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Abstract: Given a simple graph G = (V,E) with a set S ⊆ V , to be an initial
set of coloured vertices called black vertices and all remaining vertices being un-
coloured, called white vertices. At each integer valued time step, a coloured vertex
in the set S with a single uncoloured neighbour will force that neighbour to get
coloured and such a vertex is called a forcing vertex and the set S is called a forcing
set, if by relatively applying the forcing process, all of V becomes coloured. The
forcing number of a graph G is the cardinality of the smallest forcing set of G and
it is denoted by F (G). One of the variants of forcing, namely connected forcing, is
a restriction of forcing in which initial set of coloured vertices induces a connected
subgraph. The connected forcing number, Fc(G) of a graph G, is the minimum
cardinality among all connected forcing sets of G. In this paper, we determine
Fc(G) of degree splitting graphs and line graphs of certain graphs. Further we
discuss on its bounds and the realizability theorem.
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1. Introduction
Unlike a static colouring process of a graph G, a dynamic colouring process,

considers a subset S ⊆ V (G) as an initial set of coloured vertices (black vertices)
known as a zero forcing set or forcing set or propagation set or by several other
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different names by different authors, which can alter the colour of all the other
vertices of G to black, by iteratively applying a subsequent colour change rule.
The colour change rule is as follows: At each step, any black coloured vertex in the
set S which has exactly one white coloured vertex as a neighbour, can change that
white coloured vertex to a black coloured vertex. This vertex is called the forcing
vertex and the set S is called the forcing set of G, if by applying this colour change
rule iteratively, the vertex set V (G) is coloured black. The minimum cardinality of
all forcing sets of G is called the forcing number of G and it is denoted by F (G).
Connected forcing is one of the variants of forcing, in which the subgraph induced
by a forcing set is connected. The minimum cardinality of a connected forcing set
is called the connected forcing number of G and it is denoted by Fc(G). The notion
of forcing in graphs was first introduced in a workshop on Linear Algebra and
Graph Theory in 2006 by R. A. Brualdi [1] and was used to bound the minimum
rank of a graph. Connected forcing number was introduced by Boris Brimkov and
Randy Davila in the year 2016 [2]. For further analytic study on forcing number
and its variants, reader can refer to [4, 5, 6, 7, 9, 10, 11]. Forcing in graphs, finds
extensive applications in scheduling, aircraft scheduling and mobile networks. In
this paper connected forcing number of degree splitting graphs and line graphs of
certain graphs are determined. Further we discuss on its bounds and realizability
theorem.

2. Definitions and Preliminaries

For graph theoretic terminology and for definitions not mentioned here one can
refer to [8]. The graphs considered in this paper are simple, finite and undirected
graphs. Let the order and size of the graph G = (V,E) be denoted by n = |V (G)|
and m = |E(G)|, respectively. Two vertices v, w ∈ V (G) are said to be adjacent,
or neighbours, if there exists an edge vw ∈ E. The number of edges incident to a
vertex v is called the degree of the vertex v and it is denoted by degGv or simply
degv, in context to the graph. A vertex with degree zero is called an isolated vertex
and a vertex with degree one is called a pendant vertex or a leaf. For any vertex
u ∈ V , the open neighbourhood of u is the set N(u) = {v ∈ V : uv ∈ E}. The
closed neighbourhood of a vertex in a graph is the vertex together with the set of
adjacent vertices and it is denoted by N [u]. A support vertex is a vertex adjacent
to atleast one leaf vertex. A strong support is a vertex which is adjacent to atleast
two leaf vertices. A cut edge is an edge whose removal disconnects the graph. The
Corona product of two graphs G and H is defined as the graph obtained by taking
one copy of G and |V (G)| copies of H and joining the i-th vertex of G to every
vertex in the i-th copy of H. The line graph L(G), of a graph G, is a simple graph
whose vertices are the edges of G, with ee

′ ∈ E(L(G)) when e and e
′

have common
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endpoint in G. In a graph G, the maximum degree denoted by ∆(G), is the degree
of a vertex with maximum number of edges incident to it and the minimum degree
denoted by δ(G), is the degree of a vertex with the minimum number of edges
incident to it.
For a graph G with vertex set V (G) = S1∪S2∪S3∪ ...∪St∪T , where each Si is a

set of vertices with atleast two vertices having same degree and T = V −
t⋃

i=1

Si, the

degree splitting graph of G, denoted by DS(G) is obtained by adding the vertices
w1, w2, ..., wt and joining wi to each vertex of Si, 1 ≤ i ≤ t, respectively. A Path on
n vertices is denoted by Pn and a Cycle on n vertices by Cn. A complete graph is a
simple graph whose vertices are pairwise adjacent. Kn denotes a complete graph on
n vertices. A graph G is bipartite if its vertex set V can be partitioned into partite
sets V1 and V2 such that if uv is an edge of G then u ∈ V1 and v ∈ V2, V = V1 ∪ V2.
A graph G is said to be a complete bipartite graph if every vertex in V1 is adjacent
to every vertex of V2 and it is denoted by Km,n. A t−partite graph is one whose
vertices set can be partitioned into t partite sets so that no edge has both end in any
one partite set. A complete t−partite graph is one in which every vertex is joined
to every other vertex which is not in the same set and it is denoted by Kt1,t2,t3,...,tp .
For any set S ⊆ V , the induced subgraph G[S] is the maximal subgraph of G with
vertex set S. A connected graph having no cycles is called a tree. A rooted tree is
a tree in which one of the vertices is distinguished from others. The distinguished
vertex is called the root of the tree. The length of the path from the root v to a
vertex x is the depth of x in T . Let P (x) be a unique x− v path. The parent of x
is its neighbour on P (x); The children of x are its other neighbours. A complete
binary tree is a rooted tree in which all leaves have the same depth and all internal
vertices have degree three, except the root vertex which is of degree two. If T is
a complete binary tree with root vertex v, the set of all vertices with depth k are
called vertices at level k. A spider graph is a graph Pn,m obtained by identifying
the end points of m paths, each one has length n. The spider graph is a tree with
one vertex of degree atleast three called the center of the spider and all other with
degree atmost two. The spider Pn,m is called a Regular spider if it consists of one
central vertex u connected with m number of paths Pn of same length. A Star
Sk is complete bipartite graph K1,k is a tree with one internal node and k leaves.
An n-star graph Sn is graph with n-vertices. Banana tree graph Bn,k is a graph
obtained by connecting one leaf of each of n copies of a k-star graph with a single
root vertex that is distinct for all the stars. The wheel graph wn is a cycle graph
Cn−1 with an additional central vertex adjacent to all the vertices of the cycle Cn−1.

In this paper, we compute the Fc(G) of degree splitting graphs and line graphs
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of certain graphs. Further we study on its bounds and the realizability theorem. In
Section 3, connected forcing number of degree splitting graphs of certain standard
graphs like paths, cycles, complete graphs, complete t−partite graphs, regular spi-
der and wheel graphs are determined. Bounds and realizability theorem are also
discussed. In section 5, Line graphs L(T ) of certain classes of trees T , like com-
plete binary tree, regular spider and banana trees, Fc(L(T )) are evaluated. The
Following are the results referred for subsequent study in this paper.

Proposition 2.1. [2] For a connected graph G different from a path, Fc(G) ≥ p,
where p is the number of leaves in G and the bound is sharp.

Theorem 2.2. [2] Let T = (V,E) be a tree. Then,

Fc(T ) =

{
1 if ∆(T ) < 3

|R1|+ |R2|+ L if ∆(T ) ≥ 3

where R1(G) = {v ∈ V : G− V has atleast 3 connected components}
R2(G) = {v ∈ V : G− V has 2 connected components ,neither of which is a path}
R3(G) = {v ∈ V : v is adjacent to atleast one leaf}
L is the number of leaves coloured.

Theorem 2.3. [5] Let G = (V,E) be a connected graph of order n ≥ 2. Then
Fc(G) = n− 1 if and only if G = Kn, n ≥ 2, or G = K1,n−1, n ≥ 4.

Observation 2.4. [3] For every connected graph G, it holds that F (G) ≤ Fc(G).
Degree splitting graphs find extensive applications in communication networks,

power network monitoring and information in social networks.

3. Degree Splitting Graphs

Theorem 3.1. For a path Pn, n ≥ 2, Fc(DS(Pn)) =

{
2, if 2 ≤ n ≤ 4

3 otherwise.

Proof. Let V (Pn) = {v1, v2, ..., vn}, G = DS(Pn) and S be a connected forcing set
of G.

Case (a): 2 ≤ n ≤ 4.
Since δ(G) = 2, we have |S| ≥ 2. The set {v1, v2} is a minimum connected forcing
set of G. Hence Fc(G) = 2.

Case (b): n ≥ 5.
In this case, to claim that Fc(G) = 3, we prove |S| ≥ 3. Suppose on contradiction,
|S| = 2. It is clear that any two vertices of G cannot force G to be completely
coloured. Hence |S| ≥ 3. Therefore the set {v1, v2, w}, where degGw = n− 2, is a
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minimum connected forcing set of G. Hence Fc(G) = 3.

As the proofs are analogous to the proof of the Theorem 3.1, the following theorems
for cycles and complete graphs are stated without proofs .

Theorem 3.2. For a cycle Cn , n ≥ 3, Fc(DS(Cn)) = 3.

Theorem 3.3. For a complete graph Kn, Fc(DS(Kn)) = n, where n ≥ 3.
For a complete t−partite graph G = Kt1,t2,t3,...,tp , 0 < t1 = t2 = t3 = ... = tp = 1,
DS(Kt1 , Kt2 , ..., Ktp

∼= DS(Kp), therefore in this case Fc(DS(G)) = p

Theorem 3.4. For a complete t−partite graph Kt1,t2,t3,...,tp, 0 < t1 ≤ t2 ≤ t3... ≤ tp
Fc(DS(Kt1,t2,t3,...,tp)) = t1 + t2 + t3 + ...+ tp − 1.
Proof. Let G = DS(Kt1,t2,t3,...,tp) and S be a connected forcing set of G. Consider

V (G) =
p⋃

i=1

Vi∪u1, u2, ..., up, where V1, V2, ..., Vp are the partite sets with cardinality,

|Vi| = ti, 1 ≤ i ≤ p and u1, u2, ..., up are the newly introduced vertices in the
construction of G. Also by definition of degree splitting graph, it follows that if
|Vi| = |Vj| for i 6= j then ui = uj, and if |Vi| = 1 for some i, 1 ≤ i ≤ p, then ui does
not exists. Represent the vertices of the partite sets Vi, 1 ≤ i ≤ p by vji, 1 ≤ i ≤ ti.
Now claim that |S| ≥ t1 + t2 + t3 + ...+ tp − 1. Suppose on contradiction, assume
|S| = t1 + t2 + t3 + ...+ tp − 2.
We have two cases : |Vi| = |Vj| for atleast any two i, j with i 6= j, 1 ≤ i ≤ p,
1 ≤ j ≤ p and |Vi| 6= |Vj| for every i 6= j, 1 ≤ i ≤ p, 1 ≤ j ≤ p. In both the cases
choose a vertex ui, 1 ≤ i ≤ p for which degui is minimum. Let ui be a black vertex.
Since δ(G) > 1 and for each of the vertices vji, 1 ≤ j ≤ ti, ti > 1 is adjacent to
every other vertices in Vk, k 6= i, 1 ≤ k ≤ p none of the vertices in Vi ∪ {ui} can
force any of the other white vertices in

⋃
k 6=i

1≤k≤p

Vk. Hence S
′
= Vi−{vki} for some k,

1 ≤ k ≤ ti are black vertices and this vertex vki can be forced by ui.
In the case when ti = tj = 1, ui = uj, for atleast some i 6= j and 1 ≤ i ≤ p, 1 ≤ j ≤ p
and if degui = δ(G) then S

′
=
⋃
k 6=i

Vk − {v1i}. Therefore S
′ ∪ {ui} ⊂ S. But again

none of the vertices in Vi can force any of the vertices in the other partite sets and

the vertices in
p⋃

k=1
k 6=i

uk. Hence
p∑

k=1
k 6=i

tk + |S ′ | + 1 =
p∑

k=1

tk vertices belong to S. Since

by assumption |S| =
p∑

k=1

tk − 2, without loss of generality, either let the partite set

say Vl , l 6= i, consists of tl − 2 black vertices or Vl, Vm, l 6= m 6= i consists of tl − 1
and tm− 1 black vertices respectively. In either of the cases vertices in S can force
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the other white vertices. Hence a contradiction to S being a connected forcing set

of G. Therefore |S| ≥ t1, t2, ..., tp − 1. Hence S =
p⋃

k=1
k 6=i,j

Vk ∪ S
′ ∪ {ui} ∪ S

′′
where

S
′′

= Vj − {vkj}, for k, 1 ≤ k ≤ tj is a connected forcing set of G with minimum

cardinality
p∑

k=1

tk − 1.

Theorem 3.5. For a regular spider graph Pn,m, m > 2, Fc(DS(Pn,m)) = m+ 1.
Proof. Let G = (DS(Pn,m)) and D be a minimum connected forcing set of G.
Assume u to be the central vertex of Pn,m and N(u) = {u1, u2, ..., um}. Let V (G) =
V (Pn,m)∪{v, w}, where degw = m, degv = m(n−1) and N(w) = {w1, w2, ..., wm}.
To prove |D| = m+ 1. Suppose on contradiction |D| < m+ 1, say |D| = m.
Now we claim the following:
Claim 1: v ∈ D.
Suppose v /∈ D. Since |D| = m, the m black vertices, in their forcing process leaves
vertices in G with two white vertices as neighbours. Thus leaving the graph G with
uncoloured vertices. But this is a contradiction to D being a connected forcing set
of G. Hence v ∈ D.
Claim 2: u ∈ D

Figure 3.1: Shaded vertices denote a minimum connected forcing set of
DS(Pn,m)
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Suppose u /∈ D. Since D is a connected set, the m−vertices in D are connected
by the vertex v. As the vertex u /∈ D, the m vertices (black) in D, in their forcing
process leaves atleast a vertex ui, 1 ≤ i ≤ m with two white vertices as neighbours,
a contradiction to D being a connected forcing set of G. Therefore u ∈ D. Hence

the Claim 2. Therefore {v, u} ⊂ D, hence D = {v, u} ∪
(

m−1⋃
i=1

ui

)
is a minimum

connected forcing set of G with |D| = m + 1. Therefore Fc(DS(Pn,m)) = m + 1
(Refer to Figure 3.1).

Theorem 3.6. For a wheel graph Wn on n vertices, Fc(DS(Wn)) = 4.
Proof. Let G=DS(Wn) and S be a connected forcing set of G Consider V (G) =
{v1, v2, ..., vn, w}, where degvn = n−1, degvi = 4, 1 ≤ i ≤ n−1 and degw = n−1.
Since δ(G) = 4, Fc(Wn) = 3 and F (G) ≤ Fc(G), we have |S| ≥ 4. Hence the set
{w, vn, v1, v2} is a minimum connected forcing set of G. Therefore Fc(G) = 4.

Theorem 3.7. For a graph G, Fc(DS(G)) ≤ Fc(G) + i, i ≥ 1.
Proof. Let D be a minimum connected forcing set of G. Then we have |D| =
Fc(G). Construct DS(G), such that w1, w2, ..., wi, i ≥ 1 to be the newly introduced

vertices corresponding to the subsets Si, i ≥ 1 and V (G) =

( ⋃
i≥1

Si

)
∪ T , where

T = V (G)−
( ⋃

i≥1
Si

)
. By definition of DS(G), V (DS(G) = V (G) ∪

( ⋃
i 6=1

wi

)
, In

either of the cases when T = φ or T 6= φ, we have D ∩
⋃
i≥1

Si 6= φ. Hence the set

D∪
( ⋃

i≥1
wi

)
is a connected forcing set of DS(G). Therefore Fc(DS(G)) ≤ |D|+ i

or Fc(DS(G)) ≤ Fc(G) + i.

4. Realizability
Given a set of positive integers a, b with 2 < a ≤ b, it is realizable to find a

graph G for which F (G) = a and Fc(G) = b.
For a graph G and a vertex v ∈ V (G), attaching a complete graph, say H to v, we
mean identifying the vertices v and w, where w ∈ V (H).

Theorem 4.1. (Realizability Theorem) Given two positive integers a and b,
with 2 < a ≤ b, there exists a graph G, such that F (G) = a and Fc(G) = b.
Proof. Case (a): 1 < a = b
Consider a complete graph on (a+ 1) vertices. Then the resulting graph
G ∼= K(a+1) has F (G) = a = Fc(G).
Case (b): 2 < a < b
Consider a path P on (b − a) + 1 vertices. Attach (a − 2)K ′3s to one end vertex
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of the path P and a K3 to the other end vertex of P . Then the resulting graph G
has F (G) = a and Fc(G) = b (Refer to Figure 4.1).

Figure 4.1: A graph illustrating Case(b)

Edge colouring problem in a graph G can be viewed as a vertex colouring
problem in line graph L(G) of G. Time table scheduling of exams and scheduling
of lectures in institutes are applications of this property of line graphs. Line graph
is a powerful visual tool in marketing finance and other areas. Hence we attempt
to study on the connected forcingness in line graphs of certain graphs.

5. Line Graphs

Theorem 5.1. For a complete binary tree T of level l, Fc(L(T )) =
l−1∑
k=1

2k + 2l−1.

Proof. Let G = L(T ) and E(T ) = {eij : 1 ≤ i ≤ l, 1 ≤ j ≤ 2l, 1 > 0}. Then
V (G) = {eij : 1 ≤ i ≤ l, 1 ≤ j ≤ 2l, l > 0}. Consider a set S to be a connected
forcing set of G. Clearly the edge e11e12 is a cut edge of G and since δ(G) = 3,
where degGe11 = degGe12 = 3, at least one of the vertices e2j, j ∈ {1, 2} which
are adjacent to e11 belong to S or otherwise e11 is not a forcing vertex. Similarly,
at least one of the vertices e2j, j ∈ {3, 4} which are adjacent to e12 belong to S
or otherwise e12 cannot be a forcing vertex. Therefore, the vertices e11, e12 and
two of the vertices in the set {e2j : 1 ≤ j ≤ 4} belong to S. Without loss of
generality, let {e21, e23 ⊂ S}. Hence the vertices e11 and e12 force their adjacent
vertices say e22 and e24 respectively. Since degGe2j = 4, 1 ≤ j ≤ 22, none of
the vertices {e2j : 1 ≤ i ≤ 22} can force the vertices in {e3j : 1 ≤ i ≤ 23}.
Continuing the argument in a similar manner, for each vertex corresponding to

each edge up to the level l − 1, we obtain |S| ≥
l−1∑
k=1

2k + 2l−1. Therefore, the set

{eij : 1 ≤ i ≤ 1, 1 ≤ j ≤ 2l−1} ∪ {elk : k ≡ 1(mod)2, 1 ≤ k ≤ 2l} is a minimum

connected forcing set of G. Hence Fc(L(T )) =
l−1∑
k=1

2k + 2l−1.
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Theorem 5.2. For a regular spider T = Pn,m, m > 2, Fc(L(T )) = m.
Proof. Let G = L(T ) and S be a connected forcing set of G. Denote by E(T ) the
edge set of T as follows: E(T ) = {ei : 1 ≤ i ≤ m} ∪ {eij : 1 ≤ i ≤ m, 1 ≤ j ≤
(n− 1)} ∪ {u}. Let ei, 1 ≤ i ≤ m be the edges of T adjacent to the central vertex
u of T . Then the induced subgraph 〈e1, e2, e3, ..., em〉 ∼= Km, in G. Also since G
consists of m leaves, by Proposition 2.1, |S| ≥ m. Therefore, the set of vertices
{ei, e2, ..., em} is a minimum connected forcing set of G, of cardinality m. Hence
Fc(G) = m.
Since L(P2,m) ∼= Km ·K1, as an immediate consequence of Theorem 4.2, we have
the following corollary.

Corollary 5.3. For the Corona graph Km ·K1, m ≥ 3, Fc(Km ·K1) = m.

Theorem 5.4. For a banana tree T = Bn,k, Fc(L(T )) = n+ n(k − 1), k ≥ 2.
Proof. Let G = L(T ) and E(T ) = {ei : 1 ≤ i ≤ n} ∪ {eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k},
where e

′
is 1 ≤ i ≤ n are the edges incident to the central vertex u with degu = n

and eij, 1 ≤ i ≤ n, 1 ≤ j ≤ k are the edges of the star K1,k with edges ei1, 1 ≤ i ≤ n
incident with the edges ei, 1 ≤ i ≤ n, respectively. Since e1, e2, e3, ..., en are the
cut-vertices of the graph G with degGei = n − 1, {e1, e2, e3, ..., en ⊆ S}, where S
is a connected forcing set of G with degGei1 > 1, 1 ≤ i ≤ n. Also since the edges
ei, ei1, 1 ≤ i ≤ n, are the cut edges of G with degGei1 > 1, 1 ≤ i ≤ n and the
subgraph induced by the vertices {e1j : 1 ≤ j ≤ k}, {e2j : 1 ≤ j ≤ k}, {e3j : 1 ≤
j ≤ k}, ..., {enj : 1 ≤ j ≤ k} are complete graphs Kn respectively, by Theorem
2.3, Fc(Kk) = (k − 1). Hence {eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1} ⊆ S and we have
|S| ≥ n + n(k − 1). Therefore {e1, e2, e3, ..., en} ∪ {eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1}
is a minimum connected forcing set of G. Hence Fc(L(T )) = n+ n(k − 1).
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