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Abstract: A set S ⊆ V (G) is called a chromatic detour set of G if S is both
a chromatic set and a detour set of G. The minimum cardinality of a chromatic
detour set of G is called a chromatic detour number of G and is denoted by χdn(G).
Some of its general properties are studied. Connected graphs of order n ≥ 2 with
chromatic detour number n or n − 1 are characterized. It is shown that for every
positive integer a and b with 2 ≤ a < b, there exists a connected graph G such
that dn(G) = a and χdn(G) = b. It is also shown that for every positive integers a
and b with 2 ≤ a ≤ b, there exists a connected graph G such that χ(G) = a and
χdn(G) = b.
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1. Introduction
Throughout this paper all graphs are simple. Let G = (V,E) be a graph with

V (G) is the vertex set of G and E(G) is the edge set of G. For basic graph
theoretic terminology, we refer to [2]. In a connected graph G, for any two vertices
u, v ∈ V (G), let dG(u, v) denote the length of the shortest path between u and v
in G. The diameter of graph is the maximum distance between the pair of vertices
of G. The subgraph induced by a set S of vertices of a graph G is denoted by G[S]
with V (G[S]) = S and E(G[S]) = {uv ∈ E(G) : u, v ∈ S}. A set S ⊂ V is called
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a clique if 〈S〉 is complete. The clique number of G is the number of vertices in
a maximum clique and is denoted by ω(G). A split graph is a graph in which the
vertices can be partitioned into a clique and an independent set. A semi split graph
is a graph in which the vertices can be partitioned into a clique and a set of end
vertices. The Helm Hn is the graph obtained from a wheel by attaching a pendant
edge at each vertex of the n-cycle. A flower is the graph obtained from a helm by
joining each pendant vertex to the central vertex of the helm. A Fan graph Fn can
be constructed by joined n copies of the cycle graph C3 with a common vertex. Fn

is a planar undirected graph with 2n+ 1 vertices and 3n edges.

A k-coloring of G is a function c : V (G) → {1, 2, ..., k} such that c(u) 6= c(v)
for every adjacent vertices u, v ∈ V (G). The chromatic number of G denoted by
χ(G), is the smallest k for which G has a k-coloring. For simplicity we denote a
χ(G)-coloring of G by χ-coloring. A graph having chromatic number k is called
a k-chromatic graph. Let G be a k-chromatic graph. A set S ⊆ V (G) is called
chromatic set if S contains all k vertices of different colors in G. The chromatic
number of a graph was studied in [1, 6, 7].

The detour distance D(u,v) between two vertices u and v in a connected graph
G from u to v is defined as the length of a longest u − v path in G. A u − v
path of length D(u, v) is called a u − v detour. The detour eccentricity eD(v) of
a vertex v in G is the maximum detour distance from v to a vertex of G. The
detour radius, radDG of G, is the minimum detour eccentricity among the vertices
of G, while the detour diameter, diamDG of G, is the maximum detour eccentricity
among the vertices of G. Denote the detour radius and detour diameter by R and
D respectively. A vertex x is said to lie on a u − v detour P if x is a vertex of
P including the vertices u and v. For two vertices u and v, the closed interval
ID[u, v] consists of all vertices lying in a u-v detour. For a set S of vertices, let
ID[S] = ∪u,v∈SID[u, v]. Then certainly S ⊆ ID[S]. A set S ⊆ V (G) is called a
detour set of G if ID[S] = V (G). The detour number dn(G) of G is the minimum
order of its detour sets and any detour set of order dn(G) is a called a dn− set of
G. The detour number of a graph was studied in [3, 4, 8-12]. The geochromatic
number of a graph was studied in [1]. The monophonic chromatic number of a
graph was studied in [6]. This motivated us to define a new parameter chromatic
detour number of a graph.

The chromatic number has application in Time Table Scheduling, Map coloring,
channel assignment problem in radio technology, town planning, GSM mobile phone
networks etc [5]. When we apply detour concept, there is a effective in Scheduling.
Throughout the following G denotes a connected graph with at least two vertices.
The following theorems are used in sequel.
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Theorem 1.1. [4] Each end vertex of a connected graph G belongs to every detour
set of G.

Theorem 1.2. [7] For the complete graph G = Kn (n ≥ 2), χ(G) = n.

2. The Chromatic Detour Number of a Graph
It is easily seen that a chromatic set of G need not be a detour set of G. Also the

converse is not valid in general. This has motivated us to define a new chromatic
conception of chromatic detour number. We investigate those subset of vertices of a
graph that are both chromatic set and a detour set. We call these sets as chromatic
detour sets. Although the chromatic detour number is greater than or equal to the
chromatic number for an arbitrary graph, the properties of the chromatic detour
number are quite different from that of chromatic concept.

Definition 2.1. A set S ⊆ V (G) is called a chromatic detour set of G if S is both
a chromatic set and a detour set of G. The minimum cardinality of a chromatic
detour set of G is called a chromatic detour number of G and is denoted by χdn(G).
Any chromatic detour set of cardinality of χdn(G) is called a χdn-set of G.

Example 2.2. For the graph G given in Figure 2.1, S1 = {v1, v2, v3} is a χ-set of
G so that χ(G) = 3 and S2 = {v1, v8} is a dn-set of G so that dn(G) = 2. Also
S3 = {v1, v2, v3, v8} is a χdn-set of G so that χdn(G) = 4. For the star G = K1,n−1
(n ≥ 4), χ(G) = 2, dn(G) = n− 1 and χdn(G) = n.
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Observation 2.3. If v is either an end vertex or a universe vertex of G, then v
belongs every chromatic detour set of G.
In the following, we determine the chromatic detour number of some standard
graphs.
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Theorem 2.4. For the complete graph G = Kn (n ≥ 2), χdn(G) = n.
Proof. This follows from Observation 2.3.

Theorem 2.5. For the star G = K1,n (n ≥ 3), χdn(G) = n.
Proof. This follows from Observation 2.3.

Theorem 2.6. For the complete bipartite G = Kr,s (1 ≤ r ≤ s), χdn(G) = 2.
Proof. If r = s = 1, then the result follows from Theorem 2.4. If r = 1, s ≥ 2,
then the result follows from Theorem 2.5. So let 2 ≤ r ≤ s, X = {x1, x2, ..., xr} and
Y = {y1, y2, ..., ys} be the bipartite sets of G. Then Sij = {xi, yj} (2 ≤ i, j ≤ r ≤ s)
is a χdn-set of G so that χdn(G) = 2.

Theorem 2.7. For the path G = Pn (n ≥ 3),

χdn(G) =

{
3 if n is odd

2 if n is even

Proof. Let Pn be v1, v2, ..., vn.
Case(i) n is odd.
It can be easily seen that no two element subsets of G is a chromatic detour set
of G and so χdn(G) ≥ 3. Let S = {v1, v2, vn}. Then S is a χdn-set of G so that
χdn(G) = 3.
Case(ii) n is even.
Let S = {v1, vn}. Then S is a χdn-set of G so that χdn(G) = 2.

Theorem 2.8. For the wheel graph G = K1 + Cn−1 (n ≥ 4),

χdn(G) =

{
3 if n− 1 is even

4 if n− 1 is odd.

Proof. Let x be the central vertex of G and V (Cn−1) = {v1, v2, ..., vn−1, v1}. We
consider the following two cases.
Case(i): n− 1 is even.
Let Si = {x, vi, vi+1} (1 ≤ i ≤ n−2). We assign three different colours for x, vi, vi+1

(1 ≤ i ≤ n − 2) and so χdn(G) ≥ 3. It is clear that S1 = {x, v1, v2} is a detour
chromatic set and so χdn(G) = 3.
Case(ii): n− 1 is odd.
Let Sj = {x, vj, vj+1} (1 ≤ j ≤ n − 3). We assign three different colours for
x, vj, vj+1 (1 ≤ j ≤ n− 3). Since n− 1 is odd, the vertex vn−1 is not included in Sj

for any j (1 ≤ j ≤ n− 3). There we assign a colour 4 to vn−1 and so χdn(G) ≥ 4.
Now {x, vj, vj+1, vn−1} is a chromatic detour set of G. Hence χdn(G) = 4.

Theorem 2.9. For the fan graph G = K1 + Pn−1 (n ≥ 3), χdn(G) = 3.
Proof. Let x be the central vertex of G and V (Pn−1) = {v1, v2, ..., vn−1}. Since
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Si = {x, vi, vi+1} is a clique for 1 ≤ i ≤ n − 2. We assign three different colours
for x, vi, vi+1 (1 ≤ i ≤ n − 2) and so χdn(G) ≥ 3. Since Si (1 ≤ i ≤ n − 2) is a
chromatic detour set of G, χdn(G) = 3.

Theorem 2.10. For the graph G = Kn − {e} (n ≥ 4), χdn(G) = n− 1.
Proof. Let e = uv. Since G[V −{u}] is a clique, the vertex set of G[V −{u}] is as-
signed by distinct colours c1, c2, ..., cn−1. Therefore χdn(G) ≥ n− 1. Let c1 = c(u).
Since uv 6∈ E(G), we assign c(v) = c1. Therefore V − {u} is a chromatic set of G
as well as detour set of G so that χdn(G) = n− 1.

Theorem 2.11. For the graph G = Kn − {e1, e2} (n ≥ 5), χdn(G) = n− 1, where
e1 and e2 are adjacent edges of Kn.
Proof. Let V (Kn) = {v1, v2, ..., vn}. Without loss of generality, let e1 = v2vn and
e2 = v3vn. Since n ≥ 5 G[v1, v2, ..., vn−1] = Kn−1, χdn(G) ≥ n − 1. Let c(vi) = ci
(1 ≤ i ≤ n − 1) and c(vn) = c2. Then S = {v1, v2, ..., vn−1} is a χdn-set of G so
that χdn(G) = n− 1.

Theorem 2.12. Let G be a semi split graph of order n. Then χdn(G) = n.
Proof. For a semi split graph G, S = V (G) is the unique chromatic detour set of
G so that χdn(G) = n.

3. Some Results on the Chromatic Detour Number of a Graph

In this section, we look at some relationships between the chromatic detour num-
ber and other parameters. Further some improved upper bounds for the chromatic
detour number of a graph are given. Also we characterized connected graphs of
order n ≥ 2 with chromatic detour number n or n− 1.

Observation 3.1. Let G be a connected graph of order n ≥ 2. Then 2 ≤
max{χ(G), dn(G)} ≤ n.

Theorem 3.2. Let G be a connected non-complete of order n ≥ 4 with detour di-
ameter D ≥ 2. Let PD be a detour diametral path in G such that G[PD] is neither
P3 nor KD+1 nor KD+1 − {e} nor KD+1 − {e1, e2} nor a semi split graph nor the
graphs given in Figures 3.2, 3.3 and 3.4, Then χdn(G) ≤ n− 2.
Proof. Let PD : u0, u1, u2, ..., uD be a detour diametral path of G. Since G[PD]
is neither P3 nor KD+1 nor KD+1 − {e} nor KD+1 − {e1, e2} where e1 and e2 are
adjacent edges of KD+1 nor a semi split graph nor the graphs given in Figures
3.2, 3.3 and 3.4 there exists at least one chordless subpath of PD, say Q such that
|Q| ≥ 2. Let Q : x0, x1, x2, ..., xk, where k ≥ 2. Let us assign c(x0) = c1, c(x1) = c2,
c(x2) = c1. Then S = V (G) − {x1, x2} is a detour chromatic set of G so that
χdn(G) ≤ n− 2.
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Remark 3.3. The bound in Theorem 3.2 can be sharp. For the graph G = P4,
χdn(G) = 2 = n − 2. Also the bound in Theorem 3.2 can be strict. For the graph
given in Figure 3.1, S = {v3, v5} is a χdn-set of G so that χdn(G) = 2 < n− 2.
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Theorem 3.4. Let G be a connected graph of order n ≥ 2. Then χdn(G) = n if
and only if G is either Kn or K1,n−1 or G is a semi split graph.
Proof. Let χdn(G) = n. If n = 2, then G = K2, which satisfies the requirements of
this theorem. If n = 3, then G is either K3 or P3, which satisfies the requirements of
this theorem. So, let n ≥ 4. Let PD : u0, u1, u2, ..., uD be a detour diametral path of
G. If G[PD] is neither P3 nor KD+1 nor KD+1−{e} nor KD+1−{e1, e2} where e1 and
e2 are adjacent edges of KD+1 nor a semi split graph nor the graphs given in Figures
3.2, 3.3 and 3.4, then by Theorem 3.2, χdn(G) ≤ n − 2, which is a contradiction.
Therefore G[PD] is either P3 or KD+1 or KD+1 − {e} or KD+1 − {e1, e2} or the
graphs given in Figures 3.2, 3.3 and 3.4. If G[PD] is P3, then G = K1,n−1, which
satisfies the requirements of this theorem. If G[PD] is KD+1 then G is Kn. which
satisfies the requirements of this theorem. If G[PD] is KD+1−{e} then let e = xy.
Let us assign c(x) = c(y) = c. Then S = V (G)−{x} is a chromatic detour set of G
so that χdn(G) ≤ n− 1, which is a contradiction. If G[PD] is KD+1−{e1, e2}, then
by the similar way we can prove that χdn(G) ≤ n − 1, which is a contradiction.
If G is a semi split graph, then by Theorem 2.12, χdn(G) = n, which satisfies the
requirements of this theorem. If G is the graph given in Figures 3.3, 3.4. It can be
easily verified that χdn(G) = n− 1, which is a contradiction. The converse is clear.

Theorem 3.5. Let G be a connected graph of order n ≥ 3. Then χdn(G) = n− 1
if and only if G is either G 6= Kn − {e} or G 6= Kn − {e1, e2}, where e1 and e2 are
adjacent edges of Kn or the graph given in Figures 3.2, 3.3 and 3.4.
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Proof. Let χdn(G) = n− 1. Let PD : u0, u1, u2, ..., uD be a detour diametral path
of G.
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If G[PD] is neither P3 nor KD+1 nor KD+1 − {e} nor KD+1 − {e1, e2} where e1
and e2 are adjacent edges of KD+1 nor a semi split graph nor the graphs given in
Figures 3.2, 3.3 and 3.4. Then χdn(G) ≤ n−2, which is a contradiction. Therefore
G[PD] is either P3 or KD+1 or KD+1−{e} or KD+1−{e1, e2} or a semi split graph
or the graph given in Figures 3.2, 3.3 and 3.4. If G[PD] is either P3 or G = KD+1,
then by Theorem 3.4,χdn(G) = n, which is a contradiction. If G is a semi split
graph, then by Theorem 2.12, χdn(G) = n, which is a contradiction. If G is the
graph given in Figures 3.2, 3.3 and 3.4, then χdn(G) = n − 1, which satisfies the
requirements of this theorem. If G[PD] is KD+1 − {e} then G is Kn − {e}, which
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satisfies the requirements of this theorem. If G[PD] is KD+1 − {e1, e2} then G is
Kn − {e1, e2}, which satisfies the requirements of this theorem.

Theorem 3.6. For every pair of integers a and n with 2 ≤ a ≤ n, there exists a
connected graph G of order n such that χdn(G) = a.
Proof. For a = n, let G = Ka. Then by Theorem 2.4, χdn(G) = a. So, let
2 ≤ a ≤ n − 1. Let V (K2) = {x, y} and V (Kn−a) = {x1, x2, ..., xn−a}. Let
H be the graph obtained from K2 and Kn−a by joining x and y with each xi
(1 ≤ i ≤ n − a). Let G be the graph obtained from H by adding new vertices
z1, z2, ..., za−2 and joining y with each zi (1 ≤ i ≤ a− 2). The graph G is given in
Figure 3.5. We prove that χdn(G) = a. Let Z = {z1, z2, ..., za−2} be a set of end
vertices of G. Then by Observation 2.3, Z is a subset of every chromatic detour
set of G. Therefore we assign different colours for zi for each i (1 ≤ i ≤ a − 2)
and y. Let c(zi) = ci (1 ≤ i ≤ a − 2). Since yzi ∈ E(G) for all i (1 ≤ i ≤ a − 2),
we assign different colour for y. Let c(y) = ca−1. Therefore χdn(G) ≥ a − 1. Let
Z1 = Z ∪ {y}. Since ID[Z1] 6= V (G), Z1 is not a chromatic detour set of G and so
χdn(G) ≥ a. Let us assign the vertex x with new colour and assign each vertex xi
(1 ≤ i ≤ n − a) with same colours. Let c(x) = ca and c(xi) = c1 (1 ≤ i ≤ n − a).
Then S1 = S ∪ {x} is a detour chromatic set of G so that χdn(G) = a.
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In view of Observation 3.1, we have the following realization result.

Theorem 3.7. For every positive integers a and b with 2 ≤ a ≤ b, there exists a
connected graph G such that dn(G) = a and χdn(G) = b.
Proof. Let V (Kb−a+1) = {v1, v2, ..., vb−a+1}. Let G be the graph obtained from
Kb−a+1 by adding new vertices u1, u2, ...., ua−1 and the edges v1ui (1 ≤ i ≤ a− 1).
The graph G is shown in Figure 3.6.
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First we show that dn(G) = a. Let Z = {u1, u2, ...., ua−1} be the set of end
vertices of graph G. By Theorem 1.1, Z is a subset of every detour set of G. Since
ID[Z] 6= V (G), Z is not a detour set of G and so dn(G) ≥ a. Let S = Z ∪ {v2}.
Then S is a detour set of G so that dn(G) = a.

Next we show that χdn(G) = b. Since G is a semi split graph, by Theorem 3.4,
χdn(G) = n = b− a+ 1 + 1 = b.
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Theorem 3.8. For every positive integers a and b with 2 ≤ a ≤ b, there exists a
connected graph G such that χ(G) = a and χdn(G) = b.
Proof. For a = b, let G = Ka. Then by Theorems 1.2 and 2.4, χ(G) = a and
χdn(G) = a. So, let 2 ≤ a < b. Let V (Ka) = {v1, v2, ..., va}. Let G be the
graph obtained from Ka by adding new vertices x, z1, z2, ...., zb−a and join each zi
(1 ≤ i ≤ b − a) with x and join x with v1. The graph G is shown in Figure 3.7.
It is easily seen that V (Ka) is a χ-set of G so that χ(G) = a. By Theorem 3.5,
χdn(G) = n− 1 = b− a+ a+ 1− 1 = b.
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In the following, we present the Nordhaus-Gaddum type relations for the chromatic
detour number of a graph.

Theorem 3.9. Let G and G be connected graphs of order n ≥ 4. Then 4 ≤
χdn(G) + χdn(G) ≤ 2n− 3. Moreover the upper bound is sharp if and only if G is
the graph given in Figure 3.3.
Proof. Since G and G are connected graphs χdn(G) ≥ 2 and χdn(G) ≥ 2.
Therefore χdn(G) + χdn(G) ≥ 4. Since G is connected, by Theorems 3.4 and
3.5, χdn(G) ≤ n− 1 and χdn(G) ≤ n− 2. Hence χdn(G) + χdn(G) ≤ 2n− 3. Next
we prove that χdn(G) + χdn(G) = 2n− 3 if and only if G is the graph given in the
Figure 3.3. From Theorem 3.5, the only graph satisfying χdn(G)+χdn(G) = 2n−3
is the graph given in the Figure 3.3.

Remark 3.10. The lower bound in Theorem 3.9 is sharp. For the graph G = P4,
χdn(G) = 2. Since G = P4, χdn(G) = 2. Therefore χdn(G) + χdn(G) = 4.
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