J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 2 (2022), pp. 01-10

ISSN (Online): 2582-5461
ISSN (Print): 2319-1023
CUBIC LEVEL ANALOGUE OF RAMANUJAN'S EISENSTEIN SERIES IDENTITIES

Vasuki K. R. and Darshan A.*
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, INDIA
E-mail : vasuki_kr@hotmail.com
*Sri. H. D. Devegowda Government First Grade College, Paduvalahippe, Holenarsipura Tq., Hassan - 573 211, INDIA
E-mail : darshmath@gmail.com

(Received: Apr. 24, 2022 Accepted: May 15, 2022 Published: Jun. 30, 2022)
Abstract: Let $Q_{n}=1+240 \sum_{k=1}^{\infty} \frac{k^{3} q^{n k}}{1-q^{n k}}$. On page 51-53 of his lost notebook, Ramanujan recorded very interesting identities which relates Q_{1}, Q_{5}, Q_{7} with his theta functions. In this article, we establish analogous identities with respect to Q_{1} and Q_{3}.
Keywords and Phrases: Ramanujan's theta functions, Eisenstein series, P-Q theta function identities.

2020 Mathematics Subject Classification: 11F20, 11M36.

1. Introduction

For any complex number a and $q=e^{-\pi \sqrt{n}}$, where n is a positive integer. we define

$$
(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right) .
$$

S. Ramanujan defined his theta function $f(a, b)$ by

$$
\begin{aligned}
f(a, b) & =\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \\
& =(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b, a b)_{\infty}, \quad|a b|<1
\end{aligned}
$$

Ramanujan also defined some special cases of $f(a, b)$. For example

$$
\begin{equation*}
f(-q)=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n+1)}{2}}=(q ; q)_{\infty} \tag{1.1}
\end{equation*}
$$

Ramanujan's Eisenstein series $Q(q)$ is defined by

$$
\begin{equation*}
Q(q)=1+240 \sum_{k=1}^{\infty} \frac{k^{3} q^{k}}{1-q^{k}} \tag{1.2}
\end{equation*}
$$

Throughout this article for convenience, We set for any positive integer n,

$$
\begin{equation*}
Q_{n}=Q\left(q^{n}\right), \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}=f\left(-q^{n}\right) \tag{1.4}
\end{equation*}
$$

Ramanujan made many contributions to the theory and applications of Eisenstein series in his notebooks [10] and in his lost notebook [11]. In his lost notebook [11, p. 51-53], Ramanujan stated interesting identities which relates Q_{1} and Q_{n} with products and quotients of f_{1} and f_{n} for $n=5$ and 7 . One such identity is

$$
Q_{5}=\frac{f_{1}^{10}}{f_{5}^{2}}+10 q f_{1}^{4} f_{5}^{4}+5 q^{2} \frac{f_{5}^{10}}{f_{1}^{2}}
$$

These identities were studied by different Mathematicians. The first among them was in 1989, by S. Raghavan and S. S. Rangachari [9]. They applied the theory of modular forms and gave the proofs of all the identities. Later, B. C. Berndt, H. H. Chan, J. Sohn and S. H. Son [3] offered two different proofs, both employ Ramanujan's modular equations wherein the second method is more constructive than the first one. Z. G. Liu [8] proved the septic level identities using complex variable theory of elliptic functions, by constructing suitable elliptic integrals which leads to those identities. S. Cooper [5] established the proofs of quintic level identities using the parametrization $k=r(q) r^{2}\left(q^{2}\right)$, where $r(q)$ denotes Roger-Ramanujan continued fraction. A different proof was given by Cooper and P. C. Toh [7]. As opposed to verification, they in fact derived the quintic and septic level identities by constructing a system non-linear equations which turn out to have polynomial solutions.

The main purpose of this paper is to establish cubic level Eisenstein series identities, expressing Q_{1} and Q_{3} in terms of f_{1} and f_{3} in the spirit of Ramanujan
which are analogous to quintic and septic level identities of Ramanujan. The method we are going to utilize here, is very elementary and uses only the P-Q theta function identities stated in the Section 2. At the end, we use the cubic level identities to reprove a result of Ramanujan found in his second notebook.

2. Preliminary Results

Let f_{n} be as defined in (1.4), we set

$$
\begin{gathered}
R=\frac{f_{1}}{q^{\frac{1}{12}} f_{3}}, \quad S=\frac{f_{2}}{q^{\frac{1}{6}} f_{6}}, \\
U=\frac{f_{1}}{q^{\frac{1}{24}} f_{2}}, \quad V=\frac{f_{3}}{q^{\frac{1}{8}} f_{6}}, \\
M=\frac{f_{1}}{q^{\frac{5}{24}} f_{6}}, \quad \text { and } \quad N=\frac{f_{2}}{q^{\frac{1}{24}} f_{3}} .
\end{gathered}
$$

The following P-Q theta function identities are the important tools which is used to prove our main results.

$$
\begin{gather*}
(R S)^{2}+\frac{9}{(R S)^{2}}=\left(\frac{R}{S}\right)^{6}+\left(\frac{S}{R}\right)^{6}, \tag{2.1}\\
(M N)^{2}-\frac{9}{(M N)^{2}}=\left(\frac{M}{N}\right)^{3}-8\left(\frac{N}{M}\right)^{3}, \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
(U V)^{3}+\frac{8}{(U V)^{3}}=\left(\frac{V}{U}\right)^{6}-\left(\frac{U}{V}\right)^{6} . \tag{2.3}
\end{equation*}
$$

From the above and by the definitions of R, S, U, V, M and N, It follows that

$$
\begin{equation*}
(U V)^{3}+\frac{8}{(U V)^{3}}=\left(\frac{S}{R}\right)^{6}-\left(\frac{R}{S}\right)^{6} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(M N)^{2}-\frac{9}{(M N)^{2}}=(R S)^{2}-\frac{9}{(R S)^{2}} . \tag{2.5}
\end{equation*}
$$

Ramanujan recorded (2.1) and (2.2) in the un-organized portion of his notebook [10, p. 325-327] along with many other P-Q theta function identities. Berndt and L. C. Zhang proved most of the identities in [4]. The proofs of all these identities can be found in Chapter 25 of [2]. Ramanujan recorded a modular equation of
degree 3 in Chapter 19 [10, Entry 5, xii, p. 230] which is equivalent to (2.3). The proof of (2.3) was given by Berndt [1, p. 231].

Let Q_{n} and f_{n} be as defined in (1.3) and (1.4) respectively, then we have

$$
\begin{equation*}
\frac{f_{1}^{16}}{f_{2}^{8}}=\frac{1}{15}\left(-Q_{1}+16 Q_{2}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
q \frac{f_{2}^{16}}{f_{1}^{8}}=\frac{1}{240}\left(Q_{1}-Q_{2}\right) \tag{2.7}
\end{equation*}
$$

Using modular equations Berndt [1, p. 139] proved the identities (2.6) and (2.7). Cooper [6] gave a different proof of the same, using elliptic function identities. From (2.6) and (2.7) and using the definition of U, we deduce that

$$
\begin{equation*}
Q_{1}=q^{\frac{1}{2}} f_{1}^{4} f_{2}^{4}\left(U^{12}+\frac{256}{U^{12}}\right) \tag{2.8}
\end{equation*}
$$

By replacing q by q^{3} in (2.8) and using the definition of V, we get

$$
\begin{equation*}
Q_{3}=q^{\frac{3}{2}} f_{3}^{4} f_{6}^{4}\left(V^{12}+\frac{256}{V^{12}}\right) \tag{2.9}
\end{equation*}
$$

3. Cubic Level Identities

Theorem 3.1. If Q_{n} and f_{n} are as defined by (1.3) and (1.4) respectively, then

$$
\begin{equation*}
Q_{1}=\left(\frac{f_{1}^{10}}{f_{3}^{2}}+3^{5} q \frac{f_{3}^{10}}{f_{1}^{2}}\right)\left(\frac{f_{1}^{6}}{f_{3}^{6}}+3^{3} q \frac{f_{3}^{6}}{f_{1}^{6}}\right)^{\frac{1}{3}} \tag{3.1}
\end{equation*}
$$

Proof. With some algebraic manipulations, we see that (3.1) is equivalent to

$$
Q_{1}=q^{\frac{2}{3}} f_{1}^{4} f_{3}^{4}\left(R^{6}+\frac{243}{R^{6}}\right)\left(R^{6}+\frac{27}{R^{6}}\right)^{\frac{1}{3}}
$$

Comparing the above with (2.8), it suffices to prove the following:

$$
N^{4}\left(U^{12}+\frac{256}{U^{12}}\right)=\left(R^{6}+\frac{243}{R^{6}}\right)\left(R^{6}+\frac{27}{R^{6}}\right)^{\frac{1}{3}}
$$

Or equivalently

$$
\begin{equation*}
N^{12}\left(U^{12}+\frac{256}{U^{12}}\right)^{3}=\left(R^{6}+\frac{243}{R^{6}}\right)^{3}\left(R^{6}+\frac{27}{R^{6}}\right) \tag{3.2}
\end{equation*}
$$

For convenience, set

$$
\begin{equation*}
(R S)^{2}+\frac{9}{(R S)^{2}}=x \tag{3.3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
R S+\frac{3}{R S}=\sqrt{x+6}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
R S-\frac{3}{R S}=\sqrt{x-6} . \tag{3.5}
\end{equation*}
$$

From [12, p. 55-56], we have at $q=e^{-\frac{2 \pi}{\sqrt{3}}}, R=\sqrt{3}$ and $S=\frac{3+\sqrt{3}}{\sqrt{2}}$. Thus we have $R S-\frac{3}{R S}$ is positive in some neighborhood of $q=e^{-\frac{2 \pi}{\sqrt{3}}}$. Hence we choose positive sign for (3.5). Now cubing (3.4) and (3.5) respectively, we obtain

$$
\begin{equation*}
(R S)^{3}+\frac{27}{(R S)^{3}}=(x-3) \sqrt{x+6} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(R S)^{3}-\frac{27}{(R S)^{3}}=(x+3) \sqrt{x-6} \tag{3.7}
\end{equation*}
$$

Next from (2.1) and (3.3), it follows that

$$
\begin{equation*}
\left(\frac{R}{S}\right)^{6}+\left(\frac{S}{R}\right)^{6}=x \tag{3.8}
\end{equation*}
$$

Consequently, we find that

$$
\begin{equation*}
\left(\frac{R}{S}\right)^{3}+\left(\frac{S}{R}\right)^{3}=\sqrt{x+2} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{S}{R}\right)^{3}-\left(\frac{R}{S}\right)^{3}=\sqrt{x-2} \tag{3.10}
\end{equation*}
$$

Using a similar argument used for $R S-\frac{3}{R S}$, we see that $\left(\frac{S}{R}\right)^{3}-\left(\frac{R}{S}\right)^{3}$ is positive on some neighborhood of $q=e^{-\frac{2 \pi}{\sqrt{3}}}$. Hence we choose positive sign for (3.10). Multiplying (3.6) and (3.9), we get

$$
\begin{equation*}
R^{6}+\frac{27}{S^{6}}+S^{6}+\frac{27}{R^{6}}=(x-3) \sqrt{x+2} \sqrt{x+6} \tag{3.11}
\end{equation*}
$$

Similarly multiplying (3.7) and (3.10), we obtain

$$
\begin{equation*}
-R^{6}+\frac{27}{S^{6}}+S^{6}-\frac{27}{R^{6}}=(x+3) \sqrt{x-2} \sqrt{x-6} \tag{3.12}
\end{equation*}
$$

Now by subtracting (3.12) by (3.11), we find that

$$
\begin{equation*}
R^{6}+\frac{27}{R^{6}}=\frac{1}{2}[(x-3) \sqrt{x+2} \sqrt{x+6}-(x+3) \sqrt{x-2} \sqrt{x-6}] \tag{3.13}
\end{equation*}
$$

Likewise multiplying (3.7) and (3.9), then multiplying (3.6) and (3.10) and using the resultant identities, we obtain

$$
\begin{equation*}
R^{6}-\frac{27}{R^{6}}=\frac{1}{2}[(x+3) \sqrt{x+2} \sqrt{x-6}-(x-3) \sqrt{x-2} \sqrt{x+6}] \tag{3.14}
\end{equation*}
$$

Subtracting 4 times of (3.14) by 5 times of (3.13), we get

$$
\begin{align*}
R^{6}+\frac{243}{R^{6}}= & \frac{1}{2}[5(x-3) \sqrt{x+2} \sqrt{x+6}-5(x+3) \sqrt{x-2} \sqrt{x-6} \\
& -4(x+3) \sqrt{x+2} \sqrt{x-6}+4(x-3) \sqrt{x-2} \sqrt{x+6}] \tag{3.15}
\end{align*}
$$

From (2.4), (3.8) and (2.3), it follows that

$$
\begin{equation*}
(U V)^{3}+\frac{8}{(U V)^{3}}=\left(\frac{V}{U}\right)^{6}-\left(\frac{U}{V}\right)^{6}=\sqrt{x^{2}-4} \tag{3.16}
\end{equation*}
$$

Following the same procedure in deducing (3.13) and (3.14) from (3.3) and (3.8), From (3.16) we can establish

$$
\begin{equation*}
U^{12}+\frac{64}{U^{12}}=\frac{1}{2}\left[x\left(x^{2}-20\right)-\left(x^{2}-4\right) \sqrt{x^{2}-36}\right] \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{12}-\frac{64}{U^{12}}=\frac{1}{2}\left[x \sqrt{x^{2}-4} \sqrt{x^{2}-36}-\left(x^{2}-20\right) \sqrt{x^{2}-4}\right] \tag{3.18}
\end{equation*}
$$

Subtracting $\frac{3}{2}$ times of (3.18) by $\frac{5}{2}$ times of (3.17), we get

$$
\begin{align*}
U^{12}+\frac{256}{U^{12}}=\frac{1}{4}\left[5 x\left(x^{2}-20\right)\right. & -5\left(x^{2}-4\right) \sqrt{x^{2}-36} \\
& \left.-3 x \sqrt{x^{2}-4} \sqrt{x^{2}-36}+3\left(x^{2}-20\right) \sqrt{x^{2}-4}\right] \tag{3.19}
\end{align*}
$$

Again following the same procedure and using the identity (2.5), we can deduce that

$$
\begin{align*}
N^{12}= & \frac{1}{256}\left[\left(x^{2}-9\right)\left(x^{2}-20\right) \sqrt{x^{2}-36}-x\left(x^{2}-27\right) \sqrt{x^{2}-4} \sqrt{x^{2}-36}\right. \\
& \left.+x\left(x^{2}-20\right)\left(x^{2}-27\right)-\left(x^{2}-9\right)\left(x^{2}-36\right) \sqrt{x^{2}-4}\right] \tag{3.20}
\end{align*}
$$

Finally multiplying the cube of (3.19) with (3.20), we obtain

$$
\begin{align*}
& N^{12}\left(U^{12}+\frac{256}{U^{12}}\right)^{3} \\
= & -\frac{1}{2}\left[-365 x^{8}+\sqrt{x+6} \sqrt{x-6}\left(364 x^{7}-13832 x^{5}+127404 x^{3}-291600 x\right)\right. \tag{3.21}\\
& +\sqrt{x+6} \sqrt{x-6} \sqrt{x-2} \sqrt{x+2}\left(365 x^{6}-13140 x^{4}+102195 x^{2}-121500\right) \\
& +\sqrt{x-2} \sqrt{x+2}\left(-364 x^{7}+19656 x^{5}-278100 x^{3}+874800 x\right) \\
& \left.+20440 x^{6}-319005 x^{4}+1428840 x^{2}-1458000\right] .
\end{align*}
$$

And multiplying (3.13) with the cube of (3.15), we obtain

$$
\begin{align*}
& \left(R^{6}+\frac{243}{R^{6}}\right)^{3}\left(R^{6}+\frac{27}{R^{6}}\right) \\
= & -\frac{1}{2}\left[-365 x^{8}+\sqrt{x+6} \sqrt{x-6}\left(364 x^{7}-13832 x^{5}+127404 x^{3}-291600 x\right)\right. \tag{3.22}\\
& +\sqrt{x+6} \sqrt{x-6} \sqrt{x-2} \sqrt{x+2}\left(365 x^{6}-13140 x^{4}+102195 x^{2}-121500\right) \\
& +\sqrt{x-2} \sqrt{x+2}\left(-364 x^{7}+19656 x^{5}-278100 x^{3}+874800 x\right) \\
& \left.+20440 x^{6}-319005 x^{4}+1428840 x^{2}-1458000\right] .
\end{align*}
$$

From (3.21) and (3.22), we obtain the required result.
Theorem 3.2. If Q_{n} and f_{n} are as defined by (1.3) and (1.4) respectively, then the following identity holds

$$
\begin{equation*}
Q_{3}=\left(\frac{f_{1}^{10}}{f_{3}^{2}}+3 q \frac{f_{3}^{10}}{f_{1}^{2}}\right)\left(\frac{f_{1}^{6}}{f_{3}^{6}}+3^{3} q \frac{f_{3}^{6}}{f_{1}^{6}}\right)^{\frac{1}{3}} . \tag{3.23}
\end{equation*}
$$

Proof. We see that (3.23) is equivalent to

$$
\begin{equation*}
Q_{3}=q^{\frac{2}{3}} f_{1}^{4} f_{3}^{4}\left(R^{6}+\frac{3}{R^{6}}\right)\left(R^{6}+\frac{27}{R^{6}}\right)^{\frac{1}{3}} \tag{3.24}
\end{equation*}
$$

Comprising (2.9) and (3.24), To prove (3.23), it is enough to prove the following:

$$
\begin{equation*}
\left(V^{12}+\frac{256}{V^{12}}\right)^{3}=M^{12}\left(R^{6}+\frac{3}{R^{6}}\right)^{3}\left(R^{6}+\frac{27}{R^{6}}\right) \tag{3.25}
\end{equation*}
$$

Adding $\frac{5}{9}$ times of (3.13) and $\frac{4}{9}$ times of (3.14), we obtain

$$
\begin{align*}
& R^{6}+\frac{3}{R^{6}}=\frac{1}{18}[5(x-3) \sqrt{x+2} \sqrt{x+6}-5(x+3) \sqrt{x-2} \sqrt{x-6} \\
&+4(x+3) \sqrt{x+2} \sqrt{x-6}-4(x-3) \sqrt{x-2} \sqrt{x+6}] \tag{3.26}
\end{align*}
$$

Following the same procedure in deducing (3.13) and (3.14) from (3.3) and (3.8), we can establish

$$
\begin{equation*}
V^{12}+\frac{64}{V^{12}}=\frac{1}{2}\left[x\left(x^{2}-20\right)+\left(x^{2}-4\right) \sqrt{x^{2}-36}\right] \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{12}-\frac{64}{V^{12}}=\frac{1}{2}\left[x \sqrt{x^{2}-4} \sqrt{x^{2}-36}+\left(x^{2}-20\right) \sqrt{x^{2}-4}\right] \tag{3.28}
\end{equation*}
$$

Now subtracting $\frac{5}{2}$ times of (3.28) from $\frac{3}{2}$ times of (3.27), we can establish

$$
\begin{align*}
V^{12}+\frac{256}{V^{12}}=\frac{1}{4}\left[5 x\left(x^{2}-20\right)\right. & +5\left(x^{2}-4\right) \sqrt{x^{2}-36} \\
& \left.-3 x \sqrt{x^{2}-4} \sqrt{x^{2}-36}-3\left(x^{2}-20\right) \sqrt{x^{2}-4}\right] \tag{3.29}
\end{align*}
$$

Again following a similar steps and using the identity (2.5), we can deduce that

$$
\begin{align*}
& M^{12}=\frac{1}{4}\left[\left(x^{2}-9\right)\left(x^{2}-20\right) \sqrt{x^{2}-36}+x\left(x^{2}-27\right) \sqrt{x^{2}-4} \sqrt{x^{2}-36}\right. \\
&\left.+x\left(x^{2}-20\right)\left(x^{2}-27\right)+\left(x^{2}-9\right)\left(x^{2}-36\right) \sqrt{x^{2}-4}\right] \tag{3.30}
\end{align*}
$$

Finally cubing (3.29), we get

$$
\begin{align*}
& \left(V^{12}+\frac{256}{V^{12}}\right)^{3} \\
= & -\frac{1}{4}\left[-65 x^{9}+\sqrt{x-2} \sqrt{x+2}\left(63 x^{8}-3843 x^{6}+67284 x^{4}-323280 x^{2}+216000\right)\right. \\
& +\sqrt{x+6}\left(\sqrt{x-6}\left(-65 x^{8}+2925 x^{6}-35100 x^{4}+115760 x^{2}-72000\right)\right. \\
& \left.+\sqrt{x-6} \sqrt{x-2} \sqrt{x+2}\left(63 x^{7}-2709 x^{5}+28728 x^{3}-61200 x\right)\right) \\
& \left.+4095 x^{7}-77220 x^{5}+463120 x^{3}-734400 x\right] \tag{3.31}
\end{align*}
$$

And multiplying the cube of (3.26) with (3.13) and (3.30), we obtain that

$$
\begin{align*}
& M^{12}\left(R^{6}+\frac{3}{R^{6}}\right)^{3}\left(R^{6}+\frac{27}{R^{6}}\right) \\
= & -\frac{1}{4}\left[-65 x^{9}+\sqrt{x-2} \sqrt{x+2}\left(63 x^{8}-3843 x^{6}+67284 x^{4}-323280 x^{2}+216000\right)\right. \\
& +\sqrt{x+6}\left(\sqrt{x-6}\left(-65 x^{8}+2925 x^{6}-35100 x^{4}+115760 x^{2}-72000\right)\right. \\
& \left.+\sqrt{x-6} \sqrt{x-2} \sqrt{x+2}\left(63 x^{7}-2709 x^{5}+28728 x^{3}-61200 x\right)\right) \\
& \left.+4095 x^{7}-77220 x^{5}+463120 x^{3}-734400 x\right] . \tag{3.32}
\end{align*}
$$

From (3.31) and (3.32), we get the desired result.
From (3.1) and (3.23), one can see that

$$
\left\{1+24 \sum_{k=1}^{\infty} \frac{k^{3} q^{k}}{1-q^{k}}+216 \sum_{k=1}^{\infty} \frac{k^{3} q^{3 k}}{1-q^{3 k}}\right\}^{\frac{1}{2}}=\left\{\frac{f_{1}^{12}+27 q f_{3}^{12}}{f_{1}^{3} f_{3}^{3}}\right\}^{\frac{2}{3}} .
$$

This identity was recorded by Ramanujan in Chapter 21 of his second notebook [10, Entry 3, i, p. 253]. A different proof of the same, was given by Berndt in [1, p. 460-463].

References

[1] Berndt B. C., Ramanujans Notebooks, Part III, Springer Science \& Business Media, 1991.
[2] Berndt B. C., Ramanujans Notebooks, Part IV, Springer Science \& Business Media, 1994.
[3] Berndt B. C., Chan H. H., Sohn J. and Son S. H., Eisenstein series in Ramanujan's Lost Notebook, The Ramanujan Journal, 4(1) (2000), 81-114.
[4] Berndt B. C. and Zhang L. C., Ramanujan's Identities for Eta-functions, Mathematische Annalen, 292(1) (1992), 561-573.
[5] Cooper S., On Ramanujans Function $k(q)=r(q) r^{2}\left(q^{2}\right)$, The Ramanujan Journal, 20(3) (2009), 311-328.
[6] Cooper S. Ramanujan's Theta Functions, Springer, 2017.
[7] Cooper S. and Toh P. C., Quintic and Septic Eisenstein Series, The Ramanujan Journal, 19(2) (2009), 163-181.
[8] Liu Z. G., Some Eisenstein Series Identities related to Modular Equations of the seventh order, Pacific Journal of Mathematics, 209(1) (2003), 103-130.
[9] Raghavan S. and Rangachari S. S., On Ramanujan's Elliptic Integrals and Modular Identities, Number theory and related topics, (1989), 119-149.
[10] Ramanujan S., Notebooks, Volume I \& II. Tata Institute of Fundamental Research, Bombay, 1957.
[11] Ramanujan S., The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
[12] Vasuki K. R., Some Studies in the Theory of Special Functions and Number Theory, PhD thesis, University of Mysore, 2000.

