation*}
\frac{\tau e^{-x}}{1-e^{-\tau^{\prime}}}<\frac{\varepsilon}{2} \quad \text { for } \quad x \in[R,+\infty) \tag{4.6}
\end{equation*}
$$

Since u blows up at the time T_{0}, there exists $T_{1} \in\left(T_{0}-\frac{\varepsilon}{2}, T_{0}\right)$ such that

$$
\|u(x, t)\|_{\infty} \geq 2 R \quad \text { for } \quad t \in\left[T_{1}, T_{0}\right] .
$$

Let $T_{2}=\frac{T_{1}+T_{2}}{2}$ and q be a positive integer such that $T_{q}=\sum_{n=0}^{q-1} \Delta t_{n} \in\left[T_{1}, T_{2}\right]$ for h small enough. We have $\sup _{t \in\left[0, T_{2}\right]}\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}<+\infty$. It follows from Theorem 3.1 that the problem (3.1)-(3.3) has a solution $U_{h}^{(n)}$ which obeys

$$
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<R \text { for } n \leq q
$$

which implies that

$$
\left\|U_{h}^{(q)}\right\|_{\infty} \geq\left\|u_{h}\left(t_{q}\right)\right\|_{\infty}-\left\|U_{h}^{(q)}-u_{h}\left(t_{q}\right)\right\|_{\infty} \geq R .
$$

From Theorem $3.1 U_{h}^{(n)}$ blows up at the time $T_{h}^{\Delta t}$. It follows from remark 3.1 and (3.17) that

$$
\left|T_{h}^{\Delta t}-t_{q}\right| \leq \frac{\tau e^{-\left\|U_{h}^{(q)}\right\|_{\infty}}}{1-e^{-\tau^{\prime}}} \leq \frac{\varepsilon}{2}
$$

because $\left\|U_{h}^{(q)}\right\|_{\infty} \geq R$. We deduce that

$$
\left|T_{0}-T_{h}^{\Delta t}\right| \leq\left|T_{0}-t_{q}\right|+\left|t_{q}-T_{h}^{\Delta t}\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq \varepsilon .
$$

and the proof is complete.
Remark 4.1. Consider the classical solution u of the $B V P$

$$
\begin{array}{rr}
u_{t}(x, t)=u_{x x}(x, t)+e^{u(x, t)}, x \in(-1,1), & t \in(0, T), \\
u(-1, t)=0, u(1, t)=0, & t \in(0, T), \\
u(x, 0)=u_{0}(x), x \in[-1,1], & \tag{4.7}
\end{array}
$$

where $u_{0}(x)$ is a positive and symmetric function in $[-1,1]$ and $u^{\prime}(x) \geq 0$ for $x \in$ $(-1,0)$. Since $u_{0}(x)$ is symmetric in $[-1,1]$, from the maximum principle u is also
symmetric in $[-1,1]$. We observe that $u_{x}(0, t)=0$ because $u(x, t)=u(-x, t)$. Consider now the solution v of the boundary value problem below

$$
\begin{array}{rcc}
v_{t}(x, t)=v_{x x}(x, t)+e^{v(x, t)}, & x \in(-1,0), & t \in(0, T) \\
v(-1, t)=0, & v_{x}(0, t)=0, & t \in(0, T) \\
v(x, 0)=v_{0}(x), & \text { in } & {[-1,0]}
\end{array}
$$

Since u is symmetric, we have

$$
\max _{-1 \leq x \leq 1}|u(x, t)|=\max _{-1 \leq x \leq 0}|u(x, t)|=\max _{-1 \leq x \leq 0}|v(x, t)|
$$

Hence, to get an approximation of the blow-up time of the solution u, it suffices to obtain the one of the classical solution v which has been the subject of investigation of present paper.

5. Numerical Results

In this section, we present some numerical approximations to the blow-up time for the solution of problem (1.1)-(1.3) in the case where $U_{0}(x)=2 \sin \left(\frac{\pi x}{2}\right)$. Firstly, we consider the explicit scheme in (3.1)-(3.3). Secondly, we use the following implicit scheme

$$
\begin{array}{rlrl}
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}} & =\delta^{2} U_{i}^{(n+1)}+\gamma e^{U_{i}^{(n)}}, & & 1 \leq i \leq I \\
U_{0}^{(n)} & =0, & & \\
U_{i}^{(0)} & =\phi_{i}, & 0 \leq i \leq I \tag{5.1}
\end{array}
$$

where

$$
\Delta t_{n}=\tau e^{-\left\|U_{h}^{(n)}\right\| \infty}, \quad \tau=h^{2}
$$

In both cases, we take $\varphi_{i}=2 \varepsilon \sin \left(\frac{i \pi h}{2}\right), 0 \leq i \leq I$. For the above implicit scheme, the positivity of the discrete solution $U_{h}^{(n)}$ is guaranteed using standard methods (see [12]). In the tables 1 and 2 , in rows, we present the numerical blow-up times, the numbers of iterations, the CPU times and the orders of the approximations corresponding to meshes of $16,32,64,128,256,512$. We take for the numerical blow-up time $T^{n}=\sum_{j=0}^{n-1} \Delta t_{j}$ which is computed at the first time when

$$
\Delta t_{n}=\left|T^{n+1}-T^{n}\right| \leq 10^{-16}
$$

The order(s) of the method is computed from

$$
s=\frac{\log \left(\left(T_{4 h}-T_{2 h}\right) /\left(T_{2 h}-T_{h}\right)\right)}{\log (2)} .
$$

Numerical experiments for $\gamma f\left(U_{k}^{(n)}\right)=\gamma e^{U_{k}^{(n)}}, \varphi_{i}=0$.
First case $\gamma=10$. 0.111001642852658
Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.111998076818558	216	0.015	-
32	0.111001642852658	824	0.031	-
64	0.110341491751344	3152	0.156	1.994
128	0.110085396737967	12037	5.296	1.998
256	0.110021357450119	45874	112.062	1.999
512	0.110005346658750	174408	6115.546	2.000

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	CPU time	s
16	0.111017021553261	209	0.046	-
32	0.111965902335882	801	0.296	-
64	0.110489092886515	3059	4.796	2.034
128	0.110122131175136	11667	22.125	2.008
256	0.110030530697220	44397	311.093	2.002
512	0.110007639322847	168500	8170.125	2.000

Numerical experiments for $\gamma f\left(U_{k}^{(n)}\right)=\gamma e_{k}^{U_{k}^{(n)}}, \varphi_{i}=0$.
Second case $\gamma=5$.
Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.286437651041976	12	0.018	-
32	0.293873861534947	724	0.056	-
64	0.293925491751344	2320	0.205	1.994
128	0.294301396737967	13007	4.289	1.998
256	0.294411357450119	35002	113.073	1.999
512	0.295010000534660	132504	7002.526	2.000

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	CPU time	s
16	0.289800556424729	12	0.018	-
32	0.293873861534252	724	0.056	-
64	0.293873549175135	2320	0.205	1.994
128	0.2989301296679678	13007	4.289	1.998
256	0.2990223474502095	35002	113.073	1.999
512	0.2995010000062520	132504	7002.526	2.000

Numerical experiments for $\gamma f\left(U_{k}^{(n)}\right)=\gamma e_{k}^{U_{k}^{(n)}}, \varphi_{i}=0$.
Third case $\gamma=1.5$.
Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.308909002938009	20	0.062	-
32	0.307530002938009	76	0.075	-
64	0.307189002009179	286	0.562	2.278
128	0.307103009879189	1087	4.046	2.083
256	0.307097560999088	4119	30.015	2.021
512	0.307099494501844	15568	751.875	2.005

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	$C P U$ time	s
16	0.314007692874664	20	0.015	-
32	0.308007750763581	76	0.062	-
64	0.307007801488999	286	0.125	2.278
128	0.307182230005350	1087	0.296	2.083
256	0.307101756130886	4119	4.921	2.021
512	0.307096494578945	15568	279.343	2.005

Numerical experiments for $\gamma f\left(U_{k}^{(n)}\right)=\gamma e^{U_{k}^{(n)}}, \varphi_{i}=2 \sin \left(\frac{i \pi h}{2}\right)$.
Fourth case: $\gamma=1$.
Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.337145469287464	20	0.015	-
32	0.335773076358199	76	0.062	-
64	0.334189880148892	286	0.125	2.278
128	0.334044230005350	1087	0.296	2.083
256	0.333975756130886	4119	4.921	2.021
512	0.333955649457894	15568	279.343	2.005

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	CPU time	s
16	0.334213453972435	20	0.062	-
32	0.334444504907909	76	0.075	-
64	0.334584879608179	286	0.562	2.278
128	0.334668298791891	1087	4.046	2.083
256	0.334665756099908	4119	30.015	2.021
512	0.334664649450184	15568	751.875	2.005

6. Conclusion

In this research, we have proposed two algorithms for the numerical solution of semi-linear heat equations. The numerical blow-up solutions are computed for semilinear heat equations with Dirichlet boundary conditions. Explicit and implicit Euler finite difference schemes with a special time-steps formula are presented and
analyzed in order to solve the proposed problem and estimate the blow-up times. The numerical result obtained by the proposed methods is analyzed, simulated and presented in the form of tables and figures. Numerical examples show that the proposed methods are successfully implemented with good efficiency and high order of convergence.

In the following, we also give some plots to illustrate our analysis. In Figures 1 to 12 , we can appreciate that the discrete solution blows up globally. Let us notice that, theoretically, we know that the continuous solution blows up globally under the assumptions given in the introduction of the present paper.

Figure 1: Evolution of the discrete solution, source $\gamma e^{u(a, t)}, \gamma=1, \varphi_{i}=2 \sin \left(\frac{i \pi h}{2}\right)$

Figure 2: Evolution of the discrete solution source $\gamma e^{u(a, t)}, \gamma=1, \varphi_{i}=2 \sin \left(\frac{i \pi h}{2}\right)$

Figure 3: Evolution of the discrete solution, source $\gamma e^{u(a, t)}, \gamma=10, \varphi_{i}=0$,

Figure 4: Evolution of the discrete solution source $\gamma e^{u(a, t)}, \gamma=10, \varphi_{i}=0$,

Figure 5: Evolution of the discrete solution, source $\gamma e^{u(a, t)}, \gamma=1, \varphi_{i}=2 \sin \left(\frac{i \pi h}{2}\right)$

Figure 6: Evolution of the discrete solution source $\gamma e^{u(a, t)}, \gamma=1, \varphi_{i}=2 \sin \left(\frac{i \pi h}{2}\right)$

Figure 7: Evolution of the discrete solution, source $\gamma e^{u(a, t)}, \gamma=10, \varphi_{i}=0$

Figure 8: Evolution of the discrete solution source $\gamma e^{u(a, t)}, \gamma=10, \varphi_{i}=0$

Acknowledgement

The authors want to thank the anonymous referee for the throughout reading of the manuscript and several suggestions that help us improve the representation of the paper.

References

[1] Abia L. M., López-Marcos J. C. and Martinez J., On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26 (4) (1998), 399-414.
[2] Abia L. M., López-Marcos J. C. and Martínez J., Blow-up for semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 20 (1-2) (1996), 145-156.
[3] Acosta G., Fernandez Bonder J., Groisman P. and Rossi J. D., Numerical approximations of a parabolic problem with a nonlinear boundary conditions in several space dimensions, Disc. Cont. Dyn. Syst., 2 (2002), 3-32.
[4] Ali Jameel F. and all, On numerical blow-up solutions of semi linear Heat equations, Iraqi Journal of Science, 61 (8), (2020), 2077-2086.
[5] Boni T. K., Sur l'explosion et le comportement asymptotique de la solution d'uné quation parabolique semi-linéaire du second ordre, C. R. A. S., Serie I, 326 (3), (1998), 317-322.
[6] Boni T. K., Extinction for discretizations of some semilinear parabolic equations, C. R. A. S. Serie I, 333 (2001), 795-800.
[7] Brezis H., Cazenave T., Martel Y. and Ramiandrisoa A., Blow-up of $u_{t}=$ $u_{x x}+g(u)$ revisited, Adv. Diff. Eq., 1 (1996), 73-90.
[8] Friedman A. and Lacey A. A., The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal., 18 (1987), 711721.
[9] Friedman A. and McLeod B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-477.
[10] Groisman P. and Rossi J. D., Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions, Comput. Appl. Math., 135 (2001), 135-155.
[11] Han, Y., Blow-up at infinity of solutions to a semi-linear heat equation with logarithmic nonlinearity, Journal of Mathematical Analysis and Applications, 1 (2019), 512-5.
[12] Kaplan S., On the growth of the solutions of quasi-linear parabolic equation, Comm. Appl. Math. Anal., 16 (1963), 305-330.
[13] Nachid Halima, Sobo Blin L. B. and Gozo Yoro, Results For The Blowing-Up Phenomenon With A Localized Non-Linear Source Term, Journal of Multidisciplinary Engineering Science Studies, 2, 7 (2016), 618-631.
[14] Nachid Halima, Koffi N'Guessan and K. Augustin Touré, On The Qualitative Behavior Of Solutions To Certain Reaction Diffusion Equation In Large Domain. International Journal of Numerical Methods and Applications, 19 No 1, (2020), 67-97.
[15] Nachid Halima, Quenching For Semi Discretizations of A Semilinear Heat Equation With Potential and General Non Linearities, Revue D'analyse Numerique Et De Theorie De L'approximation, 2 (2011), 164-181.
[16] Nachid Halima, N'Gohisse Firmin K. and Gozo Yoro, The Blowing up Phenomenon For a Reaction Diffusion Equation With a Localized Non-Linear Source Term and Direchlet Neumann Boundary Conditions, Journal of Mathematical Sciences: Advances and Applications, 60 No. 1, (2020), 1-37.
[17] Nachid Halima, Behavior Of The Numerical Quenching Time With a Potential And General Nonlinearities, Journal of Mathematical Sciences Advances and Application, 15 (2012), 81-105.
[18] Nakagawa T., Blowing up on the finite difference solution to $u_{t}=u_{x x}+u^{2}$, Applied Mathematics and Optimization, 2(4) (1975), 337-350.
[19] Samarski A., Galaktionov V. A., Kurdyunov S. P. and Milailov A. P., Blowup in quasilinear parabolic equations, Walter de Gruyter, Berlin, 1995.
[20] Stuart A. M. and Floater M. S., On the computation of blow-up, Euro. J. Appl. Math., 1(1) (1990), 47-71.
[21] Weissler F. B., An L^{∞} blow-up estimate for a nonlinear heat equation, Communications on Pure and Applied Mathematics, 38(3) (1985), 291-295.
[22] Yekre B., Nachid Halima and Gozo Yoro, Numerical Blow-Up Time With Respect To Parameters For A Reaction Diffusion Equation, Journal of Mathematical Sciences: Advances and Applications, 56, No. 1 (2019), 1-37.

