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Abstract: In this paper, with the useful resource of defining P- 7 regular near-
ring, we make a new method of 7 regular of order two in the near ring. Every P- 7
regular is a strongly P- 7 regular and additionally strongly P- 7 regular is a weakly
P- 7 regular all are equivalent. And discussed some of the results. Every regular
near ring is a 7 regular ring and 7 regular is a regular near-ring. Previously, we
introduce the conception of strongly P-regular Near rings [9]. We have displayed
that a Near ring N is strongly P-regular if and only if it is also regular. A Near-ring
N is called left(right) strongly P-regular if for every ’a’ there is an 'n’ in N such
that @ = na® +p (a = a®>n + p) and a = ana, position P is an arbitrary ideal. We
specify some new concepts and justify them with suitable examples. And also, we
discuss some of the theorems related to it.
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order 2.
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1. Introduction

In mathematics, a near-ring is an algebraic structure like a ring yet fulfilling less
aphorism. Near-rings emerge naturally from functions on groups. Near-rings arise
naturally from functions on the group. The antiquity of the concept of near-ring
is eminent influenced by the knowledge of ring theory. A near-ring is a ring (not
undoubtedly with unity) if and only if addition is commutative and multiplication
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is also distributivity on both sides is ample, and commutative of addition follows
unquestionably. The generalization of rings (Near-rings) plays a vital role in the
development of mathematics.

Let R be an associative ring with unity. If R is 7 regular if for every a € R there
exists a positive integer n such that a” € a”Ra". The very first point out of this
concept dates back to 1939, when it was added by Mccoy in [10], as a generalization
of von neumann regular rings. While Mccoys paper,most attention was given to
regular 7 rings that are commutative, the study of the common case used to be
persevered by using other authors. Azumaya [1] proved that each and every =
regular ring with bounded index of nilpotence is strongly 7 regular. In this paper
discussed about the p-m regular near ring.

Definition 1.1. A NR N is P-m reqular NR, if for each element a € N, there
exists a positive integer n and x € N such that a™ = a"xa™ + p,where p € P be an
arbitrary ideal of N .

Definition 1.2. A NR N is Strongly P-w regular NR, if for each element a € N,
there exists a positive integer n and x € N such that a™ = xa*" + p,where p € P be
an arbitrary ideal of N.

Definition 1.3. Let N. = {a € N/0.a = a} is called the constant zero-symmetric
part of Near-ring N .

Example 1.1. Let N = {0,m,n,q} with addition and multiplication be defined
as below,

+ |10 |m|n|q
0] 0|lm|nj|q
m|i m| 0| q|n
nin|q|0|m
q|q|n|mj|O0

Olm|n|q
0[0[0]01]O0
m|{0|0 | m|m
n|0[{0|n|n
q|0jm|n|q

It can be seen that (N, +,-) is a P-m regular( where P is an arbitrary ideal) as well
as it is 7 regular but N is not regular, as the element m is not a regular element.
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Remark 1.1. Every reqular NR is m-regular but not conversely.

Definition 1.4. A NR N is Weakly P-m regqular NR, if for each element a € N,
there exists a positive integer n and x € N such that a™ = (a™x)3x + p,where p € P
be an arbitrary ideal of N.

Definition 1.5. A NR N is 7 reqular of order 2, if for each element a € N, there

exists a positive integer n = 2 and x € N such that a™ = a*za®.

Example 1.2. If Z is NR. Then Zy = {0,1}is a © reqular of order 2.

Remark 1.2. Regular NR = m regular
m reqular # Regular NR.

Remark 1.3. If N is a w reqular NR then it is a 7 reqular of order 2.

Proof. We know that N is a m regular. (i.e) a"za"™ = a" where a € Nand
x € Nand n is positive integer.Now take n = 2 then we get a’za® = a* 7 regular
of order 2.

3. Main Results

Theorem 2.1. Let N be a strongly P-m regular NR.Then it is a m reqular NR,
where p € P be an arbitrary ideal.

Proof. Let N be a strongly P-7 regular of N. By definition of strongly P-m regular
of N. a® = a*z + p.By zero-symmetric part of N.

(" — (a"wa" + p)) = 0
a"(a" — (a"za™ +p)) = a"0 € N,
a"za"(a" — (a"za" 4+ p)) = a"xa"0 € N,
Thus we have to prove (a" — (a"za™ + p))® = (a™ — (a"xa™ + p))* Then
(a" = (a"za" + p))* = (a" — (a"wa" + p))(a" — (a"za" + p))
= a"(a" — (a"za" 4 p)) — (a"za" + p)(a" — (a"za" + p))
=a"(a" — (a"za" +p)) — a"za"(a" — (a"xa" + p))
—p(a" — (a"za" +p)) €N,
Now
(a™ — (a"za" +p))* = (a" — (a"za™ + p))*(a™ — (a"za™ + p))

€ N.(a" — (a"za™ + p))
€ N,
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Then (a™ — (a"za™ + p)) = 0,Hence by assumption N is P-m regular NR (i.e)
a™ = a"xa" 4+ p where p is an arbitrary ideal.
Then we have,
a" =a"zra" +p
=a"za" +0
=a"za"
Hence N is 7 regular NR.

Corollary 2.1. Let N be a P-m regular NR. Then it is a m reqular NR, where
p € P be an arbitrary ideal.

Theorem 2.2. Let N be a NR. Then followings are equivalent,
(i) P-m regular

(ii) Strongly P-m regular

(111) weakly P-m regqular

Proof. Let N be a P-m regular, by definition of p-m regular is a" = a™xa™ + p for
a™ € N, n is a positive integer and x € N where p is an arbitrary ideal of N. Then
(i) = (i1) Assume N is P-7 regular of NR.

We have to prove N is a strongly P-7 regular NR. Now,

a" =a"xa" +p
=a"(a"x)+p
= (a"a™)x +p
=a*z +p
Hence N is a strongly P-m regular of N.
(17) = (i7i) Assume that N is strongly P-7 regular of NR.

Then we have to prove N is weakly P-m regular of NR.
Thus

a = CLQn(L’ +p
=a"a"(zxx) +p
= (a"za")(a"za")

”(M")(w" ")

"(za"x)(a"a™)

a"ma”)(a”a”)(:pmx)x

@ Q

—~
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=a"(a"a")(zzx)r +p
(a"a
= (

"Y(zzx)r +p
a"r)*z 4+ p

n

Hence N is weakly P-m regular of NR.

(173) = (i) Assume that N is weakly P-m regular NR of N.
we have to prove N is P-m regular of NR.

Now

"a"a")(xxr)r + p
a"(a"zx)rr + p
(@ ra) (") + p
=a"(a"x)+p

(@) +p = (a
=a"
a

=a"za" +p

Hence N is P-m regular of NR.

3. Conclusion

In mathematics, study on near-rings becomes an object of the exercise of several
researchers. In this paper we made an attempt to study the concept of 7 regular
near-ring were characterized and based a portion of the theorem were demonstrated.
In a zero symmetric near-ring idea utilizing by the above theorems. In 7 regular
notion and some simple outcomes on it are delivered via Azumaya [1], Badawi [2].
Moreover, in this paper, P- regular is a P- 7 regular but not conversely. Then P-
7 regular is a P- 7w regular of order two when n = 2.
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