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1. Introduction
Chen and Liu [12] developed an interesting method of deriving hypergeometric

identities by parameter augmentation. This method means that a hypergeometric
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identity with multiple parameters may be derived from its special case obtained by
reducing some parameters to zero. It has more realizations as in [11, 9, 8, 4]. In
this short paper, we use the q-operator T(a, b, c, d, e, yDx) introduced by Cao et al.
[4] to give a formal generalization of the first Heine’s transformation formula by
using the properties of q-difference equations. Let us start this study by reviewing
some common notation and terminology for basic hypergeometric series.

Throughout this paper, we refer to ([5]-[7]; [14]) for definitions and notations.
We also suppose that 0 < q < 1. For complex numbers a, the q-shifted factorials
are defined by

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk) and (a; q)∞ :=
∞∏
k=0

(1− aqk), (1.1)

where (see, for example, [14] and [23])

(a; q)n =
(a; q)∞

(aqn; q)∞
, (a; q)n+m = (a; q)n(aqn; q)m,

(q
a

; q
)
n

=
(−a)−n q(

n+1
2 )(aq−n; q)∞

(a; q)∞
.

We adopt the following notation:

(a1, a2, · · · , ar; q)m = (a1; q)m(a2; q)m · · · (ar; q)m (m ∈ N := {1, 2, 3, · · · }).

Also, for m large, we have

(a1, a2, · · · , ar; q)∞ = (a1; q)∞(a2; q)∞ · · · (ar; q)∞.

The q-binomial coefficient is defined by[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
. (1.2)

The basic (or q-) hypergeometric function of the variable z with r numerator and
s denominator parameters is defined as follows (see, for details, the monographs
by Slater [23, Chapter 3] and by Srivastava and Karlsson [30, p. 347, Eq. (272)];
see also [24] and [16]):

rΦs

 a1, a2, · · · , ar;

b1, b2, · · · , bs;
q; z

 :=
∞∑
n=0

[
(−1)n q(

n
2)
]1+s−r (a1, a2, · · · , ar; q)n

(b1, b2, · · · , bs; q)n
zn

(q; q)n
,
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where q 6= 0 when r > s + 1. Here, we are mainly concerned with the Cauchy
polynomials pn(x, y) as given below (see [10] and [14]):

pn(x, y) := (x− y)(x− qy) · · · (x− qn−1y) =
(y
x

; q
)
n
xn. (1.3)

The homogeneous version of the Cauchy identity or the following q-binomial
theorem (see, for example, [14], [23] and [30]) is given:

∞∑
k=0

(a; q)k
(q; q)k

zk = 1Φ0

 a;

;
q; z

 =
(az; q)∞
(z; q)∞

(|z| < 1). (1.4)

Upon further setting a = 0, this last relation (1.4) becomes Euler’s identity (see,
for example, [14]):

∞∑
k=0

zk

(q; q)k
=

1

(z; q)∞
(|z| < 1), (1.5)

or its inverse relation given below [14]:

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
zk = (z; q)∞. (1.6)

Based upon the q-binomial theorem (1.4) and Heine’s transformations, Srivastava
et al. [29] established and proved a set of two presumably new theta-function
identities (see, for details, [29]).

Many interesting and useful extensions of the familiar basic (or q-) series and
basic (or q-)polynomials have been investigated due mainly to their demonstrated
applications in a wide variety of fields such as theory of partitions, number theory,
combinatorial analysis, finite vector spaces, Lie theory, particle physics, engineering
and statistics (see, e.g., [30, pp. 350–351]).

The usual q-difference operator is defined by [11, 26, 22]

Da

{
f(a)

}
:=

f(a)− f(qa)

a
, (1.7)

and their Leibniz rule is given by (see [21])

Dn
a {f(a)g(a)} =

n∑
k=0

[
n

k

]
q

qk(k−n)Dk
a {f(a)}Dn−k

a

{
g(qka)

}
. (1.8)
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Here, and in what follows, D0
a is understood as the identity operator. The following

important properties of Da :

Dk
a

{
1

(at; q)∞

}
=

tk

(at; q)∞
, Dk

a {(at; q)∞} = (−1)kq(
k
2)tk(atqk; q)∞ (1.9)

Dk
a{an} =


(q, q)n

(q, q)n−k
an−k, 0 ≤ k ≤ n− 1

(q, q)n, k = n

0, k ≥ n+ 1

(1.10)

are straightforward [20].
Recently, Chen and Liu [11, 12] constructed the following augmentation oper-

ator

T(bDx) =
∞∑
n=0

(bDx)n

(q; q)n
, (1.11)

which is of a great significance for deriving identities by applying their various
special cases.

Subsequently, Chen and Gu [9] defined the Cauchy augmentation operator

T(a, bDx) =
∞∑
n=0

(a; q)n
(q; q)n

(bDx)n (1.12)

and derived the extensions of the Askey–Wilson integral, the Askey–Roy integral,
Sears’ two-term summation formula, as well as the q-analogs of Barnes’ lemmas.

On the other hand, Fang [13] considered the following finite generalized q-
exponential operator with two parameters:

T
[
q−N , w
v

∣∣∣q; tDx

]
=

N∑
n=0

(q−N , w; q)n
(v, q; q)n

(tDx)n (1.13)

and derived the finite Heine 2Φ1 transformations and some terminating q-series
transformation formulas.

Moreover, Li and Tan [17] constructed a generalized q-exponential operator
with three parameters

T
[
u, v
w

∣∣∣q; tDx

]
=
∞∑
n=0

(u, v; q)n
(w, q; q)n

(tDx)n (1.14)
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and gave two formal extensions of the q-Gauss sum. They derived an extension
of q-Chu–Vandermonde sums, a formal extension of the Askey–Wilson integral, a
formal extension of Sears’ two–term summation formula and some curious q–series
identities by the operator technique.

Finally, we recall that Cao et al. [4] constructed the following q-operators:

T(a, b, c, d, e, yDx) =
∞∑
n=0

(a, b, c; q)n
(q, d, e; q)n

(yDx)n (1.15)

and thereby generalized Arjika’s results in [2] by using the q-difference equations
(see, for details, [4]).

We remark that the q-operator (1.15) is a particular case of the homogeneous
q-difference operator T(a,b, cDx) (see [27]) by taking

a = (a, b, c), b = (d, e) and c = y.

Cao et al. [4] used the q-operator (1.15) and gave the following results:

Proposition 1. (see [4, Theorems 3]) Let f(a, b, c, d, e, x, y) be a seven-variable
analytic function in a neighborhood of (a, b, c, d, e, x, y) = (0, 0, 0, 0, 0, 0, 0) ∈ C7.
If f(a, b, c, d, e, x, y) satisfies the following difference equation:

x
{
f(a, b, c, d, e, x, y)− f(a, b, c, d, e, x, yq)

− (d+ e)q−1 [f(a, b, c, d, e, x, yq)− f(a, b, c, d, e, x, yq2)]

+ deq−2 [f(a, b, c, d, e, x, yq2)− f(a, b, c, d, e, x, yq3)]
}

= y
{

[f(a, b, c, d, e, x, y)− f(a, b, c, d, e, xq, y)]

− (a+ b+ c)[f(a, b, c, d, e, x, yq)− f(a, b, c, d, e, xq, yq)]

+ (ab+ ac+ bc)[f(a, b, c, d, e, x, yq2)− f(a, b, c, d, e, xq, yq2)]

− abc[f(a, b, c, d, e, x, yq3)− f(a, b, c, d, e, xq, yq3)]
}
, (1.16)

then

f(a, b, c, d, e, x, y) = T(a, b, c, d, e, yDx){f(a, b, c, d, e, x, 0)}. (1.17)

Liu [18, 19] initiated the method based upon q-difference equations and deduced
several results involving Bailey’s 6ψ6, q-Mehler formulas for the Rogers-Szegö poly-
nomials and q-integral version of the Sears transformation.
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Proposition 2. (see [28]) The following assertion holds:

T(r, f, g, v, w, uDa)

{
(as; q)∞

(az, at; q)∞

}
=

(as; q)∞
(az, at; q)∞

∞∑
k=0

∞∑
j=0

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(
s
z
, at; q

)
k

(as, q; q)k
zktj (1.18)

provided that max {|az|, |at|, |ut|} < 1.

Based upon the work presented by Srivastava et al. [29] on q-binomial theorem
(1.4) and Heine’s transformations, we will consider the q-operator (1.15) and derive
a formal generalization of the first Heine’s transformation formula [15] by using the
q-difference equations and find new analogous or more general identities and their
possible applications in theoretical or applied sciences.

2. Main Results

As a prelude to the main results, it is worth mentioning the next q-difference
formula:

Theorem 1. For m ∈ N0 = N ∪ {0}, the following result holds:

T(r, f, g, v, w, uDa)

{
am

(at; q)∞

}
=

am

(at; q)∞

m∑
k=0

∞∑
j=0

[
m

k

]
q

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(at; q)kt
ja−k (2.1)

provided that max {|at|, |ut|} < 1.
Proof. By the means of the definition (1.15) of the operator T(r, f, g, v, w, uDa)
and the Leibniz rule (1.8), the left-hand side of (2.1) equals

∞∑
n=0

(r, f, g; q)nu
n

(v, w, q; q)n
Dn

a

{
am

(at; q)∞

}
=
∞∑
n=0

(r, f, g; q)nu
n

(v, w, q; q)n

n∑
k=0

[
n

k

]
q

qk(k−n) Dk
a {am}Dn−k

a

{
1

(atqk; q)∞

}
.

(2.2)
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Using the q-identities (1.9) and (1.10), respectively, we get:

T(r, f, g, v, w, uDa)

{
am

(at; q)∞

}
=
∞∑
n=0

(r, f, g; q)nu
n

(v, w, q; q)n

n∑
k=0

[
n

k

]
q

qk(k−n)
(q; q)m a

m−k

(q; q)m−k

(tqk)n−k

(atqk; q)∞

=
(q; q)m a

m

(at; q)∞

∞∑
k=m

(at; q)k a
−k

(q; q)m−k(q; q)k

∞∑
k=n

(r, f, g; q)n u
n tn−k

(v, w; q)n(q; q)n−k
. (2.3)

Substituting n− k = n, the right-hand side of (2.3) takes the form:

am

(at; q)∞

m∑
k=0

∞∑
j=0

[
m

k

]
q

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(at; q)kt
ja−k. (2.4)

Summarizing the above calculations (2.2)-(2.4), we get the formula (2.1) of Theo-
rem 1.

We remark that, when m = 0, Theorem 1 reduces to the concluding result of
Srivastava et al. [4].

Corollary 1. It is asserted that

T(r, f, g, v, w, uDs)

{
1

(xs; q)∞

}
=

1

(xs; q)∞
3Φ2

 r, f, g;

v, w;
q;xu

 (2.5)

provided that max {|xs|, |xu|} < 1.
Let us now recall the following first Heine’s transformation formula (see, for

example, [1], [14], [23] and [30]):

∞∑
n=0

(a, b; q)n z
n

(c, q; q)n
=

(a, bz; q)∞
(c, z; q)∞

∞∑
n=0

( c
a
, z; q)n

(bz, q; q)n
an. (2.6)

In Theorem 2 below, we give a formal generalization of the first Heine’s trans-
formation formula (2.6) by using the properties of the q-difference equations.
Before stating our main theorem, let us provide Heine’s [15] proof of the transfor-
mation formula by using the q-Binomial theorem as follows:

∞∑
k=0

(a; q)k(b; q)k
(q; q)k(c; q)k

zk =
(b; q)∞
(c; q)∞

∞∑
k=0

(a; q)k
(q; q)k

zk
(cqk; q)∞
(bqk; q)∞
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=
(b; q)∞
(c; q)∞

∞∑
k=0

(a; q)k
(q; q)k

zk
∞∑
j=0

( c
b
; q)j

(q; q)j
(bqk)j

=
(b; q)∞
(c; q)∞

∞∑
j=0

( c
b
; q)j

(q; q)j
bj
∞∑
k=0

(a; q)k
(q; q)k

(zqj)k

=
(b; q)∞
(c; q)∞

∞∑
j=0

( c
b
; q)j

(q; q)j
bj

(azqj; q)∞
(zqj; q)∞

=
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

∞∑
j=0

( c
b
; q)j(z; q)j

(q; q)j(az; q)j
bj.

Theorem 2. For |z| < 1 and |b| < 1, the following result holds:

∞∑
n=0

∞∑
j=0

∞∑
k=0

(a, b; q)n z
n

(c, q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(
c
a
, d; q

)
k
qnk

(cqn, q; q)k
akdj

=
(a, bz; q)∞
(c, z; q)∞

∞∑
n=0

n∑
k=0

∞∑
j=0

[
n

k

]
q

( c
a
, z; q)n a

n

(bz, q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(d; q)kd
j (2.7)

provided that each of both sides of (2.7) exists.
Proof of Theorem 2. Upon first setting a → ax and c → cx in (2.6) and then
multiplying both sides of the resulting equation by 1

(dx;q)∞
, we get

∞∑
n=0

(b; q)n z
n

(q; q)n
· (cxqn; q)∞

(axqn, dx; q)∞
=

(bz; q)∞
(z; q)∞

∞∑
n=0

( c
a
, z; q)n a

n

(bz, q; q)n
· xn

(dx; q)∞
. (2.8)

Eq. (2.7) can be written equivalently as follows:

∞∑
n=0

(b; q)n z
n

(q; q)n
· (cxqn; q)∞
(axqn, dx; q)∞

∞∑
j=0

∞∑
k=0

(r, f, g; q)j+k uj+k

(q; q)j(v, w; q)j+k

(
c
a , dx; q

)
k
qnk

(q; q)k(cxqn; q)k
akdj

=
(bz; q)∞
(z; q)∞

∞∑
n=0

( ca , z; q)n a
n

(bz, q; q)n
· xn

(dx; q)∞

n∑
k=0

∞∑
j=0

[
n

k

]
q

(r, f, g; q)j+k uj+k

(q; q)j(v, w; q)j+k
(dx; q)kd

jx−k.

(2.9)

If we use F (r, f, g, v, w, x, u) to denote the right-hand side of (2.9), it is easy to
verify that F (r, f, g, v, w, x, u) satisfies (1.16). By applying (1.17), we thus find
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that

F (r, f, g, v, w, x, u) = T(r, f, g, v, w, uDx)
{
F (r, f, g, v, w, x, 0)

}
= T(r, f, g, v, w, uDx)

{
(bz; q)∞
(z; q)∞

∞∑
n=0

( ca , z; q)n a
n

(bz, q; q)n
· xn

(dx; q)∞

}
by (2.8)

= T(r, f, g, v, w, uDx)

{ ∞∑
n=0

(b; q)n z
n

(q; q)n
· (cxqn; q)∞
(axqn, dx; q)∞

}

=
∞∑
n=0

(b; q)n z
n

(q; q)n
· T(r, f, g, v, w, uDx)

{
(cxqn; q)∞

(axqn, dx; q)∞

}
.

The proof of the formula (2.7) of Theorem 2 can now be completed by making use
of the relation (1.18) and x = 1.

Corollary 2. It is asserted that

∞∑
n=0

∞∑
j=0

∞∑
k=0

(a; q)n z
n

(q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(d; q)k q
nk

(q; q)k
akdj

=
(a; q)∞
(z; q)∞

∞∑
j=0

∞∑
n=0

n∑
k=0

[
n

k

]
q

(z; q)n a
n

(q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(d; q)kd
j, (2.10)

|z| < 1 and |b| < 1.

Remark 1. For u = 0, the formula (2.7) reduces to (2.6). For b = c = 0, it gives
(2.10), while for b = c = u = 0, it yields the q-binomial theorem

∞∑
n=0

(a; q)n z
n

(q; q)n
=

(az; q)∞
(z; q)∞

(|z| < 1). (2.11)

As a special case of Theorem 2, if we take z → qz

b
and then letting b→∞ and

c→ 0 in (2.6), we have the following corollary.

Corollary 3. The following relation holds:

∞∑
n=0

∞∑
k=0

∞∑
j=0

(−1)n q
n(n+1)

2 (a; q)n z
n

(q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(d; q)k
(q; q)k

(aqn)kdj

= (a, qz; q)∞

∞∑
n=0

n∑
k=0

∞∑
j=0

[
n

k

]
q

an

(qz, q; q)n

(r, f, g; q)j+k u
j+k

(q; q)j(v, w; q)j+k

(d; q)kd
j (2.12)
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provided that each of both sides of (2.12) exists.

Remark 2.

1. For u = 0, z = −z and |q| < 1, the expression (2.12) reduces to the concluding
remarks of [29, Eq. (12)]:

∞∑
n=0

(a; q)n
(q; q)n

q
n(n+1)

2 zn = (a,−qz; q)∞

∞∑
n=0

an

(−qz, q; q)n
. (2.13)

2. As an application, for u = 0, a = q and z = −1, the expression (2.12) reduces
to a Ramanujan theta function [3, pp. 36–37, Entry 22]:

∞∑
n=0

q
n(n+1)

2 = (q,−q; q)∞
∞∑
n=0

qn

(q2; q2)n
=

(q2; q2)∞
(q; q2)∞

= ψ(q). (2.14)

3. Concluding Remarks
In a recently published review-cum-expository review article, in addition to

applying the q-analysis to Geometric Function Theory of Complex Analysis, Sri-
vastava [25] pointed out the fact that the results for the q-analogues can easily
(and possibly trivially) be translated into the corresponding results for the (p, q)-
analogues (with 0 < |q| < p 5 1) by applying some obvious parametric and
argument variations, the additional parameter p being redundant. Such exposition
and observation by Srivastava [25, p. 340] might be also applied to our present
results with |q| < 1.
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