J. of Ramanujan Society of Mathematics and Mathematical Sciences

Vol. 9, No. 2 (2022), pp. 83-96
ISSN (Online): 2582-5461
ISSN (Print): 2319-1023

HEINE'S TRANSFORMATION FORMULA THROUGH q-DIFFERENCE EQUATIONS

Sama Arjika, M. P. Chaudhary* and M. N. Hounkonnou**
Department of Mathematics and Informatics
University of Agadez, P.O. Box: 199, Agadez, NIGER
E-mail : rjkama2008@gmail.com
*International Scientific Research and Welfare Organization (Albert Einstein Chair Professor of Mathematical Sciences) New Delhi - 110018, INDIA
E-mail : dr.m.p.chaudhary@gmail.com
**International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair)
University of Abomey-Calavi, 072 BP 50 Cotonou, BENIN REPUBLIC E-mail : norbert.hounkonou@cipma.uac.bj

(Received: Feb. 13, 2022 Accepted: Apr. 25, 2022 Published: Jun. 30, 2022)
Abstract: In this paper, we give an extension of the first Heine's transformation formula using q-difference equations. Further, we discussed a Ramanujan's theta function $\psi(q)$ and deduced it as a particular case.

Keywords and Phrases: q-Difference operator; q-Binomial theorem; q-integral identities; q-Difference equations, Ramanujan theta function.

2020 Mathematics Subject Classification: 05A30, 11B65, 33D15, 33D60, 39A13.

1. Introduction

Chen and Liu [12] developed an interesting method of deriving hypergeometric identities by parameter augmentation. This method means that a hypergeometric
identity with multiple parameters may be derived from its special case obtained by reducing some parameters to zero. It has more realizations as in [11, 9, 8, 4]. In this short paper, we use the q-operator $\mathbb{T}\left(a, b, c, d, e, y D_{x}\right)$ introduced by Cao et al. [4] to give a formal generalization of the first Heine's transformation formula by using the properties of q-difference equations. Let us start this study by reviewing some common notation and terminology for basic hypergeometric series.

Throughout this paper, we refer to ([5]-[7]; [14]) for definitions and notations. We also suppose that $0<q<1$. For complex numbers a, the q-shifted factorials are defined by

$$
\begin{equation*}
(a ; q)_{0}:=1, \quad(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) \quad \text { and } \quad(a ; q)_{\infty}:=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{1.1}
\end{equation*}
$$

where (see, for example, [14] and [23])

$$
(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}},(a ; q)_{n+m}=(a ; q)_{n}\left(a q^{n} ; q\right)_{m},\left(\frac{q}{a} ; q\right)_{n}=\frac{(-a)^{-n} q^{\left({ }_{2}^{n+1}\right)}\left(a q^{-n} ; q\right)_{\infty}}{(a ; q)_{\infty}}
$$

We adopt the following notation:

$$
\left(a_{1}, a_{2}, \cdots, a_{r} ; q\right)_{m}=\left(a_{1} ; q\right)_{m}\left(a_{2} ; q\right)_{m} \cdots\left(a_{r} ; q\right)_{m} \quad(m \in \mathbb{N}:=\{1,2,3, \cdots\})
$$

Also, for m large, we have

$$
\left(a_{1}, a_{2}, \cdots, a_{r} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \cdots\left(a_{r} ; q\right)_{\infty}
$$

The q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \tag{1.2}\\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

The basic (or q-) hypergeometric function of the variable z with \mathfrak{r} numerator and \mathfrak{s} denominator parameters is defined as follows (see, for details, the monographs by Slater [23, Chapter 3] and by Srivastava and Karlsson [30, p. 347, Eq. (272)]; see also [24] and [16]):

$$
\left.{ }_{\mathfrak{r}} \Phi_{\mathfrak{s}}\left[\begin{array}{l}
a_{1}, a_{2}, \cdots, a_{\mathfrak{r}} ; \\
\\
b_{1}, b_{2}, \cdots, b_{\mathfrak{s}} ;
\end{array}\right] ; z\right]:=\sum_{n=0}^{\infty}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+\mathfrak{s}-\mathfrak{r}} \frac{\left(a_{1}, a_{2}, \cdots, a_{\mathfrak{r}} ; q\right)_{n}}{\left(b_{1}, b_{2}, \cdots, b_{\mathfrak{s}} ; q\right)_{n}} \frac{z^{n}}{(q ; q)_{n}}
$$

where $q \neq 0$ when $\mathfrak{r}>\mathfrak{s}+1$. Here, we are mainly concerned with the Cauchy polynomials $p_{n}(x, y)$ as given below (see [10] and [14]):

$$
\begin{equation*}
p_{n}(x, y):=(x-y)(x-q y) \cdots\left(x-q^{n-1} y\right)=\left(\frac{y}{x} ; q\right)_{n} x^{n} . \tag{1.3}
\end{equation*}
$$

The homogeneous version of the Cauchy identity or the following q-binomial theorem (see, for example, [14], [23] and [30]) is given:

$$
\left.\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} z^{k}={ }_{1} \Phi_{0}\left[\begin{array}{c}
a ; \tag{1.4}\\
-;
\end{array}\right] ; z\right]=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}} \quad(|z|<1)
$$

Upon further setting $a=0$, this last relation (1.4) becomes Euler's identity (see, for example, [14]):

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{z^{k}}{(q ; q)_{k}}=\frac{1}{(z ; q)_{\infty}} \quad(|z|<1) \tag{1.5}
\end{equation*}
$$

or its inverse relation given below [14]:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\binom{k}{2}}}{(q ; q)_{k}} z^{k}=(z ; q)_{\infty} \tag{1.6}
\end{equation*}
$$

Based upon the q-binomial theorem (1.4) and Heine's transformations, Srivastava et al. [29] established and proved a set of two presumably new theta-function identities (see, for details, [29]).

Many interesting and useful extensions of the familiar basic (or q-) series and basic (or q-) polynomials have been investigated due mainly to their demonstrated applications in a wide variety of fields such as theory of partitions, number theory, combinatorial analysis, finite vector spaces, Lie theory, particle physics, engineering and statistics (see, e.g., [30, pp. 350-351]).

The usual q-difference operator is defined by [11, 26, 22]

$$
\begin{equation*}
D_{a}\{f(a)\}:=\frac{f(a)-f(q a)}{a}, \tag{1.7}
\end{equation*}
$$

and their Leibniz rule is given by (see [21])

$$
D_{a}^{n}\{f(a) g(a)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.8}\\
k
\end{array}\right]_{q} q^{k(k-n)} D_{a}^{k}\{f(a)\} D_{a}^{n-k}\left\{g\left(q^{k} a\right)\right\} .
$$

Here, and in what follows, D_{a}^{0} is understood as the identity operator. The following important properties of D_{a} :

$$
\begin{gather*}
D_{a}^{k}\left\{\frac{1}{(a t ; q)_{\infty}}\right\}=\frac{t^{k}}{(a t ; q)_{\infty}}, \quad D_{a}^{k}\left\{(a t ; q)_{\infty}\right\}=(-1)^{k} q^{\left(\frac{k}{2}\right)} t^{k}\left(a t q^{k} ; q\right)_{\infty} \tag{1.9}\\
D_{a}^{k}\left\{a^{n}\right\}= \begin{cases}\frac{(q, q)_{n}}{(q, q)_{n-k}} a^{n-k}, & 0 \leq k \leq n-1 \\
(q, q)_{n}, & k=n \\
0, & k \geq n+1\end{cases} \tag{1.10}
\end{gather*}
$$

are straightforward [20].
Recently, Chen and Liu [11, 12] constructed the following augmentation operator

$$
\begin{equation*}
\mathbb{T}\left(b D_{x}\right)=\sum_{n=0}^{\infty} \frac{\left(b D_{x}\right)^{n}}{(q ; q)_{n}} \tag{1.11}
\end{equation*}
$$

which is of a great significance for deriving identities by applying their various special cases.

Subsequently, Chen and Gu [9] defined the Cauchy augmentation operator

$$
\begin{equation*}
\mathbb{T}\left(a, b D_{x}\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}}\left(b D_{x}\right)^{n} \tag{1.12}
\end{equation*}
$$

and derived the extensions of the Askey-Wilson integral, the Askey-Roy integral, Sears' two-term summation formula, as well as the q-analogs of Barnes' lemmas.

On the other hand, Fang [13] considered the following finite generalized q exponential operator with two parameters:

$$
\mathbb{T}\left[\begin{array}{c|c}
q^{-N}, w & \mid q ; t D_{x} \tag{1.13}\\
v &
\end{array}\right]=\sum_{n=0}^{N} \frac{\left(q^{-N}, w ; q\right)_{n}}{(v, q ; q)_{n}}\left(t D_{x}\right)^{n}
$$

and derived the finite Heine ${ }_{2} \Phi_{1}$ transformations and some terminating q-series transformation formulas.

Moreover, Li and Tan [17] constructed a generalized q-exponential operator with three parameters
and gave two formal extensions of the q-Gauss sum. They derived an extension of q-Chu-Vandermonde sums, a formal extension of the Askey-Wilson integral, a formal extension of Sears' two-term summation formula and some curious q-series identities by the operator technique.

Finally, we recall that Cao et al. [4] constructed the following q-operators:

$$
\begin{equation*}
\mathbb{T}\left(a, b, c, d, e, y D_{x}\right)=\sum_{n=0}^{\infty} \frac{(a, b, c ; q)_{n}}{(q, d, e ; q)_{n}}\left(y D_{x}\right)^{n} \tag{1.15}
\end{equation*}
$$

and thereby generalized Arjika's results in [2] by using the q-difference equations (see, for details, [4]).

We remark that the q-operator (1.15) is a particular case of the homogeneous q-difference operator $\mathbb{T}\left(\mathbf{a}, \mathbf{b}, c D_{x}\right)$ (see [27]) by taking

$$
\mathbf{a}=(a, b, c), \quad \mathbf{b}=(d, e) \quad \text { and } \quad c=y .
$$

Cao et al. [4] used the q-operator (1.15) and gave the following results:
Proposition 1. (see [4, Theorems 3]) Let $f(a, b, c, d, e, x, y)$ be a seven-variable analytic function in a neighborhood of $(a, b, c, d, e, x, y)=(0,0,0,0,0,0,0) \in \mathbb{C}^{7}$. If $f(a, b, c, d, e, x, y)$ satisfies the following difference equation:

$$
\begin{align*}
x\{f(a, b, c, d, & e, x, y)-f(a, b, c, d, e, x, y q) \\
& -(d+e) q^{-1}\left[f(a, b, c, d, e, x, y q)-f\left(a, b, c, d, e, x, y q^{2}\right)\right] \\
& \left.+d e q^{-2}\left[f\left(a, b, c, d, e, x, y q^{2}\right)-f\left(a, b, c, d, e, x, y q^{3}\right)\right]\right\} \\
& =y\{[f(a, b, c, d, e, x, y)-f(a, b, c, d, e, x q, y)] \\
& -(a+b+c)[f(a, b, c, d, e, x, y q)-f(a, b, c, d, e, x q, y q)] \\
& +(a b+a c+b c)\left[f\left(a, b, c, d, e, x, y q^{2}\right)-f\left(a, b, c, d, e, x q, y q^{2}\right)\right] \\
& \left.-a b c\left[f\left(a, b, c, d, e, x, y q^{3}\right)-f\left(a, b, c, d, e, x q, y q^{3}\right)\right]\right\}, \tag{1.16}
\end{align*}
$$

then

$$
\begin{equation*}
f(a, b, c, d, e, x, y)=\mathbb{T}\left(a, b, c, d, e, y D_{x}\right)\{f(a, b, c, d, e, x, 0)\} . \tag{1.17}
\end{equation*}
$$

Liu $[18,19]$ initiated the method based upon q-difference equations and deduced several results involving Bailey's ${ }_{6} \psi_{6}, q$-Mehler formulas for the Rogers-Szegö polynomials and q-integral version of the Sears transformation.

Proposition 2. (see [28]) The following assertion holds:

$$
\begin{align*}
& \mathbb{T}\left(r, f, g, v, w, u D_{a}\right)\left\{\frac{(a s ; q)_{\infty}}{(a z, a t ; q)_{\infty}}\right\} \\
& =\frac{(a s ; q)_{\infty}}{(a z, a t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}} \frac{\left(\frac{s}{z}, a t ; q\right)_{k}}{(a s, q ; q)_{k}} z^{k} t^{j} \tag{1.18}
\end{align*}
$$

provided that max $\{|a z|,|a t|,|u t|\}<1$.
Based upon the work presented by Srivastava et al. [29] on q-binomial theorem (1.4) and Heine's transformations, we will consider the q-operator (1.15) and derive a formal generalization of the first Heine's transformation formula [15] by using the q-difference equations and find new analogous or more general identities and their possible applications in theoretical or applied sciences.

2. Main Results

As a prelude to the main results, it is worth mentioning the next q-difference formula:

Theorem 1. For $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, the following result holds:

$$
\begin{align*}
& \mathbb{T}\left(r, f, g, v, w, u D_{a}\right)\left\{\frac{a^{m}}{(a t ; q)_{\infty}}\right\} \\
& \quad=\frac{a^{m}}{(a t ; q)_{\infty}} \sum_{k=0}^{m} \sum_{j=0}^{\infty}\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(a t ; q)_{k} t^{j} a^{-k} \tag{2.1}
\end{align*}
$$

provided that max $\{|a t|,|u t|\}<1$.
Proof. By the means of the definition (1.15) of the operator $\mathbb{T}\left(r, f, g, v, w, u D_{a}\right)$ and the Leibniz rule (1.8), the left-hand side of (2.1) equals

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(r, f, g ; q)_{n} u^{n}}{(v, w, q ; q)_{n}} D_{a}^{n}\left\{\frac{a^{m}}{(a t ; q)_{\infty}}\right\} \\
& \quad=\sum_{n=0}^{\infty} \frac{(r, f, g ; q)_{n} u^{n}}{(v, w, q ; q)_{n}} \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} q^{k(k-n)} D_{a}^{k}\left\{a^{m}\right\} D_{a}^{n-k}\left\{\frac{1}{\left(a t q^{k} ; q\right)_{\infty}}\right\} \tag{2.2}
\end{align*}
$$

Using the q-identities (1.9) and (1.10), respectively, we get:

$$
\begin{align*}
& \mathbb{T}\left(r, f, g, v, w, u D_{a}\right)\left\{\frac{a^{m}}{(a t ; q)_{\infty}}\right\} \\
&=\sum_{n=0}^{\infty} \frac{(r, f, g ; q)_{n} u^{n}}{(v, w, q ; q)_{n}} \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} q^{k(k-n)} \frac{(q ; q)_{m} a^{m-k}}{(q ; q)_{m-k}} \frac{\left(t q^{k}\right)^{n-k}}{\left(a t q^{k} ; q\right)_{\infty}} \\
&=\frac{(q ; q)_{m} a^{m}}{(a t ; q)_{\infty}} \sum_{k=m}^{\infty} \frac{(a t ; q)_{k} a^{-k}}{(q ; q)_{m-k}(q ; q)_{k}} \sum_{k=n}^{\infty} \frac{(r, f, g ; q)_{n} u^{n} t^{n-k}}{(v, w ; q)_{n}(q ; q)_{n-k}} . \tag{2.3}
\end{align*}
$$

Substituting $n-k=n$, the right-hand side of (2.3) takes the form:

$$
\frac{a^{m}}{(a t ; q)_{\infty}} \sum_{k=0}^{m} \sum_{j=0}^{\infty}\left[\begin{array}{c}
m \tag{2.4}\\
k
\end{array}\right]_{q} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(a t ; q)_{k} t^{j} a^{-k} .
$$

Summarizing the above calculations (2.2)-(2.4), we get the formula (2.1) of Theorem 1.

We remark that, when $m=0$, Theorem 1 reduces to the concluding result of Srivastava et al. [4].
Corollary 1. It is asserted that

$$
\mathbb{T}\left(r, f, g, v, w, u D_{s}\right)\left\{\frac{1}{(x s ; q)_{\infty}}\right\}=\frac{1}{(x s ; q)_{\infty}}{ }^{3} \Phi_{2}\left[\begin{array}{cc}
r, f, g ; & \tag{2.5}\\
v ; x u
\end{array}\right]
$$

provided that max $\{|x s|,|x u|\}<1$.
Let us now recall the following first Heine's transformation formula (see, for example, [1], [14], [23] and [30]):

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a, b ; q)_{n} z^{n}}{(c, q ; q)_{n}}=\frac{(a, b z ; q)_{\infty}}{(c, z ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\frac{c}{a}, z ; q\right)_{n}}{(b z, q ; q)_{n}} a^{n} . \tag{2.6}
\end{equation*}
$$

In Theorem 2 below, we give a formal generalization of the first Heine's transformation formula (2.6) by using the properties of the q-difference equations. Before stating our main theorem, let us provide Heine's [15] proof of the transformation formula by using the q-Binomial theorem as follows:

$$
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}(b ; q)_{k}}{(q ; q)_{k}(c ; q)_{k}} z^{k}=\frac{(b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} z^{k} \frac{\left(c q^{k} ; q\right)_{\infty}}{\left(b q^{k} ; q\right)_{\infty}}
$$

$$
\begin{aligned}
& =\frac{(b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} z^{k} \sum_{j=0}^{\infty} \frac{\left(\frac{c}{b} ; q\right)_{j}}{(q ; q)_{j}}\left(b q^{k}\right)^{j} \\
& =\frac{(b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{j=0}^{\infty} \frac{\left(\frac{c}{b} ; q\right)_{j}}{(q ; q)_{j}} b^{j} \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}}\left(z q^{j}\right)^{k} \\
& =\frac{(b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{j=0}^{\infty} \frac{\left(\frac{c}{b} ; q\right)_{j}}{(q ; q)_{j}^{j}} b^{j} \frac{\left(a z q^{j} ; q\right)_{\infty}}{\left(z q^{j} ; q\right)_{\infty}} \\
& =\frac{(b ; q)_{\infty}(a z ; q)_{\infty}}{(c ; q)_{\infty}(z ; q)_{\infty}} \sum_{j=0}^{\infty} \frac{\left(\frac{c}{b} ; q\right)_{j}(z ; q)_{j}}{(q ; q)_{j}(a z ; q)_{j}} b^{j}
\end{aligned}
$$

Theorem 2. For $|z|<1$ and $|b|<1$, the following result holds:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(a, b ; q)_{n} z^{n}}{(c, q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}} \frac{\left(\frac{c}{a}, d ; q\right)_{k} q^{n k}}{\left(c q^{n}, q ; q\right)_{k}} a^{k} d^{j} \\
& \quad=\frac{(a, b z ; q)_{\infty}}{(c, z ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{j=0}^{\infty}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \frac{\left(\frac{c}{a}, z ; q\right)_{n} a^{n}}{(b z, q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(d ; q)_{k} d^{j} \tag{2.7}
\end{align*}
$$

provided that each of both sides of (2.7) exists.
Proof of Theorem 2. Upon first setting $a \rightarrow a x$ and $c \rightarrow c x$ in (2.6) and then multiplying both sides of the resulting equation by $\frac{1}{(d x ; q)_{\infty}}$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(b ; q)_{n} z^{n}}{(q ; q)_{n}} \cdot \frac{\left(c x q^{n} ; q\right)_{\infty}}{\left(a x q^{n}, d x ; q\right)_{\infty}}=\frac{(b z ; q)_{\infty}}{(z ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\frac{c}{a}, z ; q\right)_{n} a^{n}}{(b z, q ; q)_{n}} \cdot \frac{x^{n}}{(d x ; q)_{\infty}} \tag{2.8}
\end{equation*}
$$

Eq. (2.7) can be written equivalently as follows:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(b ; q)_{n} z^{n}}{(q ; q)_{n}} \cdot \frac{\left(c x q^{n} ; q\right)_{\infty}}{\left(a x q^{n}, d x ; q\right)_{\infty}} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}} \frac{\left(\frac{c}{a}, d x ; q\right)_{k} q^{n k}}{(q ; q)_{k}\left(c x q^{n} ; q\right)_{k}} a^{k} d^{j} \\
& \quad=\frac{(b z ; q)_{\infty}}{(z ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\frac{c}{a}, z ; q\right)_{n} a^{n}}{(b z, q ; q)_{n}} \cdot \frac{x^{n}}{(d x ; q)_{\infty}} \sum_{k=0}^{n} \sum_{j=0}^{\infty}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(d x ; q)_{k} d^{j} x^{-k} \tag{2.9}
\end{align*}
$$

If we use $F(r, f, g, v, w, x, u)$ to denote the right-hand side of (2.9), it is easy to verify that $F(r, f, g, v, w, x, u)$ satisfies (1.16). By applying (1.17), we thus find
that

$$
\begin{aligned}
F(r, f, g, v, w, x, u) & =\mathbb{T}\left(r, f, g, v, w, u D_{x}\right)\{F(r, f, g, v, w, x, 0)\} \\
& =\mathbb{T}\left(r, f, g, v, w, u D_{x}\right)\left\{\frac{(b z ; q)_{\infty}}{(z ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\frac{c}{a}, z ; q\right)_{n} a^{n}}{(b z, q ; q)_{n}} \cdot \frac{x^{n}}{(d x ; q)_{\infty}}\right\} \text { by }(2.8) \\
& =\mathbb{T}\left(r, f, g, v, w, u D_{x}\right)\left\{\sum_{n=0}^{\infty} \frac{(b ; q)_{n} z^{n}}{(q ; q)_{n}} \cdot \frac{\left(c x q^{n} ; q\right)_{\infty}}{\left(a x q^{n}, d x ; q\right)_{\infty}}\right\} \\
& =\sum_{n=0}^{\infty} \frac{(b ; q)_{n} z^{n}}{(q ; q)_{n}} \cdot \mathbb{T}\left(r, f, g, v, w, u D_{x}\right)\left\{\frac{\left(c x q^{n} ; q\right)_{\infty}}{\left(a x q^{n}, d x ; q\right)_{\infty}}\right\} .
\end{aligned}
$$

The proof of the formula (2.7) of Theorem 2 can now be completed by making use of the relation (1.18) and $x=1$.

Corollary 2. It is asserted that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}} \frac{(d ; q)_{k} q^{n k}}{(q ; q)_{k}} a^{k} d^{j} \\
& \quad=\frac{(a ; q)_{\infty}}{(z ; q)_{\infty}} \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \frac{(z ; q)_{n} a^{n}}{(q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(d ; q)_{k} d^{j} \tag{2.10}
\end{align*}
$$

$|z|<1$ and $|b|<1$.
Remark 1. For $u=0$, the formula (2.7) reduces to (2.6). For $b=c=0$, it gives (2.10), while for $b=c=u=0$, it yields the q-binomial theorem

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}} \quad(|z|<1) \tag{2.11}
\end{equation*}
$$

As a special case of Theorem 2, if we take $z \rightarrow \frac{q z}{b}$ and then letting $b \rightarrow \infty$ and $c \rightarrow 0$ in (2.6), we have the following corollary.

Corollary 3. The following relation holds:

$$
\begin{align*}
\sum_{n=0}^{\infty} & \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}(a ; q)_{n} z^{n}}{(q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}} \frac{(d ; q)_{k}}{(q ; q)_{k}}\left(a q^{n}\right)^{k} d^{j} \\
& =(a, q z ; q)_{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{j=0}^{\infty}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \frac{a^{n}}{(q z, q ; q)_{n}} \frac{(r, f, g ; q)_{j+k} u^{j+k}}{(q ; q)_{j}(v, w ; q)_{j+k}}(d ; q)_{k} d^{j} \tag{2.12}
\end{align*}
$$

provided that each of both sides of (2.12) exists.

Remark 2.

1. For $u=0, z=-z$ and $|q|<1$, the expression (2.12) reduces to the concluding remarks of [29, Eq. (12)]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} q^{\frac{n(n+1)}{2}} z^{n}=(a,-q z ; q)_{\infty} \sum_{n=0}^{\infty} \frac{a^{n}}{(-q z, q ; q)_{n}} \tag{2.13}
\end{equation*}
$$

2. As an application, for $u=0, a=q$ and $z=-1$, the expression (2.12) reduces to a Ramanujan theta function [3, pp. 36-37, Entry 22]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}=(q,-q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\psi(q) \tag{2.14}
\end{equation*}
$$

3. Concluding Remarks

In a recently published review-cum-expository review article, in addition to applying the q-analysis to Geometric Function Theory of Complex Analysis, Srivastava [25] pointed out the fact that the results for the q-analogues can easily (and possibly trivially) be translated into the corresponding results for the (p, q) analogues (with $0<|q|<p \leqq 1$) by applying some obvious parametric and argument variations, the additional parameter p being redundant. Such exposition and observation by Srivastava [25, p. 340] might be also applied to our present results with $|q|<1$.

Acknowledgements

The research work of the second author (M.P.Chaudhary) is supported through a major research project of National Board of Higher Mathematics (NBHM) of the Department of Atomic Energy (DAE), Government of India by its sanction letter Ref. No. 02011/12/2020 NBHM(R.P.)/R \& D II/7867, dated 19th October 2020.

References

[1] Andrews, G. E., The Theory of Partitions, Cambridge University Press, Cambridge, London and New York, 1998.
[2] Arjika, S., q-difference equations for homogeneous q-difference operators and their applications, J. Differ. Equ. Appl., 26 (2020), 987-999.
[3] Berndt, B. C., Ramanujan's Notebooks- Part III, Springer-Verlag, Berlin, Heidelberg and New York, 1991.
[4] Cao, J., Xu, B. and Arjika, S., A note on generalized q-difference equations for general Al-Salam-Carlitz polynomials, Adv. Differ. Equa., (2020), Article ID 668 .
[5] Chaudhary, M. P., Certain Aspects of Special Functions and Integral Operators, Lambert Academic Publishing, Germany, 2014.
[6] Chaudhary, M. P., On modular relations for the Roger-Ramanujan type identities, Pacific J. Appl. Math., 7 (2016), 177-184.
[7] Chaudhary, M. P. and Jorge Luis Cimadevilla Villacorta, Representations of certain theta function identities in terms of combinatorial partition identities, Far East J. Math. Sci., 102 (2017), 1605-1601.
[8] Chen, W. Y. C., Saad, H. L. and Sun, L. H., The bivariate Rogers-Szegö polynomials, J. Phys. A, 40 (2007), 6071-6084.
[9] Chen, V. Y. B. and Gu, N. S. S., The Cauchy operator for basic hypergeometric series, Adv. Appl. Math., 41 (2008), 177-196.
[10] Chen, W. Y. C., Fu, A. M. and Zhang, B., The homogeneous q-difference operator, Adv. Appl. Math., 31 (2003), 659-668.
[11] Chen, W. Y. C. and Liu, Z.-G., Parameter augmenting for basic hypergeometric series II, J. Combin. Theory Ser. A, 80 (1997), 175-195.
[12] Chen, W. Y. C. and Liu, Z.-G., Parameter augmentation for basic hypergeometric series I, In: B. E. Sagan and R. P. Stanley (Editors), Mathematical Essays in Honor of Gian-Carlo Rota, Birkäuser, Basel and New York, (1998), 111-129.
[13] Fang, J. P., Some applications of q-differential operator, J. Korean Math. Soc., 47 (2010), 223-233.
[14] Gasper, G. and Rahman, M., Basic Hypergeometric Series, (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, Vol. 35, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne and Sydney, (1990); Second edition, Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, London and New York, 2004.
[15] Heine, E., Über die Reihe $1+\frac{\left(q^{\alpha}-1\right)\left(q^{\beta}-1\right)}{(q-1)\left(q^{\gamma}-1\right)} x+\frac{\left(q^{\alpha}-1\right)\left(q^{\alpha+1}-1\right)\left(q^{\beta}-1\right)\left(q^{\beta+1}-1\right)}{(q-1)\left(q^{2}-1\right)\left(q^{\gamma}-1\right)\left(q^{\gamma+1}-1\right)} x^{2}+$ (Aus einem Schreiben an Lejeune Dirichlet), J. Reine Angrew. Math., 32 (1846), 210-212.
[16] Koekock, R. and Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report No. 98-17, Delft University of Technology, Delft, The Netherlands, 1998.
[17] Li, N. N. and Tan, W., Two generalized q-exponential operators and their applications, Adv. Differ. Equ., (2016), Article ID 53, 1-14.
[18] Liu, Z.-G., Two q-difference equations and q-operator identities, J. Differ. Equ. Appl., 16 (2010), 1293-1307.
[19] Liu, Z.-G., An extension of the non-terminating ${ }_{6} \phi_{5}$-summation and the Askey-Wilson polynomials, J. Differ. Equ. Appl., 17 (2011), 1401-1411.
[20] Liu, Z.-G., Two q-difference equations and q-operator identities, J. Differ. Equ. Appl., 16 (2010), 1293-1307.
[21] Roman, S., The theory of the umbral calculus I, J. Math. Anal. Appl., 87 (1982), 58-115.
[22] Saad, H. L. and Sukhi, A. A., Another homogeneous q-difference operator, Appl. Math. Comput., 215 (2010), 4332-4339.
[23] Slater, L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, 1966.
[24] Srivastava, H. M., Certain q-polynomial expansions for functions of several variables I and II, IMA J. Appl. Math., 30 (1983), 315-323.; ibid. 33 (1984), 205-209.
[25] Srivastava, H. M., Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344.
[26] Srivastava, H. M., and Abdlhusein, M. A., New forms of the Cauchy operator and some of their applications, Russian J. Math. Phys., 23 (2016), 124-134.
[27] Srivastava, H. M., and Arjika, S., Generating functions for some families of the generalized Al-Salam-Carlitz q-polynomials, Adv. Differ. Equ., (2020), Article ID 498, 1-17.
[28] Srivastava, H. M., Cao, J. and Arjika, S., A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions, Symmetry, 12 (2020), 1816.
[29] Srivastava, H. M., Chaudhary, M. P. and Wakene, F. K., A family of thetafunction identities based upon q-binomial theorem and Heine's transformations, Montes Taurus J. Pure Appl. Math., 2 (2020), 1-6.
[30] Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

